1 Universal Turing Machines

Here is an encoding to represent an arbitrary Turing machine over an arbitrary alphabet as a string over a fixed alphabet.

state	q followed by an i digit binary number
symbol in Σ	a followed by a j digit binary number
\Box	$a0^j$
\triangleright	$a0^{j-1}1$
\leftarrow	$a0^{j-2}10$
\rightarrow	$a0^{j-2}11$
start state	$q0^i$

Let encode(M) denote the encoding of a Turing machine M. The book uses "M" for this. It consists in a sequence of (q, a, p, b) strings, where

$$\delta(q,a) = (p,b),$$

thus representing the transition table. The 4-tuples (q, a, p, b) are represented by encoding q, a, p, and b as indicated above, and including left and right parentheses and commas. So a possible encoding of a 4-tuple would be

Here

- i would be 2,
- j would be 3,
- q00 would be the start state,
- a100 would represent a symbol,
- q01 would be another state, and
- a000 would represent \sqcup , that is, blank.

This encoding uses the symbols "(", ")", "q", "a", "0", "1", ",", and blank, so it uses a fixed number of symbols to encode a Turing machine having an arbitrary number of symbols in its alphabet.

1.1 Encoding of an example Turing machine

Here's an example Turing machine from section 4.1, with the names of states changed, and its encoding:

 $M = (K, \Sigma, \delta, s, \{h\}), \ K = \{s, q, h\}, \Sigma = \{a, \sqcup, \rhd\}.$

	q'	σ	$\delta(q',\sigma)$	4-tuple
	s	a	(q,\sqcup)	(s, a, q, \sqcup)
	s	\square	(h,\sqcup)	(s,\sqcup,h,\sqcup)
δ :	s	\triangleright	(s, \rightarrow)	$(s, \rhd, s, \rightarrow)$
	q	a	(s,a)	(q, a, s, a)
	q	\Box	(s, \rightarrow)	(q,\sqcup,s,\rightarrow)
	q	\triangleright	(q, \rightarrow)	$(q, \rhd, q, \rightarrow)$

Here is the encoding of states and symbols:

				Symbols		
States			a000	0 for blank		
s	q00	(start state is 00) (book has $q11$ here)		a001	1 for end marker	
q	q01		$ $ \leftarrow	a010	2 for left arrow	
h	q10	(book has $q11$ here)	\rightarrow	a011	3 for right arrow	
		·	a	a100	another symbol	

Then the Turing machine as a whole is encoded by concatenating the encoding of the 4-tuples in lexicographic order, according to their encodings, so

- the states are in the order q00, q01, q10 and
- the symbols are in the order a000, a001, a010, a011, a100.

Thus the 4-tuples are in the order

 $(s,\sqcup,h,\sqcup),\ (s,\rhd,s,\rightarrow),\ (s,a,q,\sqcup),\ (q,\sqcup,s,\rightarrow),\ (q,\rhd,q,\rightarrow),\ (q,a,s,a).$

This gives the encoding

 $(q00, a000, q10, a000), (q00, a001, q00, a011), (q00, a100, q01, a000), \dots, (q01, a100, q00, a100).$

(The book gives a different order.) From this encoding all the components of the Turing machine can be obtained.

- The states are the items that appear in the first and third components,
- the halting states are the states that do not appear in the first components,
- the start state, left end marker, et cetera are given by the encoding,
- the input alphabet consists of the items appearing in the second component, and
- the transition function is given by the 4-tuples.

The encoding of a Turing machine M is denoted by encode(M).

1.2 Encoding of strings

Strings are encoded by concatenating the encodings of their symbols. Thus the string

 $\vartriangleright \sqcup aa$

would be represented by

a001a000a100a100.

The encoding of a string x is denoted by encode(x).

1.3 Encoding inputs to a universal Turing machine

The input to a universal Turing machine U would be the concatenation of encode(M) and encode(x) for some M and x, which would be written as

encode(M)encode(x).

Given such an encoding, U would halt if and only if M halts on input x.

1.4 Encoding in Binary

Of course, the final encoding of a Turing machine can be converted to a binary string by converting each symbol to a binary sequence. This binary string can be seen as a binary integer, so each Turing machine can be represented by a nonnegative integer.