
10/3/16

1

COMP	530:	Operating	Systems

Interrupts	and	System	Calls

Don	Porter

1

COMP	530:	Operating	Systems

App

First	lecture…

2-2

Hardware

Libraries

Kernel

User

Super-
visor

App

Libraries

App

Libraries

System	Call	Table	(350—1200)

Open	file	
“hw1.txt”

Ok,	here’s	
handle	4

COMP	530:	Operating	Systems

Today’s	goal:	Key	OS	building	block
• Understand	how	system	calls	work
– As	well	as	how	exceptions	(e.g.,	divide	by	zero)	work

• Understand	the	hardware	tools	available	for	irregular	
control	flow.
– I.e.,	things	other	than	a	branch	in	a	running	program

• Building	blocks	for	context	switching,	device	
management,	etc.

3

COMP	530:	Operating	Systems

Background:	Control	Flow

// x = 2, y =
true
if (y) {

2 /= x;
printf(x);

} //...

void printf(va_args)
{

//...

}

Regular control	flow:	branches	and	calls	
(logically	follows	source	code)

pc

4

COMP	530:	Operating	Systems

Background:	Control	Flow

// x = 0, y =
true
if (y) {

2 /= x;
printf(x);

} //...

void
handle_divzero(){

x = 2;

}

Irregular control	flow:	exceptions,	system	calls,	etc.

pc Divide	by	zero!
Program	can’t	make	

progress!

5

COMP	530:	Operating	Systems

Two	types	of	interrupts
• Synchronous:	will	happen	every	time	an	instruction	
executes	(with	a	given	program	state)
– Divide	by	zero
– System	call
– Bad	pointer	dereference

• Asynchronous:	caused	by	an	external	event
– Usually	device	I/O
– Timer	ticks	(well,	clocks	can	be	considered	a	device)

6

10/3/16

2

COMP	530:	Operating	Systems

Asynchronous	Interrupt	Example

User Kernel

Stack Stack

if (x) {
printf(“Boo”);
...

printf(va_args…){
...

Disk_handler (){
...

}

RSP

RIP

RSP

RIP

Disk
Interrupt!

7

COMP	530:	Operating	Systems

Intel	nomenclature
• Interrupt	– only	refers	to	asynchronous	interrupts
• Exception	– synchronous	control	transfer

• Note:	from	the	programmer’s	perspective,	these	are	
handled	with	the	same	abstractions

8

COMP	530:	Operating	Systems

Lecture	outline
• Overview
• How	interrupts	work	in	hardware
• How	interrupt	handlers	work	in	software
• How	system	calls	work
• New	system	call	hardware	on	x86

9

COMP	530:	Operating	Systems

Interrupt	overview
• Each	interrupt	or	exception	includes	a	number	
indicating	its	type

• E.g.,	14	is	a	page	fault,	3	is	a	debug	breakpoint
• This	number	is	the	index	into	an	interrupt	table

10

COMP	530:	Operating	Systems

x86	interrupt	table

0 255

…

31

… …

47

Reserved	for
the	CPU

Software	Configurable

Device	IRQs 0x2e	=	Windows	
System	Call

128	=	Linux	
System	Call

11

COMP	530:	Operating	Systems

x86	interrupt	overview
• Each	type	of	interrupt	is	assigned	an	index	from	0—
255.

• 0—31	are	for	processor	interrupts;	generally	fixed	by	
Intel
– E.g.,	14	is	always	for	page	faults

• 32—255	are	software	configured
– 32—47	are	for	device	interrupts	(IRQs)	in	JOS

• Most	device’s	IRQ	line	can	be	configured	
• Look	up	APICs	for	more	info	(Ch 4	of	Bovet	and	Cesati)

– 0x80	issues	system	call	in	Linux	(more	on	this	later)

12

10/3/16

3

COMP	530:	Operating	Systems

Software	interrupts
• The	int <num> instruction	allows	software	to	
raise	an	interrupt
– 0x80	is	just	a	Linux	convention.		JOS	uses	0x30

• There	are	a	lot	of	spare	indices
– You	could	have	multiple	system	call	tables	for	different	
purposes	or	types	of	processes!
• Windows	does:	one	for	the	kernel	and	one	for	win32k

13

COMP	530:	Operating	Systems

Software	interrupts,	cont
• OS	sets	ring	level	required	to	raise	an	interrupt
– Generally,	user	programs	can’t	issue	an	int 14 (page	
fault)	manually

– An	unauthorized	int instruction	causes	a	general	
protection	fault
• Interrupt	13

14

COMP	530:	Operating	Systems

What	happens	(high	level):
• Control	jumps	to	the	kernel
– At	a	prescribed	address	(the	interrupt	handler)

• The	register	state	of	the	program	is	dumped	on	the	
kernel’s	stack
– Sometimes,	extra	info	is	loaded	into	CPU	registers
– E.g.,	page	faults	store	the	address	that	caused	the	fault	in	
the	cr2 register

• Kernel	code	runs	and	handles	the	interrupt
• When	handler	completes,	resume	program	(see	
iret instr.)

