Peter Lincoln

plincoln@cs.unc.edu • http://www.cs.unc.edu/~plincoln

EDUCATION	University of North Carolina at Chapel Hill, Chapel Hill, NC	
	 Ph.D. in Computer Science 	May 2017
	 Thesis: Low Latency Displays for Augmented Reality 	
	 Advisors: Profs. Henry Fuchs and Greg Welch 	
	 M.S. in Computer Science 	Dec 2008
	University of Washington, Seattle, WA	
	 B.S. in Computer Engineering 	Jun 2006
	Graduated Cum Laude with College Honors	
	Minor in Applied Mathematics	
	 Honors Thesis: Surface Projection Method for Visualizing Volumetric Data 	

RESEARCH University of North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill, NC

EXPERIENCE • Research Assistant

- Focuses: Low Latency Optical See-through Augmented Reality (OST-AR), Spatial Augmented Reality (SAR), Physical-Virtual Avatars, Telepresence, and Teleconferencing
- Project: Low Latency Display In a team, developed an OST-AR system for optically mixing virtual and real imagery with 80 or 126 microseconds of average-case end-to-end latency (6 bit/pixel grayscale or 16 bit/color RGB); wrote Verilog and C++ HLS modules for controlling the correction algorithms and DMD control algorithms in an FPGA; wrote an embedded system in C to run in a MicroBlaze CPU on the FPGA to control the display; wrote a C#/C++ OpenGL application for rendering the imagery and calibrating the system.
- Project: Multi-Projector Blending In a team, developed a SAR system for transforming a 6D-tracked object into a different object with multiple digital projectors, both blending the projected imagery along the boundaries and updating as the object was moved by a user; wrote a C#/C++ application for generating 3D projector imagery in OpenGL and for calibrating the system.
- Project: Telepresence Wall In a team, worked on a system to provide a virtual window between two rooms; developed a Qt-based application in C++ for configuring the 2D+Depth video streams and segmentation algorithm parameters for the display wall in each room.
- Project: Shader Lamps Avatars In a team, developed a one-to-many teleconferencing system supporting gaze awareness (all users at the "many" site know which way the "one" site user is looking), where the single user is represented by a drivable 3D physical avatar at the remote site; wrote C#/C++ software for capturing the inhabitor's face, displaying it on the avatar, actuating the avatar based on the inhabitor's movements, and calibrating the system.
- Project: Multi-View Telepresence In a team, developed a two-site, four-user video teleconferencing system supporting gaze awareness (each user at each site receives a unique camera view of the users at the other site so that all users know at which person a user is looking); wrote C++/C# software for capturing and displaying video and calibrating the multi-view displays; wrote C# application for simulating optical paths in lenticular lens-based multi-view displays.

University of Washington, Department of Biological Structure, Seattle, WA

Undergraduate Research Student

Oct 2005 - Jun 2006

Aug 2006 - May 2017

- Project: MindSeer A 3D, Java, client-server application for visualizing patients' brain scan data
- Focus: Visualization Techniques Investigated methods of visualizing volumetric fMRI data as 3D rendered surfaces on patients' brains; developed a plugin for this type of visualization for MindSeer.

PUBLICATIONS & JOURNALS PRESENTATIONS

- [3] P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs. "From Motion to Photons in 80 Microseconds: Towards Minimal Latency for Virtual and Augmented Reality." *IEEE Transactions on Visualization and Computer Graphics*, 22(4): 1367–1376, 2016. Presented at *IEEE Virtual Reality Conference (IEEE VR)*, 2016.
- [2] <u>P. Lincoln</u>, G. Welch, A. Nashel, A. State, A. Ilie, and H. Fuchs. "Animatronic Shader Lamps Avatars." *Virtual Reality*, 15(2): 225–238, Jun 2011.
- [1] E. Moore, A. Poliakov, <u>P. Lincoln</u>, and J. Brinkley. "MindSeer: A Portable and Extensible Tool for Visualization of Structural and Functional Neuroimaging Data." *BMC Bioinformatics*, 2007.

