
12/12/16

1

COMP	530:	Operating	Systems

Disks	and	I/O	Scheduling

Don	Porter

Portions	courtesy	Emmett	Witchel

1

COMP	530:	Operating	Systems

Quick	Recap
• CPU	Scheduling

– Balance	competing	concerns	with	heuristics
• What	were	some	goals?

– No	perfect	solution

• Today:	Block	device	scheduling
– How	different	from	the	CPU?
– Focus	primarily	on	a	traditional	hard	drive
– Extend	to	new	storage	media

COMP	530:	Operating	Systems

• Why have disks?
– Memory is small. Disks are large.

• Short term storage for memory contents (e.g., swap space).
• Reduce what must be kept in memory (e.g., code pages).

– Memory is volatile. Disks are forever (?!)
• File storage.

GB/dollar dollar/GB

RAM 0.013(0.015,0.01) $77($68,$95)
Disks 3.3(1.4,1.1) 30¢ (71¢,90¢)

Capacity	:	2GB	vs.	1TB
2GB	vs.	400GB
1GB	vs		320GB

Disks:	Just	like	memory,	but	different
COMP	530:	Operating	Systems

OS’s	view	of	a	disk
• Simple	array	of	blocks

– Blocks	are	usually	512	or	4k	bytes

COMP	530:	Operating	Systems

A	simple	disk	model
• Disks	are	slow.		Why?

– Moving	parts	<<	circuits
• Programming	interface:	simple	array	of	sectors	
(blocks)

• Physical	layout:	
– Concentric	circular	“tracks”	of	blocks	on	a	platter
– E.g.,	sectors	0-9	on	innermost	track,	10-19	on	next	track,	
etc.

– Disk	arm	moves	between	tracks
– Platter	rotates	under	disk	head	to	align	w/	requested	
sector

COMP	530:	Operating	Systems

Disk	Model

01
2
3
4 5

6
7

Each	block	on	
a	sector Disk

Head

Disk	Head	
reads	at	

granularity	of	
entire	sector

Disk	spins	at	a	
constant	speed.
Sectors	rotate	

underneath	head.

12/12/16

2

COMP	530:	Operating	Systems

Disk	Model

Disk
Head01

2
3
4 5

6
7

89
10
11
12
13

14 15 16
17
18
19
20

21

Concentric	
tracks

Disk	head	seeks to	
different	tracksGap	between	7	

and	8	accounts	for	
seek	time

COMP	530:	Operating	Systems

Many	Tracks

Disk
Head

COMP	530:	Operating	Systems

Several	(~4)	Platters

Platters	spin	
together	at	same	

speed

Each	platter	has	a	head;	
All	heads	seek	together

COMP	530:	Operating	Systems

Implications	of	multiple	platters
• Blocks	actually	striped	across	platters
• Also,	both	sides	of	a	platter	can	store	data

– Called	a	surface
– Need	a	head	on	top	and	bottom

• Example:
– Sector	0	on	platter	0	(top)
– Sector	1	on	platter	0	(bottom,	same	position)
– Sector	2 on	platter	1	at	same	position,	top,	
– Sector	3	on	platter	1,	at	same	position,	bottom
– Etc.
– 8 heads	can	read	all	8	sectors	simultaneously

COMP	530:	Operating	Systems

Real	Example	
• Seagate 73.4 GB Fibre Channel Ultra 160 SCSI disk

• Specs:
– 12 Platters
– 24 Heads
– Variable # of sectors/track
– 10,000 RPM

• Average latency: 2.99 ms

– Seek times
• Track-to-track: 0.6/0.9 ms
• Average: 5.6/6.2 ms

• Includes acceleration and settle time.

– 160-200 MB/s peak
transfer rate

• 1-8K cache

Ø 12 Arms
Ø 14,100 Tracks
Ø 512 bytes/sector

COMP	530:	Operating	Systems

3	Key	Latencies
• I/O	delay:	time	it	takes	to	read/write	a	sector
• Rotational	delay:	time	the	disk	head	waits	for	the	
platter	to	rotate	desired	sector	under	it
– Note:	disk	rotates	continuously	at	constant	speed

• Seek	delay:	time	the	disk	arm	takes	to	move	to	a	
different	track

12/12/16

3

COMP	530:	Operating	Systems

Observations
• Latency	of	a	given	operation	is	a	function	of	current	
disk	arm	and	platter	position

• Each	request	changes	these	values
• Idea:	build	a	model	of	the	disk

– Maybe	use	delay	values	from	measurement	or	manuals
– Use	simple	math	to	evaluate	latency	of	each	pending	
request

– Greedy	algorithm:	always	select	lowest	latency

COMP	530:	Operating	Systems

Example	formula
• s	=	seek	latency,	in	time/track
• r	=	rotational	latency,	in	time/sector
• i =	I/O	latency,	in	seconds

• Time	=	(Δtracks *	s)	+	(Δsectors *	r)	+	I
• Note:	Δsectors must	factor	in	position	after	seek	is	
finished.		Why?

