1 Finite Representations of Languages

Languages may be infinite sets of strings. We need a finite notation for them.

There are at least four ways to do this:

1. Language generators. The language can be represented as a mathematical sequence \(w_1, w_2, w_3, \ldots \) such that the language is equal to the set \(\{w_1, w_2, w_3, \ldots\} \). Given an integer \(i \), the generator will produce the string \(w_i \).

2. Language acceptors. The language can be represented as a mathematical predicate, a membership tester. Given a string, this will tell if the string is in the language.

3. Mathematical descriptions, like \(\{a^n b^n : n \geq 0\} \).

4. Explicit listings, like \(\{0, 1, 00, 01\} \).

- Explicit listings work only for finite languages.
- Math descriptions are very general, but it may be hard to know if a string is in the language.
- Language acceptors have a hard time answering some questions, such as whether the language is empty.
- Language generators have a hard time testing if a string is in the language.

There are uncountably many languages over a nonempty set \(\Sigma \) but only countably many representations in a finite set of symbols. Therefore most languages will never have a finite representation.

1.1 Regular Expressions

Regular expressions are one way to represent languages. They are analogous to arithmetic expressions for representing quantities. This notation will turn out to be useful for describing programming languages and also for text searching applications.
There are rules of inference for constructing regular expressions over an alphabet Σ.

1. If $a \in \Sigma$ then a itself is a regular expression over Σ.
2. \emptyset is a regular expression over Σ.
3. If E and F are regular expressions over Σ then so is (EF).
4. If E and F are regular expressions over Σ then so is $(E \cup F)$.
5. If E is a regular expression over Σ then so is (E^*).
6. Parentheses can often be omitted.

Example: Suppose $\Sigma = \{0, 1\}$.

Then 0 is a regular expression over $\{0, 1\}$ by 1.
So (0^*) is a regular expression over $\{0, 1\}$ by 5.
Also, 1 is a regular expression over $\{0, 1\}$ by 1.
So $1(0^*)$ is a regular expression over $\{0, 1\}$ by 3.
Also (1^*) is a regular expression over $\{0, 1\}$ by 5.
So $0(1^*)$ is a regular expression over $\{0, 1\}$ by 3.
Thus $1(0^*) \cup 0(1^*)$ is a regular expression over $\{0, 1\}$ by 4.

This regular expression represents the language $(\{1\}\{0\}^*) \cup (\{0\}\{1\}^*)$.
This language contains strings like $\{1, 10, 100, 1000, \ldots, 0, 01, 011, 0111, \ldots\}$.
Note that $\{0, 1\}^*$ is not a regular expression.

1.2 Language Represented by a Regular Expression

If E is a regular expression then let $\mathcal{L}(E)$ be the language it represents.
We have the following rules:

If $a \in \Sigma$ then $\mathcal{L}(a) = \{a\}$.

$\mathcal{L}(\emptyset) = \emptyset$

$\mathcal{L}(EF) = \mathcal{L}(E) \circ \mathcal{L}(F)$

$\mathcal{L}(E \cup F) = \mathcal{L}(E) \cup \mathcal{L}(F)$

$\mathcal{L}(E^*) = \mathcal{L}(E)^*$
Note that $\mathcal{L}(E) \circ \mathcal{L}(F)$ is the concatenation of two languages, $\mathcal{L}(E) \cup \mathcal{L}(F)$ is the union of two languages, and $\mathcal{L}(E)^*$ is the Kleene star of a language. Thus for example

$$\mathcal{L}(1(0^*) \cup 0(1^*)) =$$

$$\mathcal{L}(1(0^*)) \cup \mathcal{L}(0(1^*)) =$$

$$(\mathcal{L}(1) \circ \mathcal{L}(0^*)) \cup (\mathcal{L}(0) \circ \mathcal{L}(1^*)) =$$

$$(\{1\} \circ \{0\}^*) \cup (\{0\} \circ \{1\}^*).$$

1.3 Regular Languages

A language L is said to be regular if there is a regular expression E such that $L = \mathcal{L}(E)$, that is, if L can be represented by a regular expression.

Natural questions: Which languages can be represented by regular expressions? Is every language regular? Is $\{a^n b^n : n \geq 0\}$ regular? If L_1 and L_2 are regular, are $L_1 \cap L_2$, $L_1 - L_2$, $L_1 \cup L_2$, et cetera?

How can one generate a regular expression for a set S of strings? To do this, (a) split S into subsets that are easier to describe, (b) find a regular expression for each subset, then (c) take their union.

1.4 Equations Between Languages

Facts:

$$\{a, b\}^* \neq \{a\}^* \{b\}^*$$

$$\{a\}^* \{b\}^* \neq \{a\}^* \cup \{b\}^*$$

$$\mathcal{L}(\emptyset^*) = \{\epsilon\}$$

We write $E = F$ as regular expressions if $\mathcal{L}(E) = \mathcal{L}(F)$.

Facts:

$$ab\emptyset = \emptyset$$
ab(∅*) = ab

To simplify a regular expression E means to find a simpler regular expression F such that $E = F$.

In general how can one simplify a regular expression? To do this, (a) list some strings in the regular expression, (b) try to find a pattern in these strings, and (c) find a simpler regular expression for this pattern.

Note again that $\{0,1\}^*$ is not a regular expression. Regular expressions do not contain any braces ($\{,\}$) or commas.

1.5 Problems

Give a regular expression for the set of even length binary strings.

Problem 1.8.1: What language is represented by the regular expression $(((a^*a)b) \cup b)$? Can you find a simpler expression for it?

Problem: Find a regular expression for the set of strings in $\{a, b\}^*$ that have exactly one a in them.

Problem: Find a regular expression for the set of strings in $\{a, b, c\}^*$ that have exactly one a or exactly one b in them.

Problem: Try to find a regular expression for the set of valid floating point numbers, things such as 0.326E+5. You can use D to represent the digits $\{0,1,2,3,4,5,6,7,8,9\}$.

Look at web links on regular expressions in various programming languages.