CONFERENCES

	[7] P. Lincoln, A. Blate, M. Singh, A. State, M. Whitton, T. Whitted, and H. Fuchs. "Scene-Adaptive High Dynamic Range Display for Low Latency Augmented Reality." <i>Proceedings of the 21st ACM</i> <i>SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D '17)</i> , 2017.		
	[6] F. Zheng, T. Whitted, A. Lastra, <u>P. Lincoln</u> , A. State, A. Maimome, and H. Fuchs. "Minimizing Latency for Augmented Reality Displays: Frames Considered Harmful." <i>International Symposium for Mixed and Augmented Reality (ISMAR)</i> , 2014.		
	[5] R. Schubert, G. Welch, <u>P. Lincoln</u> , A. Nagendran, R. Pillat, and H. Fuchs. "Advances in Shader Lamps Avatars for Telepresence." <i>3DTV</i> , 2012.		
	[4] D. Rivera-Gutierrez, G. Welch, <u>P. Lincoln</u> , M. Whitton, J. Cendan, D. Chesnutt, and H. Fuchs. "Shader Lamps Virtual Patients: the Physical Manifestation of Virtual Patients." <i>Medicine Meets Virtual</i> <i>Reality (MMVR)</i> 19 – <i>NextMed, Studies in Health Technology and Informatics</i> , IOS Press, 2012.		
	[3] <u>P. Lincoln</u> , G. Welch, and H. Fuchs. "Continual Surface-Based Multi-Projector Blending for Moving Objects." <i>IEEE Virtual Reality Conference (IEEE VR)</i> , 2011.		
	[2] <u>P. Lincoln</u> , G. Welch, A. Nashel, A. State, A. Ilie, and H. Fuchs. "Animatronic Shader Lamps Avatars." <i>International Symposium for Mixed and Augmented Reality (ISMAR)</i> , 2009.		
	[1] <u>P. Lincoln</u> , A. Nashel, A. Ilie, H. Towles, G. Welch, and H. Fuchs. "Multi-View Lenticular Display for Group Teleconferencing." <i>Proceedings of the 2nd International Conference on Immersive</i> <i>Telecommunications (IMMERSCOM '09)</i> , 2009.		
PATENTS	[1] G. Welch, H. Fuchs, <u>P. Lincoln</u> , A. Nashel, and A. State. "Methods, systems, and computer readable media for shader-lamps based physical avatars of real and virtual people." US9538167 B2.		
AWARDS & HONORS	 2nd Best Paper and 3rd Best Presentation, ACM i3D Symposium 2017 "Scene-Adaptive High Dynamic Range Display for Low Latency Augmented Reality" 		
	 Invited Talk, IEEE TVCG Session on Virtual and Augmented Reality, SIGGRAPH 2016 Jul 2016 "From Motion to Photons in 80 Microseconds: Towards Minimal Latency for Virtual and Augmented Reality" 		
	Best Paper Award, IEEE Virtual Reality Conference 2016 Mar 2016 "From Motion to Photons in 80 Microseconds: Towards Minimal Latency for Virtual and Augmented Reality"		
	Phi Beta Kappa Jun 2006		
PROFESSIONAL AFFILIATIONS & ACTIVITIES	ACM SIGGRAPH MemberIEEE Member		
TEACHING &	University of North Carolina, Department of Computer Science, Chapel Hill, NC		
OTHER WORK EXPERIENCE	 Instructor – Introduction to Programming (COMP 110) Jun 2012 – Jul 2012 Developed syllabus and overall course structure, lectured, and administered all grades in a class of about 40 students 		
	University of Washington, Computer Science & Engineering, Seattle, WA• Teaching Assistant – Introduction to Computer Graphics (CSE 457) • Met with students and graded assignments and exams in a class of about 50 studentsMar 2006 – Jun 2006		
	Sunriver Nature Center, Sunriver, OR		
	 Assistant Instructor Summer 2003 – 2006 Co-taught groups of children (ages 8 and up) the basics of model rocketry by classroom instruction and one-on-one assistance 		
	• Presented talks to large groups about astronomical objects during a nightly observatory program		
	 Computer Technician Summer 2003 – 2004 Upgraded computer hardware, installed operating systems and software, and provided technical assistance to naturalists and supervisors 		
SKILLS	Languages: C#, Verilog, C++, C, Java, LATEX		
	APIs: .NET, OpenGL, OpenCV, GLSL, Point Grey FlyCapture, Qt, VRPN		
	Applications: Visual Studio, ISE Design Suite, Vivado Design Suite, Vivado HLS, MATLAB, SVN		

[CV compiled on 2017-08-14]