
COMP	530:	Operating	Systems

Deadlock

Don	Porter

Portions	courtesy	Emmett	Witchel

1

COMP	530:	Operating	Systems

• Past lectures:
– Problem: Safely coordinate access to shared resource
– Solutions:

• Use semaphores, monitors, locks, condition variables
• Coordinate access within shared objects

• What about coordinated access across multiple objects?
– If you are not careful, it can lead to deadlock

• Today’s lecture:
– What is deadlock?
– How can we address deadlock?

Concurrency	Issues

COMP	530:	Operating	Systems

• Two producer processes share a buffer but use a different
protocol for accessing the buffers

• A postscript interpreter and a visualization program compete for
memory frames

Producer1() {
Lock(emptyBuffer)
Lock(producerMutexLock)
:

}

Producer2(){
Lock(producerMutexLock)
Lock(emptyBuffer)
:

}

PS_Interpreter() {
request(memory_frames, 10)
<process file>
request(frame_buffer, 1)
<draw file on screen>

}

Visualize() {
request(frame_buffer, 1)
<display data>
request(memory_frames, 20)
<update display>

}

Deadlock:	Motivating	Examples

COMP	530:	Operating	Systems

• A set of processes is deadlocked when every process in the set is waiting for an
event that can only be generated by some process in the set

• Starvation vs. deadlock
– Starvation: threads wait indefinitely (e.g., because some other thread is using a

resource)
– Deadlock: circular waiting for resources
– Deadlock è starvation, but not the other way

RunningReady

Waiting

Head

Tail
ready	queue

Head
Tail

semaphore/
condition	queues

Deadlock:	Definition

COMP	530:	Operating	Systems

• Basic components of any resource allocation problem
– Processes and resources

• Model the state of a computer system as a directed graph
– G = (V, E)
– V = the set of vertices = {P1, ..., Pn} ∪ {R1, ..., Rm}

Pi Pk

request
edge

allocation
edge

Rj

Pi Rj

Ø E = the set of edges =
{edges from a resource to a process} ∪

{edges from a process to a resource}

Resource	Allocation	Graph

COMP	530:	Operating	Systems

• A PostScript interpreter that is waiting for the frame buffer lock
and a visualization process that is waiting for memory

V = {PS interpret, visualization} ∪ {memory frames, frame buffer lock}

Visualization
Process

Memory	Frames

Frame	Buffer

PostScript
Interpreter

Resource	Allocation	Graph:	Example

COMP	530:	Operating	Systems

• Theorem: If a resource allocation graph does not contain a cycle then
no processes are deadlocked

Visualization
Process

Memory	Frames

Frame	Buffer

PostScript
Interpreter

A cycle in a RAG is a necessary condition for deadlock

Is the existence of a cycle a sufficient condition?

Game

Resource	Allocation	Graph	&	Deadlock

COMP	530:	Operating	Systems

• Theorem: If there is only a single unit of all resources then a set of
processes are deadlocked iff there is a cycle in the resource
allocation graph

Visualization
Process

Memory	Frames

Frame	Buffer

PostScript
Interpreter

Resource	Allocation	Graph	&	Deadlock

COMP	530:	Operating	Systems

• A set of processes are deadlocked iff the following conditions hold
simultaneously

1. Mutual exclusion is required for resource usage (serially useable)
2. A process is in a “hold-and-wait” state
3. Preemption of resource usage is not allowed
4. Circular waiting exists (a cycle exists in the RAG)

Visualization
Process Memory	Frames

Frame	Buffer

PostScript
Interpreter

An	Operational	Definition	of	Deadlock

COMP	530:	Operating	Systems

• Adopt some resource allocation protocol that
ensures deadlock can never occur

– Deadlock prevention/avoidance
• Guarantee that deadlock will never occur
• Generally breaks one of the following conditions:

– Mutex
– Hold-and-wait
– No preemption
– Circular wait *This is usually the weak link*

– Deadlock detection and recovery
• Admit the possibility of deadlock occurring and periodically check for it
• On detecting deadlock, abort

– Breaks the no-preemption condition
– And non-trivial to restore all invariants

Deadlock	Prevention	and/or	Recovery

What	does	the	RAG	for	a	lock	look	like?

COMP	530:	Operating	Systems

• Recall this situation. How can we avoid it?

Producer1() {
Lock(emptyBuffer)
Lock(producerMutexLock)
:

}

Producer2(){
Lock(producerMutexLock)
Lock(emptyBuffer)
:

}

Eliminate circular waiting by ordering all locks (or
semaphores, or resoruces). All code grabs locks in a
predefined order. Problems?
Ø Maintaining global order is difficult, especially in a large project.
Ø Global order can force a client to grab a lock earlier than it

would like, tying up a resource for too long.
Ø Deadlock is a global property, but lock manipulation is local.

