
COMP	530:	Operating	Systems

Concurrent	Programming	
with	Threads:

Why	you	should	care	deeply
Don	Porter

Portions	courtesy	Emmett	Witchel

1

COMP	530:	Operating	Systems

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25% /year

52% /year

20% /year

Graph by Dave Patterson

Uniprocessor	Performance	Not	Scaling

COMP	530:	Operating	Systems

• Intel P4 (2000-2007)
– 1.3GHz to 3.8GHz, 31 stage pipeline
– “Prescott” in 02/04 was too hot. Needed 5.2GHz

to beat 2.6GHz Athalon
• Intel Pentium Core, (2006-)

– 1.06GHz to 3GHz, 14 stage pipeline
– Based on mobile (Pentium M) micro-architecture

• Power efficient

• 2% of electricity in the U.S. feeds computers
– Doubled in last 5 years

Power	and	Heat	Lay	Waste	to	CPU	Makers

COMP	530:	Operating	Systems

What	about	Moore’s	law?

• Number of transistors double every 24 months
– Not performance!

COMP	530:	Operating	Systems

Transistor	Budget
• We	have	an	increasing	glut	of	transistors

– (at	least	for	a	few	more	years)

• But	we	can’t	use	them	to	make	things	faster
– Techniques	that	worked	in	the	90s	blew	up	heat	faster	
than	we	can	dissipate	it

• What	to	do?		
– Use	the	increasing	transistor	budget	to	make	more	cores!

5

COMP	530:	Operating	Systems

Multi-Core	is	Here:	Plain	and	Simple
• Raise	your	hand	if	your	laptop	is	single	core?
• Your	phone?

• That’s	what	I	thought

6

COMP	530:	Operating	Systems

• Hardware manufacturers betting big on
multicore

• Software developers are needed
• Writing concurrent programs is not easy
• You will learn how to do it in this class

Multi-Core	Programming	==	Essential	Skill

Still	treated	like	a	bonus:	Don’t	graduate	without	it!

COMP	530:	Operating	Systems

Threads:	OS	Abstraction	for	Concurrency
• Process abstraction combines two concepts

– Concurrency
• Each process is a sequential execution stream of instructions

– Protection
• Each process defines an address space
• Address space identifies all addresses that can be touched by the program

• Threads
– Key idea: separate the concepts of concurrency from protection
– A thread is a sequential execution stream of instructions
– A process defines the address space that may be shared by multiple

threads
– Threads can execute on different cores on a multicore CPU (parallelism

for performance) and can communicate with other threads by updating
memory

8

COMP	530:	Operating	Systems

Practical	Difference
• With	processes,	you	coordinate	through	nice	
abstractions	(relatively	speaking	– e.g.,	lab	1)
– Pipes,	signals,	etc.

• With	threads,	you	communicate	through	data	
structures	in	your	process	virtual	address	space
– Just	read/write	variables	and	pointers

9

COMP	530:	Operating	Systems

void fn1(int arg0, int arg1, …) {…}

main() {
…
tid = CreateThread(fn1, arg0, arg1, …);
…

}

At the point CreateThread is called, execution continues in parent
thread in main function, and execution starts at fn1 in the child
thread, both in parallel (concurrently)

Programmer’s	View

COMP	530:	Operating	Systems

Implementing	Threads:	Example	Redux

Virtual	Address	Space

0 0xffffffff

hello libc.soheap

• 2	threads	requires	2	stacks	in	the	process
• No	problem!
• Kernel	can	schedule	each	thread	separately

– Possibly	on	2	CPUs
– Requires	some	extra	bookkeeping

stk1 stk2 Linux

COMP	530:	Operating	Systems

• How can this code take advantage of 2 threads?
for(k = 0; k < n; k++)

a[k] = b[k] * c[k] + d[k] * e[k];

• Rewrite this code fragment as:
do_mult(l, m) {

for(k = l; k < m; k++)
a[k] = b[k] * c[k] + d[k] * e[k];

}
main() {

CreateThread(do_mult, 0, n/2);
CreateThread(do_mult, n/2, n);

• What did we gain?

How	can	it	help?

COMP	530:	Operating	Systems

• Consider a Web server
Create a number of threads, and for each thread do

vget network message from client
vget URL data from disk
vsend data over network

• What did we gain?

How	Can	Threads	Help?

COMP	530:	Operating	Systems

vget network message
(URL) from client

vget URL data from disk

vsend data over network

v get network message
(URL) from client

v get URL data from disk

v send data over network

Request 1
Thread 1

Request 2
Thread 2

Time

(disk access latency)

(disk access latency)

Total	time	is	less	than	request	1	+	request	2

Overlapping	I/O	and	Computation

COMP	530:	Operating	Systems

Why	threads?	(summary)
• Computation	that	can	be	divided	into	concurrent	
chunks
– Execute	on	multiple	cores:	reduce	wall-clock	exec.	time
– Harder	to	identify	parallelism	in	more	complex	cases

• Overlapping	blocking	I/O	with	computation
– If	my	web	server	blocks	on	I/O	for	one	client,	why	not	work	
on	another	client’s	request	in	a	separate	thread?