Example read time:
seek time + latency + transfer time
(5.6 ms + 2.99 ms + 0.014 ms)

COMP	530:	Operating	Systems

The	Disk	Scheduling	Problem:	Background
• Goals:	Maximize	disk	throughput

– Bound	latency
• Between	file	system	and	disk,	you	have	a	queue	of	
pending	requests:
– Read	or	write	a	given	logical	block	address	(LBA)	range

• You	can	reorder	these	as	you	like	to	improve	
throughput

• What	reordering	heuristic	to	use?		If	any?
• Heuristic	is	called	the	IO	Scheduler

– Or	“Disk	Scheduler”	or	“Disk	Head	Scheduler”

15Evaluation:	how	many	tracks	head	moves	across

COMP	530:	Operating	Systems

• Assume a queue of requests exists to read/write tracks:
– and the head is on track 65

0 150125100755025

15016147147283

65

I/O	Scheduling	Algorithm	1:	FCFS

FCFS:	Moves	head	550	tracks

COMP	530:	Operating	Systems

• Greedy scheduling: shortest seek time first
– Rearrange queue from:

To:

0 150125100755025

15016147147283

72821471501614

SSTF scheduling results in the head moving 221 tracks
Can we do better?

I/O	Scheduling	Algorithm	2:	SSTF

SSTF:	221	tracks	(vs	550	for	FCFS)

COMP	530:	Operating	Systems

Other	problems	with	greedy?
• “Far”	requests	will	starve

– Assuming	you	reorder	every	time	a	new	request	arrives
• Disk	head	may	just	hover	around	the	“middle”	tracks

12/12/16

4

COMP	530:	Operating	Systems

• Move the head in one direction until all requests have
been serviced, and then reverse.

• Also called Elevator Scheduling

161472 83147150

• Rearrange queue from:

To:

0 150125100755025

15016147147283

161472 83147150

I/O	Scheduling	Algorithm	3:	SCAN

SCAN:	187	tracks	(vs.	221	for	SSTF)

COMP	530:	Operating	Systems

0 150125100755025

I/O	Scheduling	Algorithm	4:	C-SCAN
• Circular SCAN: Move the head in one direction

until an edge of the disk is reached, and then
reset to the opposite edge

C-SCAN:	265	tracks	(vs.	221	for	SSTF,	187	for	SCAN)

• Marginally better fairness than SCAN

COMP	530:	Operating	Systems

Scheduling	Checkpoint
• SCAN	seems	most	efficient	for	these	examples

– C-SCAN	offers	better	fairness	at	marginal	cost
– Your	mileage	may	vary	(i.e.,	workload	dependent)

• File	systems	would	be	wise	to	place	related	data	
”near”	each	other
– Files	in	the	same	directory
– Blocks	of	the	same	file

• You	will	explore	the	practical	implications	of	this	
model	in	Lab	4!

21

COMP	530:	Operating	Systems

• Multiple file systems can share a disk: Partition space
• Disks are typically partitioned to minimize the maximum seek time

– A partition is a collection of cylinders
– Each partition is a logically separate disk

Partition	A Partition	B

Disk	Partitioning

COMP	530:	Operating	Systems

• Disks are getting smaller in size
– Smaller à spin faster; smaller distance for head to travel; and lighter

weight

• Disks are getting denser
– More bits/square inch à small disks with large capacities

• Disks are getting cheaper
– Well, in $/byte – a single disk has cost at least $50-100 for 20 years
– 2x/year since 1991

• Disks are getting faster
– Seek time, rotation latency: 5-10%/year (2-3x per decade)
– Bandwidth: 20-30%/year (~10x per decade)
– This trend is really flattening out on commodity devices; more apparent on

high-end

Disks:	Technology	Trends

Overall:	Capacity	improving	much	faster	than	perf.

