11/21/16

H‘: COMP 530: Operating Systems 18 COMP 530: Operating Systems

Uniprocessor Performance Not Scaling

10000 -

- 0,
000 " 20%lyear
52%lyeir//
10 "_//
1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Concurrent Programming
with Threads:

Why you should care deeply

Don Porter

Portions courtesy Emmett Witchel

Performance (vs. VAX-11/780

R Graph by Dave Patterson

Al COMP 530: Operating Systems Moores Law COMP 530: Operating Systems
Power and Heat Lay Waste to CPU Makers What about Moore’ s law?
« Intel P4 (2000-2007) -
— 1.3GHz to 3.8GHz, 31 stage pipeline P B

— “Prescott” in 02/04 was too hot. Needed 5.2GHz
to beat 2.6GHz Athalon

* Intel Pentium Core, (2006-) 2 .
— 1.06GHz to 3GHz, 14 stage pipeline oo -] e

— Based on mobile (Pentium M) micro-architecture -
« Power efficient P
2% of electricity in the U.S. feeds computers - - oo
— Doubled in last 5 years + Number of transistors double every 24 months

— Not performance!

Al COMP 530: Operating Systems | COMP 530: Operating Systems
Transistor Budget Multi-Core is Here: Plain and Simple
* We have an increasing glut of transistors * Raise your hand if your laptop is single core?
— (at least for a few more years) * Your phone?

* But we can’t use them to make things faster

— Techniques that worked in the 90s blew up heat faster
than we can dissipate it

* What to do?

— Use the increasing transistor budget to make more cores!

* That’s what | thought

11/21/16

COMP 530: Operating Systems

COMP 530: Operating Systems

Multi-Core Programming == Essential Skill

» Hardware manufacturers betting big on
multicore

» Software developers are needed
» Writing concurrent programs is not easy
* You will learn how to do it in this class

Threads: OS Abstraction for Concurrency

« Process abstraction combines two concepts
— Concurrency
« Each process is a sequential execution stream of instructions
— Protection
« Each process defines an address space
« Address space identifies all addresses that can be touched by the program
* Threads
— Key idea: separate the concepts of concurrency from protection
— Athread is a sequential execution stream of instructions
— Aprocess defines the address space that may be shared by multiple
threads
— Threads can execute on different cores on a multicore CPU (parallelism
for performance) and can communicate with other threads by updating
memory

Still treated like a bonus: Don’t graduate without it!

H‘; COMP 530: Operating Systems

COMP 530: Operating Systems

Practical Difference

* With processes, you coordinate through nice
abstractions (relatively speaking —e.g., lab 1)
— Pipes, signals, etc.

* With threads, you communicate through data
structures in your process virtual address space
— Just read/write variables and pointers

Programmer’s View

void fn1(int arg0, int arg1, ...) {...}
main() {

tid = CreateThread(fn1, arg0, arg1, ...);

At the point CreateThread is called, execution continues in parent
thread in main function, and execution starts at fn1 in the child
thread, both in parallel (concurrently)

Il COMP 530: Operating Systems

COMP 530: Operating Systems

VImpIementing Threads: Example Redux

Virtual Address Space

hello | | heap || stk1 || stk2 [libc.so | Linux

0 Oxffffffff

¢ 2 threads requires 2 stacks in the process
* No problem!

* Kernel can schedule each thread separately
— Possibly on 2 CPUs
— Requires some extra bookkeeping

How can it help?

« How can this code take advantage of 2 threads?
for(k = 0; k < n; k++)
alk] = b[k] * c[k] + d[K] * e[K];

* Rewrite this code fragment as:
do_mult(l, m) {
for(k = I; k < m; k++)
a[K] = b[k] * c[k] + d[k] * e[K];
}
main() {
CreateThread(do_mult, 0, n/2);
CreateThread(do_mult, n/2, n);

* What did we gain?

(L} COMP 530: Operating Systems

11/21/16

How Can Threads Help?

« Consider a Web server
Create a number of threads, and for each thread do
< get network message from client
«+get URL data from disk
«»send data over network

+ What did we gain?

H‘; COMP 530: Operating Systems

Overlapping I/0 and Computation

Request 1 Request 2
Thread 1 Thread 2
<+ get network message
(URL) from client

get URL data from disk *get network message

(URL) from client

(disk access latency) «get URL data from disk

(disk access latency)

< send data over network

< send data over network

v

Time

+ Total time is less than request 1 + request 2

H‘; COMP 530: Operating Systems

Why threads? (summary)
* Computation that can be divided into concurrent
chunks
— Execute on multiple cores: reduce wall-clock exec. time
— Harder to identify parallelism in more complex cases
* Overlapping blocking I/0 with computation
— If my web server blocks on 1/0 for one client, why not work
on another client’s request in a separate thread?
— Other abstractions we won’t cover (e.g., events)

H‘; COMP 530: Operating Systems

Threads vs. Processes

Threads Processes

« Athread has no data segment & A process has code/data/heap & other

or heap segments
+ Athread cannot live on its own, & There must be at least one thread in a
it must live within a process process

* There can be more than one
thread in a process, the first
thread calls main & has the

+ Threads within a process share
code/data/heap, share I/O, but each

process’ s stack has its own stack & registers

« Ifathread dies, its stack is + If a process dies, its resources are
reclaimed reclaimed & all threads die

* Inter-thread communication via # Inter-process communication via OS
memory. and data copying.

