TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

C for Java Programmers
& Lab 0

Don Porter

Portions courtesy Kevin Jeffay

43 | THE UNIVERSITY
@ JINORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Same Basic Syntax

* Data Types: int, char, [float]
— void - (untyped pointer)
— Can create other data types using typedef

* No Strings - only char arrays

— Last character needsto bea 0
* Not ‘0, but ‘\O’

43 | THE UNIVERSITY
@ JINORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

struct — C's object

* typedef struct foo {
int a;
void *b;
void (*op)(int c); // function pointer
}foo t; /) <--—---- type declaration
e Actual contiguous memory
* Includes data and function pointers

ey THE UNIVERSITY
ﬂ:ﬂ JINORTH CAROLINA COMP 530: Operating Systems
Pointers
* Memory placement explicit Stack Heap
(heap vs. stack) main:
f: struct foo:
o
Two syntaxes (dot, P a = 33; a = 34:
int main { Address of f b =NULL; b =NULL;
-z» struct foo f; 2 = WOk op = NULL;
fp:

struct foo *fp = &f;
f.a=32; // dot:access object directly

fp->a =33; // arrow:follow a pointer

fp = malloc(sizeof(struct foo)); struct foo {

fp->a = 34, int a;
void *b;
void (*op)(int c);

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

I

COMP 530: Operating Systems

Function pointer example

fp->op = operator;
fp->0p(32); // Same as calling
// operator(32);

struct foo {
int a;
void *b;
void (*op)(int c);

Stack Heap
main:
f o struct foo:
a=33; a=34;
9 =BT b = NULL;
op = NUL op = ’
fp:

Codgfin memory:
M

Operator:

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

More on Function Pointers

e Callows function pointers to be used as members of

a struct or passed as arguments to a function
e Continuing the previous example:

void myOp(int c){ /*...*/ }

[*.*/

foo_t *myFoo = malloc(sizeof(foo t));
myFoo->op = myOp; // set pointer
[*.*%/

myFoo->o0p(5); // Actually calls myop

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

No Constructors or Destructors

* Must manually allocate and free memory - No
Garbage Collection!

I

— void *x = malloc(sizeof(foo _t));

* sizeofgives you the number of bytesina foo_t- DO NOT COUNT
THEM YOURSELF!

— free(x);
* Memory allocator remembers the size of malloc’ ed memory

 Must also manually initialize data

— Custom function

— memset(x, 0, sizeof(*x)) will zero it

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

Memory References

e ‘’-access a member of a struct
— myFoo.a=5;
e ‘&’ - geta pointer to a variable
— foo_t * fPointer = &myFoo;
e ‘->" - access a member of a struct, via a pointer to the
struct
— fPointer->a = 6;
e “*"_dereferencea pointer
— if(5 == *intPointer){...}
* Withoutthe *, you would be comparing5 to the address of the int,
notits value.

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Int example

Stack
-I» int x=5; //xis on the stack ——
. i
int *xp = &x; X: 6 >
*Xp = 6; xp: NULL
printf(“%d\n”, x); // prints 6
xp =(int *) 0;

*xp = 7; // segmentation fault

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Memory References, cont.

e ‘[I" - referto a member of an array
char *str = malloc(5 * sizeof(char));
str[0] = ‘a’;
— Note: *str= ‘a isequivalent

i

— str++; increments the pointer such that *str == str[1]

str
l str+l | otr42 str+3 str+4

str[0] str(1] str(2] str3] str(4]

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

The Chicken or The Egg?

 Many C functions (printf, malloc, etc) are
implemented in libraries

I

 These libraries use system calls
e System calls provided by kernel
* Thus, kernel has to “reimplement” basic C libraries

— In some cases, such as malloc, can’t use these language
features until memory management is implemented

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

For more help

* man pages are your friend!
— (not a dating service)!

— Ex: ‘man malloc’, or ‘man 3 printf’

e Section 3is usuallywherelibrarieslive - thereis a command-line
utility printfas well

* Use ‘apropos term’ to search for man entries about
term

 The C Programming Language by Brian Kernighan
and Dennis Ritchie is a great reference.

=S\ THE UNIVERSITY

ﬂ;ﬂ JINORTH CAROLINA COMP 530: Operating Systems

—_— at CHAPEL HILL

Lab O Overview

 Cprogramming on Linux refresher

= THE UNIVERSITY
@ moRTn canoniNa COMP 530: Operating Systems

Lab O - Overview

* Write a simple C character stream processing
program on Linux

 Read in characters from “standard input,” write 80
character lines to “standard output” replacing:

— Every enter/return character (newline) by a space
— Every adjacent pair of percents “%%” with an “*”

¢ Example (for a 30 character output line): The string...
» abcdefghijkl I Z
abc%%%def
¢ ...is output as:
» abcdefghijklmn*pgrstuvw*$yz ab — P77

= THE UNIVERSITY
ﬂ:ﬂ dJomTn CAROLINA COMP 530: Operating Systems

—_— at CHAPEL HILL

¢ This is the only output your program should generate
» There should be no prompts, debugging messages, status messages, ...