Deadlock	Avoidance:	Resource	Ordering

COMP	530:	Operating	Systems

Lock	Ordering
• A	program	code	convention
• Developers	get	together,	have	lunch,	plan	the	order	
of	locks

• In	general,	nothing	at	compile	time	or	run-time	
prevents	you	from	violating	this	convention
– Research	topics	on	making	this	better:

• Finding	locking	bugs
• Automatically	locking	things	properly
• Transactional	memory

12

COMP	530:	Operating	Systems

How	to	order?
• What	if	I	lock	each	entry	in	a	linked	list.		What	is	a	
sensible	ordering?
– Lock	each	item	in	list	order
– What	if	the	list	changes	order?
– Uh-oh!		This	is	a	hard	problem

• Lock-ordering	usually	reflects	static	assumptions	
about	the	structure	of	the	data
– When	you	can’t	make	these	assumptions,	ordering	gets	
hard

13

COMP	530:	Operating	Systems

Linux	solution
• In	general,	locks	for	dynamic	data	structures	are	
ordered	by	kernel	virtual	address
– I.e.,	grab	locks	in	increasing	virtual	address	order

• A	few	places	where	traversal	path	is	used	instead

14

COMP	530:	Operating	Systems

Lock	ordering	in	practice
From	Linux:	fs/dcache.c

void d_prune_aliases(struct inode *inode) {
struct dentry *dentry;
struct hlist_node *p;

restart:
spin_lock(&inode->i_lock);
hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {

spin_lock(&dentry->d_lock);
if (!dentry->d_count) {

__dget_dlock(dentry);
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&inode->i_lock);
dput(dentry);
goto restart;

}
spin_unlock(&dentry->d_lock);

}
spin_unlock(&inode->i_lock);

}

Care	taken	to	lock	inode
before	each	alias

Inode lock	protects	list;
Must	restart	loop	after	

modification

15

COMP	530:	Operating	Systems

mm/filemap.c lock	ordering/*
* Lock ordering:
* ->i_mmap_lock (vmtruncate)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
* ->i_mutex
* ->i_mmap_lock (truncate->unmap_mapping_range)
* ->mmap_sem
* ->i_mmap_lock
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
* ->mmap_sem
* ->lock_page (access_process_vm)
* ->mmap_sem
* ->i_mutex (msync)
* ->i_mutex
* ->i_alloc_sem (various)
* ->inode_lock
* ->sb_lock (fs/fs-writeback.c)
* ->mapping->tree_lock (__sync_single_inode)
* ->i_mmap_lock
* ->anon_vma.lock (vma_adjust)
* ->anon_vma.lock
* ->page_table_lock or pte_lock (anon_vma_prepare and various)
* ->page_table_lock or pte_lock
* ->swap_lock (try_to_unmap_one)
* ->private_lock (try_to_unmap_one)
* ->tree_lock (try_to_unmap_one)
* ->zone.lru_lock (follow_page->mark_page_accessed)
* ->zone.lru_lock (check_pte_range->isolate_lru_page)
* ->private_lock (page_remove_rmap->set_page_dirty)
* ->tree_lock (page_remove_rmap->set_page_dirty)
* ->inode_lock (page_remove_rmap->set_page_dirty)
* ->inode_lock (zap_pte_range->set_page_dirty)
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)
* ->task->proc_lock
* ->dcache_lock (proc_pid_lookup)
*/

16

COMP	530:	Operating	Systems

• Abort all deadlocked processes & reclaim their resources
• Abort one process at a time until all cycles in the RAG

are eliminated
• Where to start?

– Select low priority process
– Processes with most allocation of resources

• Caveat: ensure that system is in consistent state (e.g., transactions)
• Optimization:

– Checkpoint processes periodically; rollback processes to checkpointed state

P4P1 P2 P3 P5

R1 R2 R3 R4

Deadlock	Recovery

Common	in	Databases;	Hard	in	General-Purpose	Apps

COMP	530:	Operating	Systems

Ø resource allocation state matrix

<n1,	n2,	n3,	...,	 nr>

• Examine each resource request and determine whether or not
granting the request can lead to deadlock

R1 R2 R3 ...	 Rr
P1
P2
P3

Pp

n1,1 n1,2 n1,3 ...	 n1,r
n2,1
n3,1

np,1
np,r

n2,2

...

...

...

...

Define a set of vectors and matrices that characterize the
current state of all resources and processes

Ø maximum claim matrix
Maxij = the maximum number of units

of resource j that the process i will
ever require simultaneously

Ø available vector

Allocij = the number of units of
resource j held by process i

Availj = the number of units of
resource j that are unallocated

Deadlock	Avoidance:	Banker’s	Algorithm

COMP	530:	Operating	Systems

• What are some problems with the banker’s algorithm?
– Very slow O(n2m)
– Too slow to run on every allocation. What else can we do?

• Deadlock prevention and avoidance:
– Develop and use resource allocation mechanisms and protocols that

prohibit deadlock

Deadlock detection and recovery:
Ø Let the system deadlock and then deal with it

Detect that a set of processes are deadlocked
Recover from the deadlock

Dealing	with	Deadlock

COMP	530:	Operating	Systems

Summary	and	Editorial
• Deadlock	is	one	difficult	issue	with	concurrency
• Lock	ordering	is	most	common	solution

– But	can	be	hard:
• Different	traversal	paths	in	a	data	structure
• Complicated	relationship	between	structures

– Requires	thinking	through	the	relationships	in	advance

• Other	solutions	possible
– Detect	deadlocks,	abort	some	programs,	put	things	back	
together	(common	in	databases)

• Transactional	Memory	

– Banker’s	algorithm

20

COMP	530:	Operating	Systems

Current	Reality
Pe

rf
or
m
an

ce

Complexity

Fine-Grained	Locking

Coarse-Grained	
Locking

ò Unsavory	trade-off	between	complexity	and	performance	
scalability

21