» Eachthread canrunona + Each process can run on a different

different physical processor
« Inexpensive creation and

cantext switch

physical processor
+ Expensive creation and context switch

H‘; COMP 530: Operating Systems

Implementing Threads ,

« Processes define an address xizzq address space
space; threads share the mapped segment.
address space pC

sP DLL's

« Process Control Block (PCB) State Hea
contains process-specific Registers P
information U

— Owner, PID, heap pointer, O
priority, active thread, and

pointers to thread information TCB for Stack - thread2
Thread2
« Thread Control Block (TCB) pC
contains thread-specific sp Stack - threadl
information State Initialized data
— Stack pointer, PC, thread state Registers
(running, ...), register values, a Code

pointer to PCB, ...

H‘; COMP 530: Operating Systems

Thread Life Cycle

* Threads (just like processes) go through a sequence of start,
ready, running, waiting, and done states

H‘; COMP 530: Operating Systems

11/21/16

Threads have their own...?

CPU

. Address space
PCB

. Stack ©
. Registers @

a b~ 0N =

COMP 530: Operating Systems

Threads have the same
scheduling states as processes

1. True®

2. False

+ In fact, OSes generally schedule threads to CPUs, not processes

Yes, yes, another white lie in this course

H‘; COMP 530: Operating Systems

Lecture Outline
* What are threads?
* Small digression: Performance Analysis

— There will be a few more of these in upcoming lectures
* Why are threads hard?

COMP 530: Operating Systems

7 Performance: Latency vs. Throughput

» Latency: time to complete an operation
» Throughput: work completed per unit time
» Multiplying vector example: reduced latency
* Web server example: increased throughput
» Consider plumbing
— Low latency: turn on faucet and water comes out
— High bandwidth: lots of water (e.g., to fill a pool)

+ What is “High speed Internet?”
— Low latency: needed to interactive gaming
— High bandwidth: needed for downloading large files

— Marketing departments like to conflate latency and
bandwidth...

H‘; COMP 530: Operating Systems

Latency and Throughput

+ Latency and bandwidth only loosely coupled

— Henry Ford: assembly lines increase bandwidth without
reducing latency

» My factory takes 1 day to make a Model-T ford.
— But | can start building a new car every 10 minutes
— At 24 hrs/day, | can make 24 * 6 = 144 cars per day
— A special order for 1 green car, still takes 1 day
— Throughput is increased, but latency is not.
+ Latency reduction is difficult
» Often, one can buy bandwidth
— E.g., more memory chips, more disks, more computers

COMP 530: Operating Systems

| — Bigserverfarms (e g google) are high bandwidth |

Latency, Throughput, and Threads
¢ Can threads improve throughput?
— Yes, as long as there are parallel tasks and CPUs available
e Can threads improve latency?
— Yes, especially when one task might block on another task’s
10

¢ Can threads harm throughput?
— Yes, each thread gets a time slice.

— If # threads >> # CPUs, the %of CPU time each thread gets
approaches 0

¢ Can threads harm latency?
— Yes, especially when requests are short and there is little I/0O

Threads can help or hurt: Understand when they help|

H‘; COMP 530: Operating Systems

So Why are Threads Hard?

« Order of thread execution is non-deterministic

— Multiprocessing
+ A system may contain multiple processors = cooperating
threads/processes can execute simultaneously

— Multi-programming
+ Thread/process execution can be interleaved because of time-
slicing
» Operations often consist of multiple, visible steps
— Example: x = x + 1 is not a single opefatiod 2

« read x from memory into a register _read
« increment register increment
« store register back to memory store
* Goal:
— Ensure that your concurrent program works under ALL
ole-intort ;
Ld J

H‘; COMP 530: Operating Systems

Sharing Amongst Threads Increases

Performance

inta=0,b=2;

main() {
CreateThread(fn1, 4);
CreateThread(fn2, 5);

}

fn1(intarg1) {

if(a) b++; What are the values of a & b
} at the end of execution?
fn2(int arg1) {

a=argl;

}

11/21/16

H‘; COMP 530: Operating Systems

Questions

* Do the following either completely succeed or
completely fail?
» Writing an 8-bit byte to memory
— A. Yes B. No
* Creating a file
— A Yes B. No
» Writing a 512-byte disk sector
—A. Yes B.No

H‘; COMP 530: Operating Systems

Some More Examples

+ What are the possible values of x in these cases?

| Thread!: x = 1; Thread2: x = 2; |

Initially y = 10;
Threadl: x =y +1;

Thread2:y =y * 2;

Initially x = O;
Threadl: x = x + 1;

Thread2: x = x + 2;

But can lead to problems...