¢ Note that your output will be interleaved with your
input on the console (indicated in purple above)

» This is fine!
» (You can eliminate this if you use “I/O redirection”)

= THE UNIVERSITY
@ dJomTn CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

¢ When executing your program, terminate stdin with a
<enter/return><control-D> sequence

» This (non-printable) character sequence is referred to as
“end-of-file” or “EOF”

» If you use I/O redirection and read from a file you need not add the control-D
character at the end (Linux does this for you)

;—i COMP 530: Operating Systems

Workmg on Homework Assignments

* You should all have Linux accounts in the Department

— If youdon’t, go to the let help@cs.unc.edu know ASAP!
— If you need to have your password reset visit
https://www.cs.unc.edu/webpass/onyen/

* Loginto classroom.cs.unc.edu to do the assignments

* Create the directory structure comp530 in your Linux
home directory

e Execute the magic incantations to protect your
homework:

fs sa ~/comp530 system:anyuser none

Execute these instructions before the next steps!

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Checking out the starter code

* Onceyou have a github account registered

— Make sure you accept the invite:
* Click https://github.com/comp530-f18

e Click the link in the homework to create a private
repo

 Then, on your machine or classroom (substituting
your team for ‘team-don’ — see the green clone

button):
git clone git@github.com:comp530-f18/lab0-team-don.git

COMP 530: Operating Systems

Submitting homework

e Commit your pending changes
— See the output of: ‘git status’

— Commit the changes you wish to submit:

e gitaddex2.c
— And any other files that changed
e git commit—m “Finished lab 0”

e make handin

— You may need to add files to your .gitignore file (and
commit) that should not be handed in

— 2x check on github: your changes are there, and tagged
‘handin’

If you don’t follow these instructions exactly,
your HW will not be graded!

COMP 530: Operating Systems

Lab O Programming Notes

* The machines you should use for programming are:
— classroom.cs.unc.edu (primary)
— snapper.cs.unc.edu (secondary)

Access either machine via a secure shell (secure
telnet) application on your PC

* You can develop your code anywhere you like but...

* Your programs will be tested on classroom and
correctness will be assessed based on their
performance on classroom

— Always make sure your program works on classroom!

COMP 530: Operating Systems

Grading

Pro%rams should be neatly formatted (i.e., easy to read) and
well documented

In general, 75% of your grade for a program will be for
correctness, 25% for programming style

— For this assignment, correctness & style will each count for 50% of
your grade

Style refers to...

— Appropriate use of language features, including variable/procedure
names, and

— Documentation (descriptions of functions, general comments, use
of invariants, pre- and post conditions where appropriate)

— Simple test: Can I understand what you’ve done in 3 minutes?

Correctness will be assessed comprehensively!
— You've got to learn to test for “edge’ and “corner cases”

COMP 530: Operating Systems

Dr. Jeffay’s Experience

COMMENTS: written comments may help improve this course in the future. What were the best and worst parts?

What couid be improved?

@ But st i< ‘C?D

Soypne of "Hd,ﬂfdﬁj,f‘7 o, calet Eor (Prvjmmm!nj
| . V\/@/RJ‘ ar " : IV\/AFJ. %fc
'fewjéo/ lo f/ace liHHe Olmlak.s/.s 0 \W\lah"/MfO
~ R A’LL ;;5\(971”7%/\/ ﬂf/{'MIVM-7 ;n\feno’ed ool a/wykasfz
l’wfo/ MIJ (jbuv rﬂj "LD \Orcén/\, ‘ijOW Fn’ Yo

e

Some of the grading scales for programming
assignments were weird and not straightforward.

* Programs that “mostly work” don’t cut it in a senior-
level course!

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

I

4

Honor Code: Acceptable and Unacceptable
Collaboration

* Working in teams on programming assignments 1s OK
— But you can only collaborate with other students in the course

— Every line of code handed in must be written exclusively by team
members themselves, and

— All collaborators must be acknowledged in writing (and part of the
team)

e Use of the Internet

— Using code from the Internet in any form is not allowed

— Websites may be consulted for reference (e.g., to learn how a system
call works)

— But all such websites used or relied on must be listed as a reference
in a header comment in your program

— Warning: Sample code found on the Internet rarely helps the student

