
COMP	530:	Operating	Systems

Scheduling	in	Linux	(2.6)

Don	Porter

1

COMP	530:	Operating	Systems

Last	time
• We	went	through	the	high-level	theory	of	scheduling	
algorithms
– One	approach	was	a	multi-level	feedback	queue

• Today:	View	into	how	Linux	makes	its	scheduling	
decisions
– Note:	a	bit	dated	– this	is	from	v2.6,	but	I	think	still	
pedagogically	useful	and	more	accessible	than	the	new	
approach

COMP	530:	Operating	Systems

Lecture	goals
• Understand	low-level	building	blocks	of	a	scheduler
• Understand	competing	policy	goals
• Understand	the	O(1)	scheduler

COMP	530:	Operating	Systems

(Linux)	Terminology	Map
• task	– a	Linux	PCB	
– Really	represents	a	thread	in	the	kernel	

• (more	on	threads	next	lecture)

• Quantum	– CPU	timeslice
– “Quanta”	is	plural,	for	those	whose	Latin	is	dusty

COMP	530:	Operating	Systems

Outline
• Policy	goals	(review)
• O(1)	Scheduler

COMP	530:	Operating	Systems

Policy	goals
• Fairness	– everything	gets	a	fair	share	of	the	CPU
• Real-time	deadlines
– CPU	time	before	a	deadline	more	valuable	than	time	after

• Latency	vs.	Throughput:	Timeslice length	matters!
– GUI	programs	should	feel	responsive
– CPU-bound	jobs	want	long	timeslices,	better	throughput

• User	priorities
– Virus	scanning	is	nice,	but	I	don’t	want	it	slowing	things	
down

COMP	530:	Operating	Systems

No	perfect	solution
• Optimizing	multiple	variables
• Like	memory	allocation,	this	is	best-effort
– Some	workloads	prefer	some	scheduling	strategies

• Nonetheless,	some	solutions	are	generally	better	
than	others

COMP	530:	Operating	Systems

Outline
• Policy	goals
• O(1)	Scheduler

COMP	530:	Operating	Systems

O(1)	scheduler
• Goal:	decide	who	to	run	next,	independent	of	
number	of	processes	in	system
– Still	maintain	ability	to	prioritize	tasks,	handle	partially	
unused	quanta,	etc

COMP	530:	Operating	Systems

O(1)	Bookkeeping
• runqueue:	a	list	of	runnable	tasks
– Blocked	processes	are	not	on	any	runqueue
– A	runqueue belongs	to	a	specific	CPU
– Each	task	is	on	exactly	one	runqueue

• Task	only	scheduled	on	runqueue’s CPU	unless	migrated

• 2	*40	*	#CPUs	runqueues
– 40	dynamic	priority	levels	(more	later)
– 2	sets	of	runqueues – one	active	and	one	expired

COMP	530:	Operating	Systems

O(1)	Data	Structures
Active Expired

139

138

137

100

101

...

139

138

137

100

101

...

COMP	530:	Operating	Systems

O(1)	Intuition
• Take	the	first	task	off	the	lowest-numbered	runqueue
on	active	set
– Confusingly:	a	lower	priority	value	means	higher	priority

• When	done,	put	it	on	appropriate	runqueue on	
expired	set

• Once	active	is	completely	empty,	swap	which	set	of	
runqueues is	active	and	expired

• “Constant	time”,	since	fixed	number	of	queues	to	
check;	only	take	first	item	from	non-empty	queue

COMP	530:	Operating	Systems

O(1)	Example
Active Expired

139

138

137

100

101

...

139

138

137

100

101

...

Pick	first,	
highest	

priority	task	
to	run

Move	to	expired	
queue	when	
quantum	
expires

COMP	530:	Operating	Systems

What	now?
Active Expired

139

138

137

100

101

...

139

138

137

100

101

...

COMP	530:	Operating	Systems

Blocked	Tasks
• What	if	a	program	blocks	on	I/O,	say	for	the	disk?
– It	still	has	part	of	its	quantum	left
– Not	runnable,	so	don’t	waste	time	putting	it	on	the	active	
or	expired	runqueues

• We	need	a	“wait	queue”	associated	with	each	
blockable event
– Disk,	lock,	pipe,	network	socket,	etc.

COMP	530:	Operating	Systems

Blocking	Example
Active Expired

139

138

137

100

101

...

139

138

137

100

101

...

Disk

Block	on	
disk!

Process	
goes	on	
disk	wait	
queue

COMP	530:	Operating	Systems

Blocked	Tasks,	cont.
• A	blocked	task	is	moved	to	a	wait	queue	until	the	
expected	event	happens
– No	longer	on	any	active	or	expired	queue!

• Disk	example:
– After	I/O	completes,	interrupt	handler	moves	task	back	to	
active	runqueue

COMP	530:	Operating	Systems

Time	slice	tracking
• If	a	process	blocks	and	then	becomes	runnable,	how	
do	we	know	how	much	time	it	had	left?

