
COMP	530:	Operating	Systems

Concurrent	Programming	
with	Threads:

Why	you	should	care	deeply
Don	Porter

Portions	courtesy	Emmett	Witchel
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• Intel P4 (2000-2007)
– 1.3GHz to 3.8GHz, 31 stage pipeline
– “Prescott” in 02/04 was too hot.  Needed 5.2GHz 

to beat 2.6GHz Athalon
• Intel Pentium Core, (2006-)

– 1.06GHz to 3GHz, 14 stage pipeline
– Based on mobile (Pentium M) micro-architecture

• Power efficient

• 2% of electricity in the U.S. feeds computers
– Doubled in last 5 years

Power	and	Heat	Lay	Waste	to	CPU	Makers
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What	about	Moore’s	law?

• Number of transistors double every 24 months
– Not performance!
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Transistor	Budget
• We	have	an	increasing	glut	of	transistors

– (at	least	for	a	few	more	years)

• But	we	can’t	use	them	to	make	things	faster
– Techniques	that	worked	in	the	90s	blew	up	heat	faster	
than	we	can	dissipate	it

• What	to	do?		
– Use	the	increasing	transistor	budget	to	make	more	cores!
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Multi-Core	is	Here:	Plain	and	Simple
• Raise	your	hand	if	your	laptop	is	single	core?
• Your	phone?

• That’s	what	I	thought
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• Hardware manufacturers betting big on 
multicore

• Software developers are needed
• Writing concurrent programs is not easy
• You will learn how to do it in this class

Multi-Core	Programming	==	Essential	Skill

Still	treated	like	a	bonus:	Don’t	graduate	without	it!
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Threads:	OS	Abstraction	for	Concurrency
• Process abstraction combines two concepts

– Concurrency
• Each process is a sequential execution stream of instructions

– Protection
• Each process defines an address space
• Address space identifies all addresses that can be touched by the program

• Threads
– Key idea: separate the concepts of concurrency from protection
– A thread is a sequential execution stream of instructions
– A process defines the address space that may be shared by multiple 

threads
– Threads can execute on different cores on a multicore CPU (parallelism 

for performance) and can communicate with other threads by updating 
memory
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Practical	Difference
• With	processes,	you	coordinate	through	nice	
abstractions	(relatively	speaking	– e.g.,	lab	1)
– Pipes,	signals,	etc.

• With	threads,	you	communicate	through	data	
structures	in	your	process	virtual	address	space
– Just	read/write	variables	and	pointers
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void fn1(int arg0, int arg1, …) {…}

main() {
…
tid = CreateThread(fn1, arg0, arg1, …);
…

}

At the point CreateThread is called, execution continues in parent 
thread in main function, and execution starts at fn1 in the child 
thread, both in parallel  (concurrently)

Programmer’s	View
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Implementing	Threads:	Example	Redux

Virtual	Address	Space

0 0xffffffff

hello libc.soheap

• 2	threads	requires	2	stacks	in	the	process
• No	problem!
• Kernel	can	schedule	each	thread	separately

– Possibly	on	2	CPUs
– Requires	some	extra	bookkeeping

stk1 stk2 Linux
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• How can this code take advantage of 2 threads?
for(k = 0; k < n; k++)

a[k] = b[k] * c[k] + d[k] * e[k];

• Rewrite this code fragment as:
do_mult(l, m) {

for(k = l; k < m; k++)
a[k] = b[k] * c[k] + d[k] * e[k];

}
main() {

CreateThread(do_mult, 0, n/2);
CreateThread(do_mult, n/2, n);

• What did we gain?

How	can	it	help?
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• Consider a Web server
Create a number of threads, and for each thread do

vget network message from client
vget URL data from disk
vsend data over network

• What did we gain?

How	Can	Threads	Help?
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vget network message 
(URL) from client

vget URL data from disk

vsend data over network

v get network message 
(URL) from client

v get URL data from disk

v send data over network

Request 1
Thread 1

Request 2
Thread 2

Time

(disk access latency)

(disk access latency)

Total	time	is	less	than	request	1	+	request	2

Overlapping	I/O	and	Computation
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Why	threads?	(summary)
• Computation	that	can	be	divided	into	concurrent	
chunks
– Execute	on	multiple	cores:	reduce	wall-clock	exec.	time
– Harder	to	identify	parallelism	in	more	complex	cases

• Overlapping	blocking	I/O	with	computation
– If	my	web	server	blocks	on	I/O	for	one	client,	why	not	work	
on	another	client’s	request	in	a	separate	thread?