– Other	abstractions	we	won’t	cover	(e.g.,	events)

COMP	530:	Operating	Systems

Threads

• A thread has no data segment
or heap

• A thread cannot live on its own,
it must live within a process

• There can be more than one
thread in a process, the first
thread calls main & has the
process’s stack

• If a thread dies, its stack is
reclaimed

• Inter-thread communication via
memory.

• Each thread can run on a
different physical processor

• Inexpensive creation and
context switch

Processes

A process has code/data/heap & other
segments
There must be at least one thread in a
process
Threads within a process share
code/data/heap, share I/O, but each
has its own stack & registers
If a process dies, its resources are
reclaimed & all threads die
Inter-process communication via OS
and data copying.
Each process can run on a different
physical processor
Expensive creation and context switch

Threads	vs.	Processes

COMP	530:	Operating	Systems

Implementing	Threads
• Processes define an address

space; threads share the
address space

• Process Control Block (PCB)
contains process-specific
information

– Owner, PID, heap pointer,
priority, active thread, and
pointers to thread information

• Thread Control Block (TCB)
contains thread-specific
information

– Stack pointer, PC, thread state
(running, …), register values, a
pointer to PCB, … Code

Initialized data

Heap

DLL’s

mapped segments

Process’s
address space

Stack – thread1

PC
SP

State
Registers

…

TCB for
Thread1

Stack – thread2

PC
SP

State
Registers

…

TCB for
Thread2

COMP	530:	Operating	Systems

• Threads (just like processes) go through a sequence of start,
ready, running, waiting, and done states

RunningReady

Waiting

Start Done

Thread	Life	Cycle

COMP	530:	Operating	Systems

1. CPU
2. Address space
3. PCB
4. Stack
5. Registers

Threads	have	their	own…?

COMP	530:	Operating	Systems

Threads	have	the	same	
scheduling	states	as	processes

1. True
2. False

In fact, OSes generally schedule threads to CPUs, not processes

Yes,	yes,	another	white	lie	in	this	course

COMP	530:	Operating	Systems

Lecture	Outline
• What	are	threads?
• Small	digression:	Performance	Analysis

– There	will	be	a	few	more	of	these	in	upcoming	lectures

• Why	are	threads	hard?

21

COMP	530:	Operating	Systems

• Latency: time to complete an operation
• Throughput: work completed per unit time
• Multiplying vector example: reduced latency
• Web server example: increased throughput
• Consider plumbing

– Low latency: turn on faucet and water comes out
– High bandwidth: lots of water (e.g., to fill a pool)

• What is “High speed Internet?”
– Low latency: needed to interactive gaming
– High bandwidth: needed for downloading large files
– Marketing departments like to conflate latency and

bandwidth…

Performance:	Latency	vs.	Throughput

COMP	530:	Operating	Systems

• Latency and bandwidth only loosely coupled
– Henry Ford: assembly lines increase bandwidth without

reducing latency
• My factory takes 1 day to make a Model-T ford.

– But I can start building a new car every 10 minutes
– At 24 hrs/day, I can make 24 * 6 = 144 cars per day
– A special order for 1 green car, still takes 1 day
– Throughput is increased, but latency is not.

• Latency reduction is difficult
• Often, one can buy bandwidth

– E.g., more memory chips, more disks, more computers
– Big server farms (e.g., google) are high bandwidth

Latency	and	Throughput

COMP	530:	Operating	Systems

• Can	threads	improve	throughput?
– Yes,	as	long	as	there	are	parallel	tasks	and	CPUs	available

• Can	threads	improve	latency?
– Yes,	especially	when	one	task	might	block	on	another	task’s	

IO
• Can	threads	harm	throughput?

– Yes,	each	thread	gets	a	time	slice.		
– If	#	threads	>>	#	CPUs,	the	%of	CPU	time	each	thread	gets	

approaches	0
• Can	threads	harm	latency?	

– Yes,	especially	when	requests	are	short	and	there	is	little	I/O

Latency,	Throughput,	and	Threads

Threads	can	help	or	hurt:	Understand	when	they	help!

COMP	530:	Operating	Systems

• Order of thread execution is non-deterministic
– Multiprocessing

• A system may contain multiple processors è cooperating
threads/processes can execute simultaneously

– Multi-programming
• Thread/process execution can be interleaved because of time-

slicing

• Operations often consist of multiple, visible steps
– Example: x = x + 1 is not a single operation

• read x from memory into a register
• increment register
• store register back to memory

• Goal:
– Ensure that your concurrent program works under ALL

possible interleavings

Thread	2
read
increment
store

So	Why	are	Threads	Hard?

COMP	530:	Operating	Systems

• Do the following either completely succeed or
completely fail?

