
1 More Unsolvable Problems

Many other problems can be shown to be unsolvable given the unsolvabil-
ity of the halting problem. This is important to know, because it saves us
the effort of trying to find algorithms for problems that are unsolvable. For
such problems, one can find solutions for special cases, or find approximate
solutions or solutions that work some of the time.

We illustrate the idea of finding other unsolvable problems on the blank
tape halting problem, then give the general approach.

1.1 Blank Tape Halting Problem

The blank tape halting problem is, given a Turing machine T , does T halt
when it starts on a blank tape? That is, does T halt when its input is ǫ, the
empty string? As a language, this probem can be expressed as BTHP =

{encode(T ) : T halts when started on blank tape }

and the question is whether this language is decidable. It is conceivable that
deciding halting on blank tape might be easier than deciding it in general;
after all, in some cases, the halting problem is easier. For example, the
halting problem can be decided if the Turing machine never writes on the
tape, or if it has only one state.

1.2 Undecidability of the Blank Tape Halting Problem

Now, to show that the language BTHP is undecidable (that is, not decid-
able), consider a Turing machine

sim(T, x)

which, given an input y on the tape, erases y, writes x on the tape, and
transfers control to T . (The book calls this machine T

x
.) Thus if sim(T, 101)

were called with an input of 11101 on the tape, then it would erase the 11101
from the tape, write 101 on the tape, and then transfer control to T . So
initially the tape would look like this:

sim(T, 101) : ⊲ ⊔ 1 1 1 0 1 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ . . .

Then the input would be erased:

1



sim(T, 101) : ⊲ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ . . .

Then 101 would be written on the tape and control would be transferred
to T :

T : ⊲ ⊔ 1 0 1 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ . . .

Then either T would halt on the input 101, or T would not halt. Thus

sim(T, 101) halts on input 11101 iff T halts on input 101.

Now, suppose that instead of the input 11101, sim(T, 101) is given a
blank tape as input. Initially the tape would look like this:

sim(T, 101) : ⊲ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ . . .

Then the input would be erased; of course, there is nothing to erase, so
after this the tape would look the same:

sim(T, 101) : ⊲ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ . . .

Then 101 would be written on the tape and control would be transferred
to T :

T : ⊲ ⊔ 1 0 1 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ . . .

Then either T would halt on the input 101, or T would not halt. Thus

sim(T, 101) halts on blank tape iff T halts on input 101.

Suppose we had a “blank tape halting tester” that could test if an arbi-
trary Turing machine halted when started on blank tape. Then we could use
this “blank tape halting tester” to test if sim(T, 101) halts on blank tape.
Because sim(T, 101) halts on blank tape iff T halts on input 101, we can use

2



this “blank tape halting tester” to test if T halts on input 101. If sim(T, 101)
halts on blank tape, then T halts on input 101, and if sim(T, 101) does not
halt on blank tape, then T does not halt on input 101.

This result really does not depend on the input 101 at all, or on T ; it
would work for any Turing machine T and any input x to T :

sim(T, x) halts on blank tape iff T halts on input x.

Thus, a “blank tape halting tester” would give us a way to test if an arbi-
trary Turing machine T halts on an arbitrary input x by testing if sim(T, x)
halts on blank tape using the “blank tape halting tester.” If sim(T, x) halts
on blank tape, then T halts on input x, and if sim(T, x) does not halt on
blank tape, then T does not halt on input x. But the halting problem is
unsolvable, which means that it is impossible to test if an arbitrary Turing
machine T halts on an arbitrary input x. Therefore there can be no such
“blank tape halting tester,” so the blank tape halting problem, the prob-
lem of testing if an arbitrary Turing machine halts on blank tape, is also
unsolvable.

So here is our method to test if T halts on input x:

1. Construct the encoding of sim(T, x) from the encodings of T and x

2. Test if sim(T, x) halts on blank tape

3. If sim(T, x) halts on blank tape, halt in state y else halt in state n

This shows that if the blank tape halting problem is solvable, the original
halting problem is solvable. Therefore the blank tape halting problem is not
solvable (not decidable).

