TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

C for Java Programmers
& Lab 0

Don Porter

Portions courtesy Kevin Jeffay

P=_N THE UNIVERSITY
|T,ﬂ of NORTH CAROLINA COMP 530: Operating Systems

—_— at CHAPEL HILL

Same Basic Syntax

e Data Types: int, char
— void - (untyped pointer)
— Can create other data types using typedef

* No Strings - only char arrays

— Last character needstobe a0
 Not ‘0, but \O’

=2\ | THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

struct — C's object

* typedef struct foo {
int a;
void *b;
void (*op)(int c); // function pointer
}foo t; /) <--—---- type declaration
e Actual contiguous memory
* Includes data and function pointers

=N THE UNIVERSITY
mﬂ of NORTH CAROLINA COMP 530: Operating Systems
Pointers
* Memory placement explicit Stack Heap
(heap vs. stack) main:
f: struct foo:
o
Two syntaxes (dot, P a=33; a = 34:
int main { Address of b = NULL; b = NULL;
m struct foo f; op = NUL op = NULL;
fp:

struct foo *fp = &f;
f.a =32; // dot: access object directly

fp->a =33; // arrow: follow a pointer

fp = malloc(sizeof(struct foo)); struct foo {

fp->a = 34; int a;
void *b;
void (*op)(int c);

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

M

S

COMP 530: Operating Systems

Function pointer example

f->op = operator;
f->op(32); // Same as calling
// operator(32);

struct foo {

int a;

void *b;

void (*op)(int c);
}

Stack Heap

main:

f: o struct foo:
d :33' . a=34;
9= UL b = NULL;
op = NUL

fp:

Operator:

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

More on Function Pointers

e Callows function pointers to be used as members of

a struct or passed as arguments to a function
e Continuing the previous example:

void myOp(int c){ /*...*/ }

[*..*/

foo_t *myFoo = malloc(sizeof(foo_t));
myFoo->op = myOp; // set pointer
[*.*%/

myFoo->op(5); // Actually calls myop

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

No Constructors or Destructors

* Must manually allocate and free memory - No
Garbage Collection!

M

— void *x = malloc(sizeof(foo_t));

* sizeof gives you the number of bytes in a foo_t - DO NOT COUNT
THEM YOURSELF!

— free(x);
« Memory allocator remembers the size of malloc’ ed memory

* Must also manually initialize data

— Custom function

— memset(x, 0, sizeof(*x)) will zero it

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

Memory References

e ‘’-access a member of a struct
— myFoo0.a = 5;
e ‘& - get apointer to a variable
— foo_t * fPointer = &myFoo;
e ‘->" - access a member of a struct, via a pointer to the
struct
— fPointer->a = 6;
e *_dereference a pointer
— if(5 == *intPointer){...}
* Without the *, you would be comparing 5 to the address of the int,
not its value.

3\ | THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems
Int example
Stack
-E» intx=15; // xis on the stack —
. ¥
int *xp = &x; X: 6
*Xp =6 xp: NULL
printf(“%d\n”, x); // prints 6
xp = (int *) 0;

*xp = 7; // segmentation fault

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Memory References, cont.

* ‘[" - refer to a member of an array
char *str = malloc(5 * sizeof(char));
str[0] = ‘a’;

— Note: *str= ‘a’ is equivalent

M

— str++; increments the pointer such that *str == str[1]

str
l Str+l 1 stre2 str+3 str+4

str[0] str[1] str[2] str[3] str[4]

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

The Chicken or The Egg?

 Many C functions (printf, malloc, etc) are
implemented in libraries

M

* These libraries use system calls
e System calls provided by kernel
* Thus, kernel has to “reimplement” basic C libraries

— In some cases, such as malloc, can’t use these language
features until memory management is implemented

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

For more help

* man pages are your friend!
— (not a dating service)!

— Ex: ‘'man malloc’, or ‘man 3 printf’

e Section 3 is usually where libraries live - there is a command-line
utility printf as well

* Use ‘apropos term’ to search for man entries about
term

 The C Programming Language by Brian Kernighan
and Dennis Ritchie is a great reference.

P=_N THE UNIVERSITY
rhﬂ of NORTH CAROLINA COMP 530: Operating Systems

—_— at CHAPEL HILL

Lab O Overview

e Cprogramming on Linux refresher

A= THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

Lab O - Overview

* Write a simple C character stream processing
program on Linux

* Read in characters from “standard input,” write 80
character lines to “standard output” replacing:
— Every enter/return character (newline) by a space
— Every adjacent pair of percents “%%” with an “*”

¢ Example (for a 30 character output line): The string...

