1 Finite Representations of Languages

Languages may be infinite sets of strings. We need a finite notation for them.
There are at least four ways to do this:

1. Language generators. The language can be represented as a math-
ematical sequence wy,wq, ws, ... such that the language is equal to the
set {wq,wq, ws,...}. Given an integer i, the generator will produce the
string w;.

2. Language acceptors. The language can be represented as a math-
ematical predicate, a membership tester. Given a string, this will tell if
the string is in the language.

3. Mathematical descriptions, like {a™b" : n > 0}.

4. Explicit listings, like {0, 1,00, 01}.

e Explicit listings work only for finite languages.

e Math descriptions are very general, but it may be hard to know if a
string is in the language.

e Language acceptors have a hard time answering some questions, such
as whether the language is empty.

e Language generators have a hard time testing if a string is in the lan-
guage.

There are uncountably many languages over a nonempty set X but only
countably many representations in a finite set of symbols. Therefore most
languages will never have a finite representation.

1.1 Regular Expressions

Regular expressions are one way to represent languages. They are analogous
to arithmetic expressions for representing quantities. This notation will turn
out to be useful for describing programming languages and also for text
searching applications.



There are rules of inference for constructing regular expressions over an
alphabet X.

If a € ¥ then a itself is a regular expression over ..

() is a regular expression over Y.

If £ and F are regular expressions over ¥ then so is (EF).

If £ and F are regular expressions over X then so is (F U F).
If E is a regular expression over ¥ then so is (E*).
Parentheses can often be omitted.

SEE A

Example: Suppose ¥ = {0, 1}.

Then 0 is a regular expression over {0, 1} by 1.

So (0*) is a regular expression over {0, 1} by 5.

Also, 1 is a regular expression over {0,1} by 1.

So 1(0*) is a regular expression over {0, 1} by 3.

Also (1%) is a regular expression over {0, 1} by 5.

So 0(1*) is a regular expression over {0, 1} by 3.

Thus 1(0*) U 0(1*) is a regular expression over {0, 1} by 4.

This regular expression represents the language ({1}{0}*) U ({0}{1}*).
This language contains strings like {1, 10, 100, 1000, ...,0,01,011,0111,...}.
Note that {0,1}* is not a regular expression over the alphabet {0, 1}.

1.2 Language Represented by a Regular Expression
If F is a regular expression then let L(E) be the language it represents.
We have the following rules:

If a € ¥ then L(a) = {a}.

L(0) =0

L(EF) = L(E) o L(F)

L(EUF) = L(E)UL(F)
L(E*) = L(E)*



Note that L(E)oL(F) is the concatenation of two languages, L(E)UL(F)
is the union of two languages, and L(F)* is the Kleene star of a language.
Thus for example

L(1(07)U0(17)) =

L(1(0%)) U L(0(17)) =

(L£(1) 0 L{07)) U (£(0) 0 L(17)) =

({1} o {0}") U ({0} o {1}7).

1.3 Regular Languages

A language L is said to be regular if there is a regular expression F such that
L = L(FE), that is, if L can be represented by a regular expression.

Natural questions: Which languages can be represented by regular ex-
pressions? Is every language regular? Is {a™b™ : n > 0} regular? If L; and
Ly are regular, are Ly N Lo, L1 — Lo, Ly U Lo, et cetera?

How can one generate a regular expression for a set .S of strings? To do
this, (a) split S into subsets that are easier to describe, (b) find a regular
expression for each subset, then (c) take their union.

1.4 Equations Between Languages

Facts:
{a,b}" # {a}*{0}"

{a}™{0}" # {a}" U {0}
£(07) = {e}
We write £/ = F' as regular expressions if L(F) = L(F).
Facts:

ab) = ()



ab(0*) = ab

To simplify a regular expression F means to find a simpler regular ex-
pression F' such that £ = F.

In general how can one simplify a regular expression? To do this, (a)
list some strings in the regular expression, (b) try to find a pattern in these
strings, and (c) find a simpler regular expression for this pattern.

Note again that {0,1}* is not a regular expression over the alphabet
{0,1}. Regular expressions do not contain any braces ({, }) or commas
unless these symbols are in the alphabet.

1.5 Application

Consider a sequence of symbols abach as representing the trace of a computa-
tion where a, b, and ¢ are events that occur in this order. Suppose one knows
that in a given application, every a is followed by a b. This can be repre-
sented by the regular expression (bUc)*((ab)(bUc)*)*. Call this EF'1. Suppose
one also knows that every b is followed by a ¢ two time steps later. This can
be represented by the regular expression EZ2; this is a little bit complicated
to write. One then wants to show that every a is followed by a ¢ three time
steps later. This can be represented by a regular expression £'3 which is also
complicated to write. Then if one shows that £(E1) N L(E2) C L(FE3) this
establishes the desired result. Thus regular expressions can be used to reason
about program behaviors.

1.6 Problems

Give a regular expression for the set of even length binary strings.

Problem 1.8.1: What language is represented by the regular expression
(((a*a)b) Ub)? Can you find a simpler expression for it?

Problem: Find a regular expression for the set of strings in {a,b}* that
have exactly one a in them.

Problem: Find a regular expression for the set of strings in {a, b, c}* that
have exactly one a or exactly one b in them.

Problem: Try to find a regular expression for the set of valid floating
point numbers, things such as 0.326E+5. You can use D to represent the
digits {0,1,2.3,4,5,6,7,8,9}.



1.7 Regular Expressions in Languages

Look at web links on regular expressions in various programming languages.
e Regular Expressions in Perl

e Unix Grep Utility

Mastering Regular Expressions

A Tao of Regular Expressions

Wikipedia Article; Standards for Regular Expressions

Distinguish text searching from regular expressions
Searching for ca* in bbcaab will succeed but bbcaab & L(ca*).
How to simulate ? with regular expressions

Protein Sequence Similarity — Explain BLAST

1.8 Finite Automata Introduction

e Fixed memory can be an advantage. Makes storage allocation and
caching easier.

e A stack helps a little for memory allocation —can predict where accesses

will be

Related Subjects

e Hidden Markov Model. Similar to finite automata but with probabili-
ties attached to the transitions and also give outputs.

e Cellular Automata. Arrays of automata that interact with each other.

e Biichi Automata: Operate on infinite strings. Used for model checking.
Accept if some accepting state is visited infinitely often.

e Timed automata