– Other	abstractions	we	won’t	cover	(e.g.,	events)
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Threads

• A thread has no data segment 
or heap

• A thread cannot live on its own, 
it must live within a process

• There can be more than one 
thread in a process, the first 
thread calls main & has the 
process’s stack

• If a thread dies, its stack is 
reclaimed

• Inter-thread communication via 
memory.

• Each thread can run on a 
different physical processor

• Inexpensive creation and 
context switch

Processes

A process has code/data/heap & other 
segments
There must be at least one thread in a 
process
Threads within a process share 
code/data/heap, share I/O, but each 
has its own stack & registers
If a process dies, its resources are 
reclaimed & all threads die
Inter-process communication via OS 
and data copying.
Each process can run on a different 
physical processor
Expensive creation and context switch

Threads	vs.	Processes
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Implementing	Threads
• Processes define an address 

space; threads share the 
address space

• Process Control Block (PCB) 
contains process-specific 
information 

– Owner, PID, heap pointer, 
priority, active thread, and 
pointers to thread information

• Thread Control Block (TCB) 
contains thread-specific 
information

– Stack pointer, PC, thread state 
(running, …), register values, a 
pointer to PCB, … Code

Initialized data

Heap

DLL’s

mapped segments

Process’s 
address space

Stack – thread1

PC
SP

State
Registers

…

TCB for 
Thread1

Stack – thread2

PC
SP

State
Registers

…

TCB for 
Thread2
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• Threads (just like processes) go through a sequence of start, 
ready, running, waiting, and done states 

RunningReady

Waiting

Start Done

Thread	Life	Cycle
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1. CPU
2. Address space
3. PCB
4. Stack
5. Registers

Threads	have	their	own…?
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Threads	have	the	same	
scheduling	states	as	processes

1. True
2. False

In fact, OSes generally schedule threads to CPUs, not processes

Yes,	yes,	another	white	lie	in	this	course
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Lecture	Outline
• What	are	threads?
• Small	digression:	Performance	Analysis

– There	will	be	a	few	more	of	these	in	upcoming	lectures

• Why	are	threads	hard?
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• Latency: time to complete an operation
• Throughput: work completed per unit time
• Multiplying vector example: reduced latency
• Web server example: increased throughput
• Consider plumbing

– Low latency: turn on faucet and water comes out
– High bandwidth: lots of water (e.g., to fill a pool)

• What is “High speed Internet?”
– Low latency: needed to interactive gaming
– High bandwidth: needed for downloading large files
– Marketing departments like to conflate latency and 

bandwidth…

Performance:	Latency	vs.	Throughput
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• Latency and bandwidth only loosely coupled
– Henry Ford: assembly lines increase bandwidth without 

reducing latency
• My factory takes 1 day to make a Model-T ford.

– But I can start building a new car every 10 minutes
– At 24 hrs/day, I can make 24 * 6 = 144 cars per day
– A special order for 1 green car, still takes 1 day
– Throughput is increased, but latency is not.

• Latency reduction is difficult
• Often, one can buy bandwidth

– E.g., more memory chips, more disks, more computers
– Big server farms (e.g., google) are high bandwidth

Latency	and	Throughput
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• Can	threads	improve	throughput?
– Yes,	as	long	as	there	are	parallel	tasks	and	CPUs	available

• Can	threads	improve	latency?
– Yes,	especially	when	one	task	might	block	on	another	task’s	

IO
• Can	threads	harm	throughput?

– Yes,	each	thread	gets	a	time	slice.		
– If	#	threads	>>	#	CPUs,	the	%of	CPU	time	each	thread	gets	

approaches	0
• Can	threads	harm	latency?	

– Yes,	especially	when	requests	are	short	and	there	is	little	I/O

Latency,	Throughput,	and	Threads

Threads	can	help	or	hurt:	Understand	when	they	help!
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• Order of thread execution is non-deterministic
– Multiprocessing

• A system may contain multiple processors è cooperating 
threads/processes can execute simultaneously

– Multi-programming
• Thread/process execution can be interleaved because of time-

slicing

• Operations often consist of multiple, visible steps
– Example: x = x + 1 is not a single operation

• read x from memory into a register
• increment register
• store register back to memory

• Goal:
– Ensure that your concurrent program works under ALL 

possible interleavings

Thread	2
read
increment
store

So	Why	are	Threads	Hard?



COMP	530:	Operating	Systems

• Do the following either completely succeed or 
completely fail?

• Writing an 8-bit byte to memory
– A. Yes B. No

• Creating a file
– A. Yes B. No

• Writing a 512-byte disk sector
– A. Yes B. No 

Questions



COMP	530:	Operating	Systems

int a = 0, b = 2;
main() {

CreateThread(fn1, 4);
CreateThread(fn2, 5);

}
fn1(int arg1) {

if(a) b++; 
}
fn2(int arg1) {

a = arg1;
}

What are the values of a & b
at the end of execution?