H‘; COMP 530: Operating Systems

H‘; COMP 530: Operating Systems

The Need for Mutual Exclusion
* Running multiple processes/threads in parallel
increases performance
» Some computer resources cannot be accessed
by multiple threads at the same time
— E.g., a printer can’t print two documents at once

* Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a
time
— Active thread excludes its peers

» For shared memory architectures, data structures
are often mutually exclusive

T . . .

Real Life Example
+ Imagine multiple chefs in the same kitchen
— Each chef follows a different recipe
* Chef1
— Grab butter, grab salt, do other stuff
+ Chef2
— Grab salt, grab butter, do other stuff
* What if Chef 1 grabs the butter and Chef 2 grabs
the salt?
— Yell at each other (not a computer science solution)
— Chef 1 grabs salt from Chef 2 (preempt resource)

— Chefs all grab ingredients in the same order
« Current best solution, but difficult as recipes get complex
« Ingredient like cheese might be sans refrigeration for a while

H‘; COMP 530: Operating Systems

11/21/16

Critical Sections

* Key abstraction: A group of instructions that cannot
be interleaved
* Generally, critical sections execute under mutual
exclusion
— E.g., a critical section is the part of the recipe involving
butter and salt — you know, the important part
* One critical section may wait for another

— Key to good multi-core performance is minimizing the time
in critical sections

* While still rendering correct code!

COMP 530: Operating Systems

The Need to Wait
» Very often, synchronization consists of one
thread waiting for another to make a condition
true
— Master tells worker a request has arrived
— Cleaning thread waits until all lanes are colored
» Until condition is true, thread can sleep
— Ties synchronization to scheduling
* Mutual exclusion for data structure
— Code can wait (wait)
— Another thread signals (notify)

Il COMP 530: Operating Systems

7 Example 2: Traverse a singly-linked list

* Suppose we want to find an element in a singly
linked list, and move it to the head

* Visual intuition:
lhead

?EPD?EIZ

Iprev Iptr

[ls COMP 530: Operating Systems

7 Example 2: Traverse a singly-linked list

* Suppose we want to find an element in a singly
linked list, and move it to the head

* Visual intuition:
lhead

Iprev Iptr

H‘; COMP 530: Operating Systems

Even more real life, linked lists
lprev = NULL;
for (1ptr = lhead; lptr; lptr = lptr->next) {
if (lptr->val == target) {
// Already head?, break
if (lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;
break;
}
lprev = lptr;
}

» Where is the critical section?

COMP 530: Operating Systems

Even more real life, linked lists

Thread 1 Thread 2
// Move cell to head
lprev->next = lptr->next;

lptr->next = lhead
lhead = lptr;

lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

Ihead

elt
]
prev Y|

lhead
elt

Iptr
+ A critical section often needs to be larger than
it first appears

Iprev

— The 3 key lines are not enough of a critical section

(L} COMP 530: Operating Systems

11/21/16

Even more real life, linked lists

Thread 1
if (lptr->val == target) {
elt = lptr;
// Already head?, break

Thread 2

if (lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;

// lptr no longer in list
for (lptr = lhead; lptr;
lptr = lptr->next) {
if (lptr->val == target) {
» Putting entire search in a critical section
reduces concurrency, but it is safe.

COMP 530: Operating Systems

Safety and Liveness
« Safety property : “nothing bad happens”

— holds in every finite execution prefix
» Windows™ never crashes
« aprogram never terminates with a wrong answer

« Liveness property: “something good eventually happens”

— no partial execution is irremediable
+ Windows™ always reboots
« aprogram eventually terminates

« Every property is a combination of a safety property and a
liveness property - (Alpern and Schneider)

Il COMP 530: Operating Systems

Safety and liveness for critical sections

« At most k threads are concurrently in the critical section
— A. Safety
— B. Liveness
— C.Both

« Athread that wants to enter the critical section will eventually
succeed
— A. Safety
— B. Liveness
— C.Both

« Bounded waiting: If a thread i is in entry section, then there is a
bound on the number of times that other threads are allowed to
enter the critical section (only 1 thread is alowed in at a time)
before thread i’s request is granted.

— A Safety B.Liveness C.Both

COMP 530: Operating Systems

Lecture Summary

Understand the distinction between process &
thread

Understand motivation for threads
Concepts of Throughput vs. Latency
Intuition of why coordinating threads is hard

Idea of mutual exclusion and critical sections
— Much more on last two points to come

40

