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Last	time
• We	went	through	the	high-level	theory	of	scheduling	
algorithms
– One	approach	was	a	multi-level	feedback	queue

• Today:	View	into	how	Linux	makes	its	scheduling	
decisions
– Note:	a	bit	dated	– this	is	from	v2.6,	but	I	think	still	
pedagogically	useful	and	more	accessible	than	the	new	
approach
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Lecture	goals
• Understand	low-level	building	blocks	of	a	scheduler
• Understand	competing	policy	goals
• Understand	the	O(1)	scheduler
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(Linux)	Terminology	Map
• task	– a	Linux	PCB	
– Really	represents	a	thread	in	the	kernel	

• (more	on	threads	next	lecture)

• Quantum	– CPU	timeslice
– “Quanta”	is	plural,	for	those	whose	Latin	is	dusty
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Outline
• Policy	goals	(review)
• O(1)	Scheduler
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Policy	goals
• Fairness	– everything	gets	a	fair	share	of	the	CPU
• Real-time	deadlines
– CPU	time	before	a	deadline	more	valuable	than	time	after

• Latency	vs.	Throughput:	Timeslice length	matters!
– GUI	programs	should	feel	responsive
– CPU-bound	jobs	want	long	timeslices,	better	throughput

• User	priorities
– Virus	scanning	is	nice,	but	I	don’t	want	it	slowing	things	
down



COMP	530:	Operating	Systems

No	perfect	solution
• Optimizing	multiple	variables
• Like	memory	allocation,	this	is	best-effort
– Some	workloads	prefer	some	scheduling	strategies

• Nonetheless,	some	solutions	are	generally	better	
than	others
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Outline
• Policy	goals
• O(1)	Scheduler
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O(1)	scheduler
• Goal:	decide	who	to	run	next,	independent	of	
number	of	processes	in	system
– Still	maintain	ability	to	prioritize	tasks,	handle	partially	
unused	quanta,	etc



COMP	530:	Operating	Systems

O(1)	Bookkeeping
• runqueue:	a	list	of	runnable	tasks
– Blocked	processes	are	not	on	any	runqueue
– A	runqueue belongs	to	a	specific	CPU
– Each	task	is	on	exactly	one	runqueue

• Task	only	scheduled	on	runqueue’s CPU	unless	migrated

• 2	*40	*	#CPUs	runqueues
– 40	dynamic	priority	levels	(more	later)
– 2	sets	of	runqueues – one	active	and	one	expired
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O(1)	Data	Structures
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139

138

137

100

101

...

139

138

137

100

101

...



COMP	530:	Operating	Systems

O(1)	Intuition
• Take	the	first	task	off	the	lowest-numbered	runqueue
on	active	set
– Confusingly:	a	lower	priority	value	means	higher	priority

• When	done,	put	it	on	appropriate	runqueue on	
expired	set

• Once	active	is	completely	empty,	swap	which	set	of	
runqueues is	active	and	expired

• “Constant	time”,	since	fixed	number	of	queues	to	
check;	only	take	first	item	from	non-empty	queue
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O(1)	Example
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What	now?
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Blocked	Tasks
• What	if	a	program	blocks	on	I/O,	say	for	the	disk?
– It	still	has	part	of	its	quantum	left
– Not	runnable,	so	don’t	waste	time	putting	it	on	the	active	
or	expired	runqueues

• We	need	a	“wait	queue”	associated	with	each	
blockable event
– Disk,	lock,	pipe,	network	socket,	etc.
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Blocking	Example
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Blocked	Tasks,	cont.
• A	blocked	task	is	moved	to	a	wait	queue	until	the	
expected	event	happens
– No	longer	on	any	active	or	expired	queue!

• Disk	example:
– After	I/O	completes,	interrupt	handler	moves	task	back	to	
active	runqueue
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Time	slice	tracking
• If	a	process	blocks	and	then	becomes	runnable,	how	
do	we	know	how	much	time	it	had	left?

