
COMP	530:	Operating	Systems

C	for	Java	Programmers
&	Lab	0

Don	Porter

Portions	courtesy	Kevin	Jeffay

1

COMP	530:	Operating	Systems

Same	Basic	Syntax
• Data	Types:	int,	char,	[float]

– void	- (untyped	pointer)
– Can	create	other	data	types	using	typedef

• No	Strings	- only	char	arrays
– Last	character	needs	to	be	a	0

• Not	‘0’,	but	‘\0’

COMP	530:	Operating	Systems

struct – C’s	object
• typedef struct foo	{

int a;
void	*b;
void	(*op)(int c);		//	function	pointer

}	foo_t;						//	<------type	declaration
• Actual	contiguous	memory
• Includes	data	and	function	pointers

COMP	530:	Operating	Systems

Pointers
• Memory	placement	explicit	
(heap	vs.	stack)

• Two	syntaxes	(dot,	arrow)
intmain	{

struct foo	f;
struct foo	*fp =	&f;
f.a =	32;	//	dot:	access	object	directly
fp->a	=	33;	//	arrow:	follow	a	pointer
fp =	malloc(sizeof(struct foo));
fp->a	=	34;
…

}

4

Stack Heap
main:
f:
a	=	0;
b	=	NULL;
op	=	NULL;

struct foo:
a	=	0;
b	=	NULL;
op	=	NULL;

fp:	
PC

f:
a	=	32;
b	=	NULL;
op	=	NULL;

f:
a	=	33;
b	=	NULL;
op	=	NULL;

struct foo:
a	=	34;
b	=	NULL;
op	=	NULL;

struct foo	 {
int a;
void	*b;
void	(*op)(int c);		

}

Ampersand:
Address	of	f

COMP	530:	Operating	Systems

Function	pointer	example
fp->op	=	operator;
fp->op(32);	//	Same	as	calling

//	operator(32);

5

struct foo	 {
int a;
void	*b;
void	(*op)(int c);		

}

Code	in	memory:
Main
…

Operator:
...

Stack Heap
main:
f:
a	=	0;
b	=	NULL;
op	=	NULL;

fp:	

f:
a	=	32;
b	=	NULL;
op	=	NULL;

f:
a	=	33;
b	=	NULL;
op	=	NULL;

struct foo:
a	=	34;
b	=	NULL;
op	=	NULL;

struct foo:
a	=	34;
b	=	NULL;
op	=	

COMP	530:	Operating	Systems

More	on	Function	Pointers
• C	allows	function	pointers	to	be	used	as	members	of	
a	struct or	passed	as	arguments	to	a	function

• Continuing	the	previous	example:

void	myOp(int c){	/*…*/	}
/*…*/
foo_t *myFoo =	malloc(sizeof(foo_t));
myFoo->op	=	myOp;	//	set	pointer
/*…*/
myFoo->op(5);	//	Actually	calls	myop

COMP	530:	Operating	Systems

No	Constructors	or	Destructors
• Must	manually	allocate	and	free	memory	- No	
Garbage	Collection!
– void	*x	=	malloc(sizeof(foo_t));

• sizeof gives	you	the	number	of	bytes	in	a	foo_t - DO	NOT	COUNT	
THEM	YOURSELF!

– free(x);
• Memory	allocator	remembers	the	size	of	malloc’edmemory

• Must	also	manually	initialize	data
– Custom	function
– memset(x,	0,	sizeof(*x))	will	zero	it

COMP	530:	Operating	Systems

Memory	References
• ‘.’ - access	a	member	of	a	struct

– myFoo.a =	5;
• ‘&’ - get	a	pointer	to	a	variable

– foo_t *	fPointer =	&myFoo;
• ‘->’ - access	a	member	of	a	struct,	via	a	pointer	to	the	
struct
– fPointer->a	=	6;

• ‘*’	- dereference	a	pointer
– if(5	==	*intPointer){…}

• Without	the	*,	you	would	be	comparing	5	to	the	address	of	the	int,	
not	its	value.

COMP	530:	Operating	Systems

Int example
int x	=	5;		//	x	is	on	the	stack
int *xp =	&x;
*xp =	6;
printf(“%d\n”,	x);		//	prints	6
xp =	(int *)	0;
*xp =	7;	//	segmentation	fault

9

Stack
main:

x:	5	

PC

xp:		xp:	NULL	

x:	6	

COMP	530:	Operating	Systems

Memory	References,	cont.
• ‘[]’ - refer	to	a	member	of	an	array

char	*str	=	malloc(5	*	sizeof(char));
str[0]	=	‘a’;

– Note:	*str	=	‘a’ is	equivalent
– str++;	increments	the	pointer	such	that	*str	==	str[1]

str

str[0] str[1] str[2] str[3] str[4]

str+1 str+2 str+3 str+4

COMP	530:	Operating	Systems

The	Chicken	or	The	Egg?
• Many	C	functions	(printf,	malloc,	etc)	are	
implemented	in	libraries

• These	libraries	use	system	calls
• System	calls	provided	by	kernel
• Thus,	kernel	has	to	“reimplement” basic	C	libraries

– In	some	cases,	such	as	malloc,	can’t	use	these	language	
features	until	memory	management	is	implemented

COMP	530:	Operating	Systems

For	more	help
• man	pages	are	your	friend!

– (not	a	dating	service)!
– Ex:	‘man	malloc’,	or	‘man	3	printf’

• Section	3	is	usually	where	libraries	live	- there	is	a	command-line	
utility	printf as	well

• Use	‘apropos	term’ to	search	for	man	entries	about	
term

• The	C	Programming	Language	 by	Brian	Kernighan	
and	Dennis	Ritchie	is	a	great	reference.

