COMP 530: Operating Systems

10/13/16

Virtual Memory: Paging

Don Porter

Portions courtesy Emmett Witchel and Kevin Jeffay

COMP 530: Operating Systems

Review

Program addresses are virtual addresses.
— Relative offset of program regions can not change during program
execution. E.g., heap can not move further from code.
— (Virtual address == physical address) is inconvenient.
« Program location is compiled into the program.
Segmentation:
— Simple: two registers (base, offset) sufficient
— Limited: Virtual address space must be <= physical
— Push complexity to space management:
+ Must allocate physically contiguous region for segments
* Must deal with external fragmentation
« Swapping only at segment granularity
Key idea for today: Fixed size units (pages) for translation
* More complex mapping structure
+ Less complex space management

COMP 530: Operating Systems

Virtual Memory

« Key problem: How can one support programs that
require more memory than is physically available?
— How can we support programs that do not use all of their
memory at once?

1

+ Hide physical size of memory from users
— Memory is a “large” virtual address space of 2" bytes
N . [™Program |
— Only portions of VAS are in physical memory at any one rogram
time (increase memory utilization). P's

VAS

« lssues
— Placement strategies
+ Where to place programs in physical memory
— Replacement strategies
+ What to do when there exist more processes than can fit in
memory
— Load control strategies

+ Determining how many processes can be in memory at one
time

COMP 530: Operating Systems

Solution: Paging
(fuax-1, omax-1)
* Physical memory partitioned into equal
sized page frames
— Example page size: 4KB
* Memory only allocated in page frame
sized increments
— No external fragmentation A
— Can have internal fragmentation
(rounding up smaller allocations to 1 page)
« Can map any page-aligned virtual
address to a physical page frame f

(£,0)

(0,0) '——

COMP 530: Operating Systems

Page Mapping
(fmax-1, omax-1)]
Abstraction: 1:1 mapping of page-aligned virtual
addresses to physical frames

« Imagine a big ole’ table (BOT):

£,
— The size of memory / the size of a page frame (£:0)
« Address translation is a 2-step process °
1. Map virtual page onto physical frame (using Al
BOT) [y
2. Add offset within the page ===
f

COMP 530: Operating Systems

Physical Address Decomposition

(fuax-1, omax-1)

A physical address can be split into a pair (f, 0)

f — frame number (fmax frames)
o — frame offset (omax bytes/frames) (£,0)
Physical address = omaxxf + 0 !
o
PA:
1 y \
10g2 (fmaxx Omax) log2 Omax — -
H_,H_/ emon]
f o
f
As long as a frame size is a power of 2, easy to split
address using bitwise shift operations
* Prepare for lots of power-of-2 arithmetic...

(0,0) o——

(0,0) '——

COMP 530: Operating Systems

Physical Addressing Example

10/13/16

COMP 530: Operating Systems

» Suppose a 16-bit address space with (0pmax =)

512 byte page frames
— Reminder: 512 == 2°
— Address 1,542 can be translated to:
+ Frame: 1,542/512==1542>>9=3

(3,6

——§ 1,502

o

« Offset: 1,542 % 512 == 1’,542 & (512-1)==6

Virtual Page Addresses

« Aprocess’s virtual address space is
partitioned into equal sized pages
- |page| =| page framel

(pmax-1, omax—1

(p,0)
o
A virtual address is a pair (p, 0)
p — page humber (pmex pages) U
o — page offset (omex bytes/pages) —Addeec—
Virtual address = omax<p + 0 —Speee—]
VA: P
l0g2 (pmaxx0max) logz omax 1
\ A\ J
Y
p o

COMP 530: Operating Systems

Questions
* The offset is the same in a virtual address and a
physical address.
— A. True
— B. False