Note that this method depends on the fact that the encoding of sim(T, x)
is computable from the encodings of T and x. So the method of finding new
unsolvable problems, depends on the existing of a computable function from
the old problem to the new problem, in some sense. Later this idea is made
more formal by the concept of a reduction.

Problem: Take an example Turing machine T from the text and compute
the description of the Turing machine sim(T, 101).

3



Problem: In some high level language, write a program which, when given
the description of a Turing machine T and an input x, outputs the description
of sim(T, x). Run the program on a few examples to check its correctness.

Problem: Write the description of a Turing machine M which, when
given the description of a Turing machine T and an input x, outputs the
description of sim(T, x). Run the machine M on a few examples to check its
correctness.

1.2.1 Another Approach

Now let’s look at the problem another way. Recall from above that

sim(T, 101) halts on input 11101 iff T halts on input 101.

Because sim(T, 101) does not look at its input,

For all inputs y, sim(T, 101) halts on input y iff T halts on input 101.

This result would be true for any other string x in place of 101, so we
have that

For all strings x and y, sim(T, x) halts on input y iff T halts on input x.

Therefore, setting y to the empty string, we have that

For all strings x, sim(T, x) halts on blank tape iff T halts on input x.

4



Then, from the definition of BTHP given above,

For all strings x, encode(sim(T, x)) ∈ BTHP iff T halts on input x.

Let H = {encode(T )encode(x) : T halts on input x}. The language H

expresses the halting problem. Then

For all strings x, encode(sim(T, x)) ∈ BTHP iff
encode(T )encode(x) ∈ H .

Also,

encode(sim(T, x)) can be computed from encode(T ) and encode(x).

Thus if we can decide if encode(sim(T, x)) ∈ BTHP then we can de-
cide if encode(T )encode(x) ∈ H by computing encode(sim(T, x)) from
encode(T )encode(x) and then testing if encode(sim(T, x)) ∈ BHTP .

Now, we know that the Halting Problem is undecidable. This means
that the language H is not decidable. But if the blank tape halting probem
(BTHP ) were decidable, H would also be decidable. Here’s how to decide
H given a way to decide the blank tape halting problem:

Given encode(T )encode(x),

1. Compute encode(sim(T, x)).

2. Test if encode(sim(T, x)) ∈ BTHP which can be done if BTHP is
decidable.

3. If encode(sim(T, x)) ∈ BTHP then answer “yes” else answer “no”.

5



This works because if T halts on x, then sim(T, x) halts on blank tape, so
encode(sim(T, x)) ∈ BTHP . If T loops on x,then sim(T, x) loops on blank
tape, so encode(sim(T, x)) 6∈ BTHP . Thus we have that

H is decidable if BTHP is decidable.

Therefore,

Because H is undecidable, BTHP is also undecidable.

1.3 General Method to Show Undecidability

We now generalize the above reasoning to give a general method for showing
that problems are undecidable. The idea is this: Given that one language
L1 is undecidable, to show that another language L2 is undecidable, give a
procedure to decide L1 given a way to decide L2. Because L1 is undecidable,
there can be no such way to decide L2. Therefore L2 is undecidable also. In
the above case, L1 was H and L2 was BTHP .

The method we present is based on reductions, which are computable
functions from one language to another. By now thousands and thousands
of problems have been shown to be unsolvable by using reductions starting
from the halting problem.

The same method can show that problems are not partially solvable by
starting from the complement of the halting problem, but we will not discuss
this much. The idea for showing that a languuage L′ is not partially decidable
is that if a language L is partially decidable and not decidable, then its
complement is not even partially decidable.

1.3.1 Reductions

Definition 1.1 (Reductions) A reduction from language L1 ⊆ Σ∗ to L2 ⊆
Σ∗ is function τ such that

6



1. τ maps Σ∗ to Σ∗

2. τ is recursive (computable)

3. for all x ∈ Σ∗, x ∈ L1 iff τ(x) ∈ L2.