15

COMP	530:	Operating	Systems

Important	digression:	Register	state
• Really,	really,	really	big	idea:
– The	state	of	a	program’s	execution	is	succinctly	and	
completely	represented	by	CPU	register	state

• Pause	a	program:	dump	the	registers	in	memory
• Resume	a	program:	slurp	the	registers	back	into	CPU

16Be	sure	to	appreciate	the	power	of	this	idea

COMP	530:	Operating	Systems

How	is	this	configured?
• Kernel	creates	an	array	of	Interrupt	descriptors	in	
memory,	called	Interrupt	Descriptor	Table,	or	IDT
– Can	be	anywhere	in	memory
– Pointed	to	by	special	register	(idtr)

• c.f.,	segment	registers	and	gdtr and	ldtr

• Entry	0	configures	interrupt	0,	and	so	on

17

COMP	530:	Operating	Systems

x86	interrupt	table

0 255

…

31

… …

47

idtr

Linear	Address	of	
Interrupt	Table

18

10/3/16

4

COMP	530:	Operating	Systems

x86	interrupt	table

0 255

…

31

… …

47

idtr

Code Segment: Kernel Code
Segment Offset: &page_fault_handler //linear addr
Ring: 0 // kernel
Present: 1
Gate Type: Exception

14

19

COMP	530:	Operating	Systems

Summary
• Most	interrupt	handling	hardware	state	set	during	
boot

• Each	interrupt	has	an	IDT	entry	specifying:
– What	code	to	execute,	privilege	level	to	raise	the	interrupt

20

COMP	530:	Operating	Systems

Lecture	outline
• Overview
• How	interrupts	work	in	hardware
• How	interrupt	handlers	work	in	software
• How	system	calls	work
• New	system	call	hardware	on	x86

21

COMP	530:	Operating	Systems

High-level	goal
• Respond	to	some	event,	return	control	to	the	
appropriate	process

• What	to	do	on:
– Network	packet	arrives
– Disk	read	completion
– Divide	by	zero
– System	call

22

COMP	530:	Operating	Systems

Interrupt	Handlers
• Just	plain	old	kernel	code
– Sort	of	like	exception	handlers	in	Java
– But	separated	from	the	control	flow	of	the	program

• The	IDT	stores	a	pointer	to	the	right	handler	routine

23

COMP	530:	Operating	Systems

Lecture	outline
• Overview
• How	interrupts	work	in	hardware
• How	interrupt	handlers	work	in	software
• How	system	calls	work
• New	system	call	hardware	on	x86

24

10/3/16

5

COMP	530:	Operating	Systems

What	is	a	system	call?
• A	function	provided	to	applications	by	the	OS	kernel
– Generally	to	use	a	hardware	abstraction	(file,	socket)
– Or	OS-provided	software	abstraction	(IPC,	scheduling)

• Why	not	put	these	directly	in	the	application?
– Protection	of	the	OS/hardware	from	buggy/malicious	
programs

– Applications	are	not	allowed	to	directly	interact	with	
hardware,	or	access	kernel	data	structures

COMP	530:	Operating	Systems

System	call	“interrupt”
• Originally,	system	calls	issued	using	int instruction
• Dispatch	routine	was	just	an	interrupt	handler
• Like	interrupts,	system	calls	are	arranged	in	a	table
– See	arch/x86/kernel/syscall_table*.S	in	Linux	source

• Program	selects	the	one	it	wants	by	placing	index	in	
eax register
– Arguments	go	in	the	other	registers	by	calling	convention
– Return	value	goes	in	eax

26

COMP	530:	Operating	Systems

How	many	system	calls?
• Linux	exports	about	350	system	calls
• Windows	exports	about	400	system	calls	for	core	
APIs,	and	another	800	for	GUI	methods

COMP	530:	Operating	Systems

But	why	use	interrupts?
• Also	protection
• Forces	applications	to	call	well-defined	“public”	
functions
– Rather	than	calling	arbitrary	internal	kernel	functions

• Example:
public	foo()	{

if	(!permission_ok())	return	–EPERM;
return	_foo();	//	no	permission	check

}

Calling	_foo()	
directly	would	
circumvent	

permission	check

COMP	530:	Operating	Systems

Summary
• System	calls	are	the	“public”	OS	APIs
• Kernel	leverages	interrupts	to	restrict	applications	to	
specific	functions

• Lab	1	hint:	How	to	issue	a	Linux	system	call?
– int $0x80,	with	system	call	number	in	eax register

COMP	530:	Operating	Systems

Lecture	outline
• Overview
• How	interrupts	work	in	hardware
• How	interrupt	handlers	work	in	software
• How	system	calls	work
• New	system	call	hardware	on	x86

30

10/3/16

6

COMP	530:	Operating	Systems

Around	P4	era…
• Processors	got	very	deeply	pipelined
– Pipeline	stalls/flushes	became	very	expensive
– Cache	misses	can	cause	pipeline	stalls

• System	calls	took	twice	as	long	from	P3	to	P4
– Why?
– IDT	entry	may	not	be	in	the	cache
– Different	permissions	constrain	instruction	reordering

31

COMP	530:	Operating	Systems

Idea
• What	if	we	cache	the	IDT	entry	for	a	system	call	in	a	
special	CPU	register?
– No	more	cache	misses	for	the	IDT!
– Maybe	we	can	also	do	more	optimizations

• Assumption:	system	calls	are	frequent	enough	to	be	
worth	the	transistor	budget	to	implement	this
– What	else	could	you	do	with	extra	transistors	that	helps	
performance?

32

COMP	530:	Operating	Systems

AMD:	syscall/sysret
• These	instructions	use	MSRs	(machine	specific	
registers)	to	store:
– Syscall entry	point	and	code	segment
– Kernel	stack

• A	drop-in	replacement	for	int 0x80
• Everyone	loved	it	and	adopted	it	wholesale
– Even	Intel!

33

COMP	530:	Operating	Systems

Aftermath
• Getpid()	on	my	desktop	machine	(recent	AMD	6-
core):
– Int 80:	371	cycles
– Syscall:	231	cycles

• So	system	calls	are	definitely	faster	as	a	result!

34

COMP	530:	Operating	Systems

Summary
• Interrupt	handlers	are	specified	in	the	IDT
• Understand	how	system	calls	are	executed
– Why	interrupts?
– Why	special	system	call	instructions?