COMP	530:	Operating	Systems

Parallel	performance	with	disks
• Idea:	Use	more	of	them	working	together

– Just	like	with	multiple	cores
• Redundant	Array	of	Inexpensive	Disks	(RAID)

– Intuition:	Spread	logical	blocks	across	multiple	devices
– Ex:	Read	4	LBAs	from	4	different	disks	in	parallel

• Does	this	help	throughput	or	latency?
– Definitely	throughput,	can	construct	scenarios	where	one	
request	waits	on	fewer	other	requests	(latency)

• It	can	also	protect	data	from	a	disk	failure
– Transparently	write	one	logical	block	to	1+	devices

24

12/12/16

5

COMP	530:	Operating	Systems

• Blocks broken into sub-blocks that are stored on separate
disks
– similar to memory interleaving

• Provides for higher disk bandwidth through a larger
effective block size

3

8 9 10 11
12 13 14 15
0 1 2 3

OS disk
block

8 9 10 11

Physical disk blocks

21

12 13 14 15 0 1 2 3

Disk	Striping:	RAID-0
COMP	530:	Operating	Systems

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

• To increase the reliability of the disk,
redundancy must be introduced
– Simple scheme: disk mirroring (RAID-1)
– Write to both disks, read from either.

xx

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

Primary
disk

Mirror
disk

RAID	1:	Mirroring

Can	lose	one	disk	without	losing	data

COMP	530:	Operating	Systems

x

Disk	1 Disk	2 Disk	3 Disk	4 Disk	5

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

8
9

10

11
12
13

14
15
0

1
2
3

Block
x

Parity
Block

x

xxxx

RAID	5:	Performance	and	Redundancy
• Idea: Sacrifice one disk to store the parity bits of other

disks (e.g., xor-ed together)
• Still get parallelism
• Can recover from failure of any one disk
• Cost: Extra writes to update parity

COMP	530:	Operating	Systems

Disk	1

x x

Disk	2 Disk	3

x

Disk	4 Disk	5

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

8
9

10

11
12
13

14
15
0

1
2
3

Block
x

Parity
Block
x+1

Parity

a
b
c

d
e
f

g
h
i

j
k
l

m
n
o

Block
x+2

Parity

p
q
r

s
t
u

v
w
x

y
z

aa

bb
cc
dd

Block
x+3

Parity

ee
ff
gg

hh
ii
jj

Block
x

Block
x+1

Block
x+2

Block
x+3

xx

RAID	5:	Interleaved	Parity

COMP	530:	Operating	Systems

Other	RAID	variations
• Variations	on	encoding	schemes,	different	trades	for	
failures	and	performance
– See	wikipedia
– But	0,	1,	5	are	the	most	popular	by	far

• More	general	area	of	erasure	coding:	
– Store	k	logical	blocks	(message)	in	n	physical	blocks	(k	<	n)
– In	an	optimal	erasure	code,	recover	from	any	k/n	blocks
– Xor parity	is	a	(k,	k+1)	erasure	code
– Gaining	popularity	at	data	center	granularity

29

COMP	530:	Operating	Systems

• Hardware (i.e., a chip that looks to OS like 1 disk)
– +Tend to be reliable (hardware implementers test)
– +Offload parity computation from CPU

• Hardware is a bit faster for rewrite intensive workloads

– -Dependent on card for recovery (replacements?)
– -Must buy card (for the PCI bus)
– -Serial reconstruction of lost disk

• Software (i.e., a “fake” disk driver)
– -Software has bugs
– -Ties up CPU to compute parity
– +Other OS instances might be able to recover
– +No additional cost
– +Parallel reconstruction of lost disk

Where	is	RAID	implemented?

Most	PCs	have	“fake”	HW	RAID:	All	work	in	driver

12/12/16

6

COMP	530:	Operating	Systems

Word	to	the	wise
• RAID	is	a	good	idea	for	protecting	data

– Can	safely	lose	1+	disks	(depending	on	configuration)
• But	there	is	another	weak	link:	The	power	supply

– I	have	personally	had	a	power	supply	go	bad	and	fry	2/4	
disks	in	a	RAID5	array,	effectively	losing	all	of	the	data

31RAID	is	no	substitute	for	backup	to	another	machine

COMP	530:	Operating	Systems

Summary
• Understand	disk	performance	model

– Will	explore	more	in	Lab	4
• Understand	I/O	scheduling	algorithms
• Understand	RAID

32