• Each	task	tracks	ticks	left	in	‘time_slice’	field
– On	each	clock	tick:	current->time_slice--
– If	time	slice	goes	to	zero,	move	to	expired	queue

• Refill	time	slice
• Schedule	someone	else

– An	unblocked	task	can	use	balance	of	time	slice
– Forking	halves	time	slice	with	child
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More	on	priorities
• 100	=	highest	priority
• 139	=	lowest	priority
• 120	=	base	priority
– “nice”	value:	user-specified	adjustment	to	base	priority
– Selfish	(not	nice)	=	-20	(I	want	to	go	first)
– Really	nice	=	+19	(I	will	go	last)
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Base	time	slice

• “Higher”	priority	tasks	get	longer	time	slices
– And	run	first

time =
(140− prio)*20ms prio <120

(140− prio)*5ms prio ≥120

#

$
%

&
%

Don’t	worry	about	memorizing	these	formulae
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Goal:	Responsive	UIs
• Most	GUI	programs	are	I/O	bound	on	the	user
– Unlikely	to	use	entire	time	slice

• Users	get	annoyed	when	they	type	a	key	and	it	takes	
a	long	time	to	appear

• Idea:	give	UI	programs	a	priority	boost	
– Go	to	front	of	line,	run	briefly,	block	on	I/O	again

• Which	ones	are	the	UI	programs?
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Idea:	Infer	from	sleep	time
• By	definition,	I/O	bound	applications	spend	most	of	
their	time	waiting	on	I/O

• We	can	monitor	I/O	wait	time	and	infer	which	
programs	are	GUI	(and	disk	intensive)

• Give	these	applications	a	priority	boost
• Note	that	this	behavior	can	be	dynamic
– Ex:	GUI	configures	DVD	ripping,	then	it	is	CPU-bound
– Scheduling	should	match	program	phases
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Dynamic	priority
dynamic	priority	=	max	(	100,	min	(	static	priority	−	
bonus	+	5,	139	)	)	
• Bonus	is	calculated	based	on	sleep	time
• Dynamic	priority	determines	a	tasks’	runqueue
• This	is	a	heuristic	to	balance	competing	goals	of	CPU	
throughput	and	latency	in	dealing	with	infrequent	
I/O
– May	not	be	optimal
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Dynamic	Priority	in	O(1)	Scheduler
• Important:	The	runqueue a	process	goes	in	is	
determined	by	the	dynamic priority,	not	the	static	
priority
– Dynamic	priority	is	mostly	determined	by	time	spent	
waiting,	to	boost	UI	responsiveness

• Nice	values	influence	static priority
– No	matter	how	“nice”	you	are	(or	aren’t),	you	can’t	boost	
your	dynamic	priority	without	blocking	on	a	wait	queue!



COMP	530:	Operating	Systems

Rebalancing	tasks
• As	described,	once	a	task	ends	up	in	one	CPU’s	
runqueue,	it	stays	on	that	CPU	forever
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Rebalancing
CPU	0 CPU	1

...
...

CPU	1	Needs	
More	Work!
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Rebalancing	tasks
• As	described,	once	a	task	ends	up	in	one	CPU’s	
runqueue,	it	stays	on	that	CPU	forever

• What	if	all	the	processes	on	CPU	0	exit,	and	all	of	the	
processes	on	CPU	1	fork	more	children?

• We	need	to	periodically	rebalance
• Balance	overheads	against	benefits
– Figuring	out	where	to	move	tasks	isn’t	free
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Idea:	Idle	CPUs	rebalance
• If	a	CPU	is	out	of	runnable	tasks,	it	should	take	load	
from	busy	CPUs
– Busy	CPUs	shouldn’t	lose	time	finding	idle	CPUs	to	take	
their	work	if	possible

• There	may	not	be	any	idle	CPUs
– Overhead	to	figure	out	whether	other	idle	CPUs	exist
– Just	have	busy	CPUs	rebalance	much	less	frequently
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Average	load
• How	do	we	measure	how	busy	a	CPU	is?
• Average	number	of	runnable	tasks	over	time
• Available	in	/proc/loadavg
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Rebalancing	strategy
• Read	the	loadavg of	each	CPU
• Find	the	one	with	the	highest	loadavg
• (Hand	waving)	Figure	out	how	many	tasks	we	could	
take
– If	worth	it,	lock	the	CPU’s	runqueues and	take	them
– If	not,	try	again	later
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Editorial	Note
• O(1)	scheduler	is	not	constant	time	if	you	consider	
rebalancing	costs
– But	whatevs:	Execution	time	to	pick	next	process	is	one	of	
only	several	criteria	for	selecting	a	scheduling	algorithm

– O(1)	was	later	replaced	by	a	logarithmic	time	algorithm	
(Completely	Fair	Scheduler),	that	was	much	simpler
• More	elegantly	captured	these	policy	goals
• Amusingly,	not	“completely	fair”	in	practice

31
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Summary
• Understand	competing	scheduling	goals
• Understand	O(1)	scheduler	+	rebalancing