• Each	task	tracks	ticks	left	in	‘time_slice’	field
– On	each	clock	tick:	current->time_slice--
– If	time	slice	goes	to	zero,	move	to	expired	queue

• Refill	time	slice
• Schedule	someone	else

– An	unblocked	task	can	use	balance	of	time	slice
– Forking	halves	time	slice	with	child

COMP	530:	Operating	Systems

More	on	priorities
• 100	=	highest	priority
• 139	=	lowest	priority
• 120	=	base	priority
– “nice”	value:	user-specified	adjustment	to	base	priority
– Selfish	(not	nice)	=	-20	(I	want	to	go	first)
– Really	nice	=	+19	(I	will	go	last)

COMP	530:	Operating	Systems

Base	time	slice

• “Higher”	priority	tasks	get	longer	time	slices
– And	run	first

time =
(140− prio)*20ms prio <120

(140− prio)*5ms prio ≥120

#

$
%

&
%

Don’t	worry	about	memorizing	these	formulae

COMP	530:	Operating	Systems

Goal:	Responsive	UIs
• Most	GUI	programs	are	I/O	bound	on	the	user
– Unlikely	to	use	entire	time	slice

• Users	get	annoyed	when	they	type	a	key	and	it	takes	
a	long	time	to	appear

• Idea:	give	UI	programs	a	priority	boost	
– Go	to	front	of	line,	run	briefly,	block	on	I/O	again

• Which	ones	are	the	UI	programs?

COMP	530:	Operating	Systems

Idea:	Infer	from	sleep	time
• By	definition,	I/O	bound	applications	spend	most	of	
their	time	waiting	on	I/O

• We	can	monitor	I/O	wait	time	and	infer	which	
programs	are	GUI	(and	disk	intensive)

• Give	these	applications	a	priority	boost
• Note	that	this	behavior	can	be	dynamic
– Ex:	GUI	configures	DVD	ripping,	then	it	is	CPU-bound
– Scheduling	should	match	program	phases

COMP	530:	Operating	Systems

Dynamic	priority
dynamic	priority	=	max	(100,	min	(static	priority	−	
bonus	+	5,	139))	
• Bonus	is	calculated	based	on	sleep	time
• Dynamic	priority	determines	a	tasks’	runqueue
• This	is	a	heuristic	to	balance	competing	goals	of	CPU	
throughput	and	latency	in	dealing	with	infrequent	
I/O
– May	not	be	optimal

COMP	530:	Operating	Systems

Dynamic	Priority	in	O(1)	Scheduler
• Important:	The	runqueue a	process	goes	in	is	
determined	by	the	dynamic priority,	not	the	static	
priority
– Dynamic	priority	is	mostly	determined	by	time	spent	
waiting,	to	boost	UI	responsiveness

• Nice	values	influence	static priority
– No	matter	how	“nice”	you	are	(or	aren’t),	you	can’t	boost	
your	dynamic	priority	without	blocking	on	a	wait	queue!

COMP	530:	Operating	Systems

Rebalancing	tasks
• As	described,	once	a	task	ends	up	in	one	CPU’s	
runqueue,	it	stays	on	that	CPU	forever

COMP	530:	Operating	Systems

Rebalancing
CPU	0 CPU	1

...
...

CPU	1	Needs	
More	Work!

COMP	530:	Operating	Systems

Rebalancing	tasks
• As	described,	once	a	task	ends	up	in	one	CPU’s	
runqueue,	it	stays	on	that	CPU	forever

• What	if	all	the	processes	on	CPU	0	exit,	and	all	of	the	
processes	on	CPU	1	fork	more	children?

• We	need	to	periodically	rebalance
• Balance	overheads	against	benefits
– Figuring	out	where	to	move	tasks	isn’t	free

COMP	530:	Operating	Systems

Idea:	Idle	CPUs	rebalance
• If	a	CPU	is	out	of	runnable	tasks,	it	should	take	load	
from	busy	CPUs
– Busy	CPUs	shouldn’t	lose	time	finding	idle	CPUs	to	take	
their	work	if	possible

• There	may	not	be	any	idle	CPUs
– Overhead	to	figure	out	whether	other	idle	CPUs	exist
– Just	have	busy	CPUs	rebalance	much	less	frequently

COMP	530:	Operating	Systems

Average	load
• How	do	we	measure	how	busy	a	CPU	is?
• Average	number	of	runnable	tasks	over	time
• Available	in	/proc/loadavg

COMP	530:	Operating	Systems

Rebalancing	strategy
• Read	the	loadavg of	each	CPU
• Find	the	one	with	the	highest	loadavg
• (Hand	waving)	Figure	out	how	many	tasks	we	could	
take
– If	worth	it,	lock	the	CPU’s	runqueues and	take	them
– If	not,	try	again	later

COMP	530:	Operating	Systems

Editorial	Note
• O(1)	scheduler	is	not	constant	time	if	you	consider	
rebalancing	costs
– But	whatevs:	Execution	time	to	pick	next	process	is	one	of	
only	several	criteria	for	selecting	a	scheduling	algorithm

– O(1)	was	later	replaced	by	a	logarithmic	time	algorithm	
(Completely	Fair	Scheduler),	that	was	much	simpler
• More	elegantly	captured	these	policy	goals
• Amusingly,	not	“completely	fair”	in	practice

31

COMP	530:	Operating	Systems

Summary
• Understand	competing	scheduling	goals
• Understand	O(1)	scheduler	+	rebalancing