COMP	530:	Operating	Systems

Lab	0	Overview
• C	programming	on	Linux	refresher

13

COMP	530:	Operating	Systems

• Write	a	simple	C	character	stream	processing	
program	on	Linux

• Read	in	characters	from	“standard	input,”	write	80	
character	lines	to	“standard	output”	replacing:
– Every	enter/return	character	(newline)	by	a	space
– Every	adjacent	pair	of	percents “%%” with	an	“*”

◆ …is	output	as:
» abcdefghijklmn*pqrstuvw*%yz ab

◆ Example	(for	a	30	character	output	line):	The	string…	
» abcdefghijklmn%%pqrstuvw%%%yz

abc%%%def

???

Lab	0	- Overview

COMP	530:	Operating	Systems

◆ This	is	the	only output	your	program	should	generate
» There	should	 be	no	prompts,	 debugging	 messages,	status	messages,	...	

%classroom> a.out
Abcdefghijklmn%%pqrstuvw%%%yz
abc%%%def
Abcdefghijklmn*pqrstuvw*%yz ab
1234567890123456789012345
c*%def 12345678901234567890123

%classroom>

◆ Note	that	your	output	will	be	interleaved	with	your	
input	on	the	console	(indicated	in	purple	above)
» This	is	fine!
» (You	can	eliminate	this	if	you	use	“I/O	redirection”)

COMP	530:	Operating	Systems

◆ When	executing	your	program,	terminate	stdin with	a	
<enter/return><control-D>	sequence
» This	(non-printable)	 character	sequence	is	referred	to	as	

“end-of-file”	or	“EOF”
» If	you	use	I/O	redirection	and	read	from	a	file	you	need	not	add	the	control-D

character	at	the	end	(Linux	does	this	for	you)

control-D

%classroom> a.out
Abcdefghijklmn%%pqrstuvw%%%yz
abc%%%def
Abcdefghijklmn*pqrstuvw*%yz ab
1234567890123456789012345
c*%def 12345678901234567890123

%classroom>

COMP	530:	Operating	Systems

• You	should	all	have	Linux	accounts	in	the	Department
– If	you	don’t,	go	to	the	let	help@cs.unc.edu know	ASAP!
– If	you	need	to	have	your	password	reset	visit

https://www.cs.unc.edu/webpass/onyen/
• Log	into	classroom.cs.unc.edu to	do	the	assignments
• Create	the	directory	structure	comp530 in	your	Linux	
home	directory

• Execute	the	magic	incantations	to	protect	your	
homework:

fs sa ~/comp530 system:anyuser none

Working	on	Homework	Assignments

Execute	these	instructions	before the	next	steps!

COMP	530:	Operating	Systems

Checking	out	the	starter	code
• Once	you	have	a	github account	registered

– Make	sure	you	accept	the	invite:
• Click	https://github.com/comp530-f18

• Click	the	link	in	the	homework	to	create	a	private	
repo

• Then,	on	your	machine	or	classroom	(substituting	
your	team	for	‘team-don’	– see	the	green	clone	
button):
git clone	git@github.com:comp530-f18/lab0-team-don.git

18

COMP	530:	Operating	Systems

• Commit	your	pending	changes
– See	the	output	of:	‘git status’
– Commit	the	changes	you	wish	to	submit:

• git add	ex2.c
– And	any	other	files	that	changed

• git commit	–m	“Finished	lab	0”
• make	handin

– You	may	need	to	add	files	to	your	.gitignore file	(and	
commit)	that	should	not	be	handed	in

– 2x	check	on	github:	your	changes	are	there,	and	tagged	
‘handin’

If	you	don’t	follow	these	instructions	exactly,	
your	HW	will	not	be	graded!

Submitting	homework

COMP	530:	Operating	Systems

• The	machines	you	should	use	for	programming	are:
– classroom.cs.unc.edu (primary)
– snapper.cs.unc.edu (secondary)
Access	either	machine	via	a	secure	shell	(secure	
telnet)	application	on	your	PC

• You	can	develop	your	code	anywhere	you	like	but…

• Your	programs	will	be	tested	on	classroom and	
correctness	will	be	assessed	based	on	their	
performance	on	classroom
– Alwaysmake	sure	your	program	works	on	classroom!

Lab	0	Programming	Notes

COMP	530:	Operating	Systems

• Programs should be neatly formatted (i.e., easy to read) and
well documented

• In general, 75% of your grade for a program will be for
correctness, 25% for programming style
– For this assignment, correctness & style will each count for 50% of

your grade
• Style refers to…

– Appropriate use of language features, including variable/procedure
names, and

– Documentation (descriptions of functions, general comments, use
of invariants, pre- and post conditions where appropriate)

– Simple test: Can I understand what you’ve done in 3 minutes?
• Correctness will be assessed comprehensively!

– You’ve got to learn to test for “edge” and “corner cases”

Grading

COMP	530:	Operating	Systems

(“Hard But that is fine.
Some of the grading scales for programming
assignments were weird and not straightforward.
Tended to place little emphasis on implementing
what the assignment actually intended and emphasized
how hard did you try to break your own program”)

• Programs that “mostly work” don’t cut it in a senior-
level course!

Dr.	Jeffay’s Experience

COMP	530:	Operating	Systems

• Working in teams on programming assignments is OK
– But you can only collaborate with other students in the course
– Every line of code handed in must be written exclusively by team

members themselves, and
– All collaborators must be acknowledged in writing (and part of the

team)
• Use of the Internet

– Using code from the Internet in any form is not allowed
– Websites may be consulted for reference (e.g., to learn how a system

call works)
– But all such websites used or relied on must be listed as a reference

in a header comment in your program
– Warning: Sample code found on the Internet rarely helps the student

Honor	Code:	Acceptable	and	Unacceptable	
Collaboration