COMP 530: Operating Systems

Page Table Details

1 table per process
Part of process metadata/state

Contents:
— Flags — dirty bit, resident bit,

A
— More simply: (3,6) — i -
emoo]
f
PA:
\ 4
0. 0) —0 |
COMP 530: Operating Systems
Page mapping
* Pages map to frames
+ Pages are contiguous in a VAS...
VAT — But pages are arbitrarily located
— 01— in physical memory, and
[—pate] — Not all pages mapped at all times [ZwwrsTa
Playsieat
LD 2) s Y
(DR Q.
LL 0..)
COMP 530: Operating Systems
. ’
Page Tables (aka Big Ole’ Table)
Program * A page table maps virtual m—
p pages to physical frames
CPU
P 1 o f o
20 109 (16109 1 g
—— Virtual fj
Addresses ;
Physical
0 Addresses
p
"— Page Table —

clock/reference bit
— Frame number

f o

T

4+t

Physical
Addresses

ofijo] 7 |

Page Table

COMP 530: Operating Systems

10/13/16

Example

COMP 530: Operating Systems

Performance Issues with Paging

« Problem — VM reference requires 2 memory references!
— One access to get the page table entry
— One access to get the data

« Page table can be very large; a part of the page table can be on
disk.

— For a machine with 64-bit addresses and 1024 byte pages, what is the
size of a page table?

* What to do?
— Most computing problems are solved by some form of...
« Caching
« Indirection

A system with 16-bit addresses (4,1023)
» 32KB of physical memory
(4,0) » 1024 byte pages
3,1023)
CPU Physical
Addresses
= p WY o f 0
ey - 5 1 a0 > %
r
1]0§010]0]010}0]
olojijojoj1jojol
— fr———— (0/0) E
Page Table

COMP 530: Operating Systems

Using a TLB to Cache Translations

+ Cache recently accessed page-to-frame translations in a TLB
— For TLB hit, physical page number obtained in 1 cycle
— For TLB miss, translation is updated in TLB
— Has high hit ratio (why?)
Physical
CPU Addresses

16 10 9 1

P

o
Virtual
[T ddresses

. \ n /_>
Key Value of|mm w= w= o= -
||
{ P i
—A
TLB
<

Page Table

COMP 530: Operating Systems

Dealing with Large Tables

» Example: Two-level paging

pr p2 o
Virtual Physical
ENSHERNEEBEER! ! Addresses Addresses

20 16 10 \

—
First-Level Second-Level

Page Table Page Table

COMP 530: Operating Systems

Dealing with Large Tables

||
« Add additional levels of indirection |
to the page table by sub-dividing | |
page number into K parts | |
— Create a “tree” of page tables SPecongll_-LbelveI | |
— TLB still used, just not shown age fables : 1
— The architecture determines the .-/ 1
number of levels of page table >
Virtual Address P2
p1 P2 p3 o Vaun =
O |
H | |
| |
p3 | |
pr Np e A
Third-Level

Eicotl ! Page Tables

Page Table \ ﬁ

COMP 530: Operating Systems

Large Virtual Address Spaces

« With large address spaces (64-bits) forward mapped page tables
become cumbersome.
— E.g. 5 levels of tables.

« Instead of making tables proportional to size of virtual address space,
make them proportional to the size of physical address space.
— Virtual address space is growing faster than physical.

« Use one entry for each physical page with a hash table
— Translation table occupies a very small fraction of physical memory
— Size of translation table is independent of VM size

« Page table has 1 entry per virtual page

+ Hashed/Inverted page table has 1 entry per physical frame

10/13/16

COMP 530: Operating Systems

COMP 530: Operating Systems

Frames and pages
* Only mapping virtual pages that are in use does
what?
— A. Increases memory utilization.
— B. Increases performance for user applications.
— C. Allows an OS to run more programs concurrently.
— D. Gives the OS freedom to move virtual pages in the
virtual address space.
« Address translation and changing address
mappings are
— A. Frequent and frequent
— B. Frequent and infrequent
— C. Infrequent and frequent
— D. Infrequent and infrequent

Hashed/Inverted Page Tables

« Each frame is associated with a register containing
— Residence bit: whether or not the frame is occupied
— Occupier: page number of the page occupying frame
— Protection bits

« Page registers: an example
— Physical memory size: 16 MB
— Page size: 4096 bytes
— Number of frames: 4096
— Space used for page registers (assuming 8 bytes/register): 32 Kbytes
— Percentage overhead introduced by page registers: 0.2%
— Size of virtual memory: irrelevant

COMP 530: Operating Systems

COMP 530: Operating Systems

Inverted Page Table Lookup

» CPU generates virtual addresses, where is the
physical page?
— Hash the virtual address
— Must deal with conflicts

* TLB caches recent translations, so page lookup can
take several steps
— Hash the address
— Check the tag of the entry
— Possibly rehash/traverse list of conflicting entries
« TLB is limited in size
— Difficult to make large and accessible in a single cycle.