Sharing	Amongst	Threads	Increases	
Performance

But	can	lead	to	problems…
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• What are the possible values of x in these cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;

Thread1: x = x + 1; Thread2: x = x + 2;

Some	More	Examples
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• Running multiple processes/threads in parallel 
increases performance

• Some computer resources cannot be accessed 
by multiple threads at the same time
– E.g., a printer can’t print two documents at once

• Mutual exclusion is the term to indicate that some 
resource can only be used by one thread at a 
time
– Active thread excludes its peers

• For shared memory architectures, data structures 
are often mutually exclusive
– Two threads adding to a linked list can corrupt the list

The	Need	for	Mutual	Exclusion
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• Imagine multiple chefs in the same kitchen
– Each chef follows a different recipe

• Chef 1
– Grab butter, grab salt, do other stuff

• Chef 2
– Grab salt, grab butter, do other stuff

• What if Chef 1 grabs the butter and Chef 2 grabs 
the salt?
– Yell at each other (not a computer science solution)
– Chef 1 grabs salt from Chef 2 (preempt resource)
– Chefs all grab ingredients in the same order

• Current best solution, but difficult as recipes get complex
• Ingredient like cheese might be sans refrigeration for a while

Real	Life	Example
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Critical	Sections
• Key	abstraction:	A	group	of	instructions	that	cannot	
be	interleaved

• Generally,	critical	sections	execute	under	mutual	
exclusion
– E.g.,	a	critical	section	is	the	part	of	the	recipe	involving	
butter	and	salt	– you	know,	the	important	part

• One	critical	section	may	wait	for	another
– Key	to	good	multi-core	performance	is	minimizing	the	time	
in	critical	sections

• While	still	rendering	correct	code!
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• Very often, synchronization consists of one 
thread waiting for another to make a condition 
true
– Master tells worker a request has arrived
– Cleaning thread waits until all lanes are colored

• Until condition is true, thread can sleep
– Ties synchronization to scheduling

• Mutual exclusion for data structure
– Code can wait (wait)
– Another thread signals (notify)

The	Need	to	Wait
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Example	2:	Traverse	a	singly-linked	list
• Suppose	we	want	to	find	an	element	in	a	singly	
linked	list,	and	move	it	to	the	head

• Visual	intuition:
lhead

lptrlprev
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Example	2:	Traverse	a	singly-linked	list
• Suppose	we	want	to	find	an	element	in	a	singly	
linked	list,	and	move	it	to	the	head

• Visual	intuition:
lhead

lptrlprev
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Even	more	real	life,	linked	lists

• Where is the critical section?

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;
break;

}
lprev = lptr;

}



COMP	530:	Operating	Systems

Even	more	real	life,	linked	lists

• A critical section often needs to be larger than 
it first appears
– The 3 key lines are not enough of a critical section

// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead
lhead = lptr;

lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

Thread 1 Thread 2

lhead elt
lptrlprev

lhead
elt
lptrlprev
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Even	more	real	life,	linked	lists

• Putting entire search in a critical section 
reduces concurrency, but it is safe.

if(lptr->val == target){
elt = lptr;
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
// lptr no longer in list

for(lptr = lhead; lptr; 
lptr = lptr->next) {
if(lptr->val == target){

Thread 1 Thread 2
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Safety	and	Liveness
• Safety property : “nothing bad happens”

– holds in every finite execution prefix
• Windows™ never crashes
• a program never terminates with a wrong answer 

• Liveness property: “something good eventually happens”
– no partial execution is irremediable

• Windows™ always reboots
• a program eventually terminates

• Every property is a combination of a safety property and a 
liveness property - (Alpern and Schneider)
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Safety	and	liveness	for	critical	sections
• At most k threads are concurrently in the critical section

– A. Safety
– B. Liveness
– C. Both

• A thread that wants to enter the critical section will eventually 
succeed
– A. Safety
– B. Liveness
– C. Both

• Bounded waiting: If a thread i is in entry section, then there is a 
bound on the number of times that other threads are allowed to 
enter the critical section (only 1 thread is alowed in at a time) 
before thread i’s request is granted.
– A. Safety    B. Liveness    C. Both
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Lecture	Summary
• Understand	the	distinction	between	process	&	
thread

• Understand	motivation	for	threads
• Concepts	of	Throughput	vs.	Latency
• Intuition	of	why	coordinating	threads	is	hard
• Idea	of	mutual	exclusion	and	critical	sections

– Much	more	on	last	two	points	to	come
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