Theorem 1.1 (5.4.1) If L1 is not recursive and there is a reduction from
L1 to L2 then L2 is not recursive either.

Proof: If L2 were recursive (decidable), then we could decide L1 as follows:

1. Given x, compute τ(x).

2. Test if τ(x) ∈ L2.

3. If τ(x) ∈ L2 then answer “yes” else answer “no”.

This works because τ is computable, so we can compute τ(x), and it
gives the right answer because for all x ∈ Σ∗, x ∈ L1 iff τ(x) ∈ L2.
Therefore, because L1 is not decidable, L2 must not be decidable either.

In the blank tape halting problem example given above, τ maps encode(T )encode(x)
to encode(sim(T, x)).

1.3.2 General Recipe

Here is a general recipe for showing a problem to be unsolvable:

1. Express the problem as a language L2 over some alphabet Σ∗.

2. Choose another language L1 over Σ
∗ that is known not to be recursive.

3. Construct a function τ and show that it has the properties of a reduc-
tion from L1 to L2.

L1 should be chosen to be similar to L2. Then choose τ to express the
similarity between the two languages. Thus τ(x) is the problem in L2 that
corresponds to the problem x in L1.

7



1.4 Unsolvable Problems about Turing Machines

Using the reduction technique, the following problems can be shown unsolv-
able (Theorem 5.4.2 page 255):

1. Given Turing machine M , is there any string w such that M halts on
w?

2. Given M , does M halt on all inputs?

3. Given M1 and M2, do they halt on the same inputs?

4. Given M , is the language that M semi-decides, regular? context-free?
recursive?

5. There is a fixed machine M such that the question whether M halts
on input x is undecidable.

1.5 Unsolvable Problems about (General) Grammars

Unsolvability results can also be shown about grammars, using reductions.
There are from theorem 5.5.1 in the text. These problems are unsolvable.

1. Given a grammar G and a string w, is w ∈ L(G)?

2. Given a grammar G, is ǫ ∈ L(G)?

3. Given grammars G1 and G2, is L(G1) = L(G2)?

4. Given a grammar G, is L(G) = φ?

5. There is a fixed grammar G such that it is undecidable given w whether
w ∈ L(G).

1.6 Unsolvable Problems about Context-Free Gram-

mars

There are from theorem 5.5.2. The following are undecidable:

1. Given a context-free grammar G, is L(G) = Σ∗?

2. Given two cfg G1 and G2, is L(G1) = L(G2)?

8



3. Given two push-down automata M1 and M2, is L(M1) = L(M2)?

4. Given a push-down automaton M , find an equivalent push-down au-
tomaton with as few states as possible.

Here are some more unsolvable problems about context-free grammars:

Given a context-free grammar G, is G ambiguous?

Given context-free grammars G1 and G2, is L(G1) ∩ L(G2) = φ?

Some of the preceding problems are ones that we would very much like
to be able to solve. Some problems are in areas not related to grammars or
Turing machines at all. For example, Hilbert’s Tenth problem has to do with
diophantine equations, and was shown to be unsolvable in the 1970’s by a
very complicated series of reductions.

Hilbert’s tenth problem is to give a computing algorithm which will tell
of a given polynomial Diophantine equation with integer coefficients whether
or not it has a solution in integers. Matiyasevic proved that there is no such
algorithm.

http://www.math.umd.edu/~laskow/Pubs/713/Diophantine.pdf

1.7 Rice’s Theorem

Rice’s theorem (theorem 5.7.4) gives a general mechanism for showing that
many problems are unsolvable. Here is one way it can be stated:

Theorem 1.2 Let S be a set of Turing machines such that

1. There is at least one Turing machine in S

2. There is at least one Turing machine not in S

3. If M1 and M2 are two Turing machines and L(M1) = L(M2), then
M1 ∈ S iff M2 ∈ S.

Then the language {encode(M) : M ∈ S} is not decidable.

Recall that L(M) is the set of strings x such that M halts on input x.
Give examples of some non-semantic properties of Turing machines that

are decidable.

9