» abcdefghijklmh%%ggrstu
abc%%3def

¢ ...is output as:
» abcdefghijklmn*pgrstuvw*%yz ab — P97

= THE UNIVERSITY
m] ORI CAROLIN COMP 530: Operating Systems

—_— at CHAPEL HILL

¢ This is the only output your program should generate
» There should be no prompts, debugging messages, status messages, ...

¢ Note that your output will be interleaved with your
input on the console (indicated in purple above)

» This is fine!
» (You can eliminate this if you use “I/O redirection”)

A=\ THE UNIVERSITY
” of NORTH CAROLINA
i

A — COMP 530: Operating Systems

¢ When executing your program, terminate stdin with a
<enter/return><control-D> sequence

» This (non-printable) character sequence is referred to as
“end-of-file” or “EOF”

» If you use I/O redirection and read from a file you need not add the control-D
character at the end (Linux does this for you)

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

Submitting Homework Assignments

* You should all have Linux accounts in the Department
— If you don’t, go to the let me know ASAP!
— If you need to have your password reset visit
https://www.cs.unc.edu/webpass/onyen/

* Create the directory structure comp530/submissions in
your Linux home directory

* Execute the magic incantations:

fs sa ~/comp530/submissions system:anyuser none
fs sa ~/comp530/submissions porter read
fs sa ~/comp530/submissions sytang read
fs sa ~/comp530/submissions rohan read

COMP 530: Operating Systems

Submitting homework

For each assignment in this course, create a
subdirectory named HWx in comp530/submissions

— Keep all files required to execute your program in this
subdirectory

For example, for lab0, create the subdirectory “lab0”
in ~/comp530/submissions

For labO name your program warmup.c
— Note that Linux names are case sensitive so case matters!

If you don’t follow these instructions exactly,
your HW will not be graded!

COMP 530: Operating Systems
Submitting Homework

 Send email to comp530ta-f16@cs.unc.edu when
your program is ready to be graded

— Include your Linux login id in your email so we know where
to find your files

— If you don’t send email your program will never be graded!

— If you’re late with an assignment simply send email when
the program is ready for grading

— Whether or not a program is on-time or late will be

determined solely by the latest modification time of the
files in the HWXx subdirectory

» After the due date do not edit/modify any files in the
HWx subdirectory

— If Y]ou need to reuse files for the next assignment, or any
ot

er purpose, copy the required files to a new
submissions subdirectory

COMP 530: Operating Systems

Lab O Programming Notes

 The machines you should use for programming are:
— classroom.cs.unc.edu (primary)
— snapper.cs.unc.edu (secondary)

Access either machine via a secure shell (secure
telnet) application on your PC

* You can develop your code anywhere you like but...

* Your programs will be tested on classroom and
correctness will be assessed based on their
performance on classroom

— Always make sure your program works on classroom!

COMP 530: Operating Systems

Grading

Pro%rams should be neatly formatted (i.e., easy to read) and
well documented

In general, 75% of your grade for a program will be for
correctness, 25% for programming style

— For this assignment, correctness & style will each count for 50% of
your grade

Style refers to...

— Appropriate use of language features, including variable/procedure
names, and

— Documentation (descriptions of functions, general comments, use
of invariants, pre- and post conditions where appropriate)

— Simple test: Can I understand what you’ve done in 3 minutes?

Correctness will be assessed comprehensively!
— You'’ve got to learn to test for “edge” and “corner cases”

COMP 530: Operating Systems

Dr. Jeffay’s Experience

COMMENTS: written comments may help improve this course in the future. What were the best and worst parts?
What could be improved?

ﬂ But dhat i< Q?B

SOH')Q DP ‘Wﬂ(d/,ﬂ(} 4)5470 C‘Or (Jrvjmmmmj
—wCiid ar? ot ”
Tesded Lo f/ace iHe Gmphas/s o \mp
~ oA 4{{ ﬁgS\(QrmMﬂd"M”M'? (n¥ended ond thfz
had N You \Rf\j o bresn Youv OV PP

1

Some of the grading scales for programming
assignments were weird and not straightforward.

* Programs that “mostly work” don’t cut 1t in a senior-
level course!

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

M

S

Honor Code: Acceptable and Unacceptable
Collaboration

* Working in pairs on programming assignments is OK
— But you can only collaborate with other students in the course

— Every line of code handed in must be written exclusively by team
members themselves, and

— All collaborators must be acknowledged in writing

* Use of the Internet
— Using code from the Internet in any form is not allowed

— Websites may be consulted for reference (e.g., to learn how a system
call works)

— But all such websites used or relied on must be listed as a reference
in a header comment in your program

— Warning: Sample code found on the Internet rarely helps the student