• Writing an 8-bit byte to memory
– A. Yes B. No

• Creating a file
– A. Yes B. No

• Writing a 512-byte disk sector
– A. Yes B. No

Questions

COMP	530:	Operating	Systems

int a = 0, b = 2;
main() {

CreateThread(fn1, 4);
CreateThread(fn2, 5);

}
fn1(int arg1) {

if(a) b++;
}
fn2(int arg1) {

a = arg1;
}

What are the values of a & b
at the end of execution?

Sharing	Amongst	Threads	Increases	
Performance

But	can	lead	to	problems…

COMP	530:	Operating	Systems

• What are the possible values of x in these cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;

Thread1: x = x + 1; Thread2: x = x + 2;

Some	More	Examples

COMP	530:	Operating	Systems

• Running multiple processes/threads in parallel
increases performance

• Some computer resources cannot be accessed
by multiple threads at the same time
– E.g., a printer can’t print two documents at once

• Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a
time
– Active thread excludes its peers

• For shared memory architectures, data structures
are often mutually exclusive
– Two threads adding to a linked list can corrupt the list

The	Need	for	Mutual	Exclusion

COMP	530:	Operating	Systems

• Imagine multiple chefs in the same kitchen
– Each chef follows a different recipe

• Chef 1
– Grab butter, grab salt, do other stuff

• Chef 2
– Grab salt, grab butter, do other stuff

• What if Chef 1 grabs the butter and Chef 2 grabs
the salt?
– Yell at each other (not a computer science solution)
– Chef 1 grabs salt from Chef 2 (preempt resource)
– Chefs all grab ingredients in the same order

• Current best solution, but difficult as recipes get complex
• Ingredient like cheese might be sans refrigeration for a while

Real	Life	Example

COMP	530:	Operating	Systems

Critical	Sections
• Key	abstraction:	A	group	of	instructions	that	cannot	
be	interleaved

• Generally,	critical	sections	execute	under	mutual	
exclusion
– E.g.,	a	critical	section	is	the	part	of	the	recipe	involving	
butter	and	salt	– you	know,	the	important	part

• One	critical	section	may	wait	for	another
– Key	to	good	multi-core	performance	is	minimizing	the	time	
in	critical	sections

• While	still	rendering	correct	code!

31

COMP	530:	Operating	Systems

• Very often, synchronization consists of one
thread waiting for another to make a condition
true
– Master tells worker a request has arrived
– Cleaning thread waits until all lanes are colored

• Until condition is true, thread can sleep
– Ties synchronization to scheduling

• Mutual exclusion for data structure
– Code can wait (wait)
– Another thread signals (notify)

The	Need	to	Wait

COMP	530:	Operating	Systems

Example	2:	Traverse	a	singly-linked	list
• Suppose	we	want	to	find	an	element	in	a	singly	
linked	list,	and	move	it	to	the	head

• Visual	intuition:
lhead

lptrlprev

COMP	530:	Operating	Systems

Example	2:	Traverse	a	singly-linked	list
• Suppose	we	want	to	find	an	element	in	a	singly	
linked	list,	and	move	it	to	the	head

• Visual	intuition:
lhead

lptrlprev

COMP	530:	Operating	Systems

Even	more	real	life,	linked	lists

• Where is the critical section?

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;
break;

}
lprev = lptr;

}

COMP	530:	Operating	Systems

Even	more	real	life,	linked	lists

• A critical section often needs to be larger than
it first appears
– The 3 key lines are not enough of a critical section

// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead
lhead = lptr;

lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

Thread 1 Thread 2

lhead elt
lptrlprev

lhead
elt
lptrlprev

COMP	530:	Operating	Systems

Even	more	real	life,	linked	lists

• Putting entire search in a critical section
reduces concurrency, but it is safe.

if(lptr->val == target){
elt = lptr;
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
// lptr no longer in list

for(lptr = lhead; lptr;
lptr = lptr->next) {
if(lptr->val == target){

Thread 1 Thread 2

COMP	530:	Operating	Systems

Safety	and	Liveness
• Safety property : “nothing bad happens”

– holds in every finite execution prefix
• Windows™ never crashes
• a program never terminates with a wrong answer

• Liveness property: “something good eventually happens”
– no partial execution is irremediable

• Windows™ always reboots
• a program eventually terminates

• Every property is a combination of a safety property and a
liveness property - (Alpern and Schneider)

COMP	530:	Operating	Systems

Safety	and	liveness	for	critical	sections
• At most k threads are concurrently in the critical section

– A. Safety
– B. Liveness
– C. Both

• A thread that wants to enter the critical section will eventually
succeed
– A. Safety
– B. Liveness
– C. Both

• Bounded waiting: If a thread i is in entry section, then there is a
bound on the number of times that other threads are allowed to
enter the critical section (only 1 thread is alowed in at a time)
before thread i’s request is granted.
– A. Safety B. Liveness C. Both

COMP	530:	Operating	Systems

Lecture	Summary
• Understand	the	distinction	between	process	&	
thread

• Understand	motivation	for	threads
• Concepts	of	Throughput	vs.	Latency
• Intuition	of	why	coordinating	threads	is	hard
• Idea	of	mutual	exclusion	and	critical	sections

– Much	more	on	last	two	points	to	come

40