— They consume a lot of power (27% of on-chip for
StrongARM)

Inverted Page Table Lookup
* Hash page numbers to find corresponding frame number
— Page frame number is not explicitly stored (1 frame per entry)
— Protection, dirty, used, resident bits also in entry

Memory
Virtual
Address PID

A
Physical s 2
Addresses IGUJ;IIJIJ

Inverted Page Table

COMP 530: Operating Systems

COMP 530: Operating Systems

Searching Inverted Page Tables

» Page registers are placed in an array

» Page iis placed in slot f(i) where fis an agreed-
upon hash function

» To lookup page i, perform the following:

— Compute. f{i) and use it as an index into the table of
page registers

— Extract the corresponding page register

— Check if the register tag contains j, if so, we have a hit

— Otherwise, we have a miss

Searching Inverted Page Tables

* Minor complication

— Since the number of pages is usually larger than the number of slots in
a hash table, two or more items may hash to the same location

« Two different entries that map to same location are said to collide

« Many standard techniques for dealing with collisions
— Use a linked list of items that hash to a particular table entry
— Rehash index until the key is found or an empty table entry is reached
(open hashing)

COMP 530: Operating Systems

Observation
* One cool feature of inverted page tables is that you
only need one for the entire OS
— Recall: each entry stores PID and virtual address
— Multiple processes can share one inverted table
* Forward mapped tables have one table per process

COMP 530: Operating Systems

Swapping

» Aprocess’s VAS is its context
— Contains its code, data, and stack

« Code pages are stored in a user’ s file on disk
— Some are currently residing in memory; most are
not

+ Data and stack pages are also stored in a file
— Although this file is typically not visible to users
— File only exists while a program is executing

¢ OS determines which portions of a process’ s VAS
are mapped in memory at any one time

COMP 530: Operating Systems

Performance Analysis
« To understand the overhead of paging, compute the effective
memory access time (EAT)

— EAT = memory access time x probability of a page hit +
page fault service time x probability of a page fault

+ Example:
— Memory access time: 60 ns
— Disk access time: 25 ms
— Let p = the probability of a page fault
— EAT =60(1-p) + 25,000,000p

» To realize an EAT within 5% of minimum, what is the largest
value of p we can tolerate?

10/13/16

COMP 530: Operating Systems

Questions

* Why use hashed/inverted page tables?

— A. Forward mapped page tables are too slow.

— B. Forward mapped page tables don’ t scale to larger
virtual address spaces.

— C. Inverted pages tables have a simpler lookup
algorithm, so the hardware that implements them is
simpler.

— D. Inverted page tables allow a virtual page to be
anywhere in physical memory.

COMP 530: Operating:Hystems
termory—

Page Fault Handling -

» References to non-mapped pages generate
a page fault
— Remember Interrupts?

Page fault handling steps:
Processor runs the interrupt handler
OS blocks the running process
OS starts read of the unmapped page
OS resumes/initiates some other process

/
Read of page completes ,
OS maps the missing page into memory 7
OS restart the faulting process
\
\
Disk A
S—

COMP 530: Operating Systems

Segmentation vs. Paging

» Segmentation has what advantages over
paging?
— A. Fine-grained protection.

— B. Easier to manage transfer of segments to/from the
disk.

— C. Requires less hardware support
— D. No external fragmentation
* Paging has what advantages over
segmentation?
— A. Fine-grained protection.
— B. Easier to manage transfer of pages to/from the disk.
— C. Requires less hardware support.
— D. No external fragmentation.

10/13/16

COMP 530: Operating Systems COMP 530: Operating Systems
Meta-Commentary Summary
Paging is really efficient when memory is relatively « Physical and virtual memory partitioned into equal
scarce size units
— But comes with higher latency, higher management costs + Size of VAS unrelated to size of physical memory

in hardware and software

But DRAM is getting more abundant! « Virtual pages are mapped to physical frames

— Push for larger page granularity (fewer levels of page * Simple placement strategy

tables) » There is no external fragmentation

— i ion?? . s
Or just go back to segmentation?? + Key to good performance is minimizing page faults

« If everything fits into memory with space to spare, why not?

