TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Page Replacement
Algorithms

Don Porter

Portions courtesy Emmett Witchel and Kevin Jeffay

THE UNIVERSITY

@ of NORTH CAROLINA COMP 530: Operating Systems
Virtual Memory Management: Recap
« Key concept: Demand paging

— Load pages into memory only when a
page fault occurs

 |[ssues:

— Placement strategies

* Place pages anywhere — no placement
policy required

— Replacement strategies

* What to do when there exist more jobs

than can fit in memory Operating System ‘

— Load control strategies

» Determining how many jobs can be Memory
in memory at one time

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Page Replacement Algorithms

I

« Typically 2; VAS; >> Physical Memory
« With demand paging, physical memory fills quickly

 When a process faults & memory is full, some page must be
swapped out

— Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?

Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

=

I

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Page Replacement: Eval. Methodology

 Record a frace of the pages accessed by a process
— Example: (Virtual page, offset) address trace...
(3,0), (1,9), 4,1), (2,1), (5,3), (2,0), (1,9), (2,4), (3,1), (4,8)
— (generates page trace
3,1,4,2,52,1,2, 3,4 (represented as ¢, a, d, b, e, b, a, b, ¢, d)
« Hardware can tell OS when a new page is loaded into the TLB

— Set a used bit in the page table entry
— Increment or shift a register

Simulate the behavior of a page replacement algorithm on the trace and
record the number of page faults generated
fewer faults ‘ better performance

= THE UNIVERSITY .
mn YNoRTE CAROLINA COMP 530: Operating Systems
at CHAPEL HILL

4

Optimal Strategy: Clairvoyant Replacement

» Replace the page that won't be needed for the longest time in the
future

= THE UNIVERSITY .
mn YNoRTE CAROLINA COMP 530: Operating Systems
at CHAPEL HILL

4

Optimal Strategy: Clairvoyant Replacement

« Replace the page that won't be needed for the longest time in the
future

COMP 530: Operating Systems

Local Replacement: FIFO

Simple to implement

— Asingle pointer suffices —] 0 |
Performance with 4 page frames: -

Frame List

Time oj]1 2 3 4
Requests C d b

Faults

COMP 530: Operating Systems

Local Replacment: FIFO

Simple to implement
— A single pointer suffices

Performance with 4 page frames:

Time 0

Requests

Faults

mn Z’HN"I‘J‘:HVCAR;OTYNA COMP 530: Operating Systems

t CHAPEL HI

Least Recently Used (LRU) Replacement

» Use the recent past as a predictor of the near future
* Replace the page that hasn’t been referenced for the longest time

ﬁ;ﬂ 3HN°§:“VCAR;°TYNA COMP 530: Operating Systems

t CHAPEL HI

Least Recently Used (LRU) Replacement

» Use the recent past as a predictor of the near future
* Replace the page that hasn’t been referenced for the longest time

COMP 530: Operating Systems

How to Implement LRU?

« Maintain a “stack” of recently used pages

Time 011 2

Q | w
4
Q
o
Q.

Requests C a

Page
Frames
w N -
Q O T Q
Q O T Q
Q O T Q
Q ® T Q
Q ® T Q

Faults ° ® °

OO 00

Page to replace

H NN

COMP 530: Operating Systems

How to Implement LRU?

« Maintain a “stack” of recently used pages

Time 0OQ11 2 3 5 7 9 10

Requests c a d e a c d
wn O a a a a a a a a a

o D

an £ 1 b b b b b b b b b

Lo 2 C c C @ e e e e @
H o3 d d d d d d (c) ¢

Faults i ® ®

c a d /I
- 1 [=
page stack —] f—
c

Page to replace D D

(]
OEEE:
OEEEE

=3 | THE UNIVERSITY
@ YNORTH CAROLINA COMP 530: Operating Systems

 What is the goal of a page replacement
algorithm?
— A. Make life easier for OS implementer
— B. Reduce the number of page faults

— C. Reduce the penalty for page faults when they
occur

— D. Minimize CPU time of algorithm

JV COMP 530: Operating Systems

ApprOX|mate LRU: The Clock Algorithm

« Maintain a circular list of pages resident in memory
— Use a clock (or used/referenced) bit to track how often a page is accessed

— The bit is set whenever a page is referenced

« Clock hand sweeps over pages looking for one with used bit =0
— Replace pages that haven’ t been referenced for one complete revolution

of the clock
Page 7: 1|1| 0) func Clock Replacement
begin
while (victim page not found) do
if (used bit for current page =0) then
Page 1: 1IOI > Page 4: 1IOI 3 r(eplacecu{‘rentpagep ’ !
else
reset used bit
\ end if
advance clock pointer
Page 3: 1|1| 1 |PageO: 1|1| 4 end while
i end Clock Replacement
resident bit
used bit

frame number

COMP 530: Operating Systems

Clock Example

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b C d

Page
Frames

w N = O

Faults

Page table entries
for resident pages:

—_t | —_ | —
T KN Nyl ES

COMP 530: Operating Systems

Clock Example

5
e

1 2 3 4

Time

a d b

C

Requests

O «+= &N M

sawe.
23ed

Faults

11d]

Page table entries

for resident pages:

THE UNIVERSITY

= .
of NORTH CAROLINA COMP 530: Operating Systems

Optimization: Second Chance Algorithm

« There is a significant cost to replacing “dirty” pages
— Why?
« Must write back contents to disk before freeing!

* Modify the Clock alﬂorithm to allow dirty pages to always survive one
sweep of the clock hand

— Use both the dirty bit and the used bit to drive replacement

Page 7:]1]1]0] O Second Chance Algorithm
Before clock After clock
sweep sweep
Page 1:11]0|0]| 5 Page 4:11]0|0] 3
used dirty used dirty
0 0 replace page
0 1 0 0
Page 3:|1|1|1] 9 | PageO:|1]|1]1]| 4 1 0 0 0
* ‘ ‘ 1 1 0 1

COMP 530: Operating Systems

Second Chance Example

Time O 11 2 3 4 5 6 7 8 9 10
Requests c av d bY e b a’ b C d

Page
Frames

w Nk O
Q, O O Q8

Faults

Page table
entries | 10

for resident 10

IO |

pages:
10

COMP 530: Operating Systems

Second Chance Example

Time OJ]1 2 3 4 5 6 7 8 9 10

Requests

Faults

Page table
entries for

resident | 10
pages:
10

10

QLIO |

COMP 530: Operating Systems

Local Replacement and Memory Sensitivity

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Requests a b c d a b c d a b c d

Faults

Faults

COMP 530: Operating Systems

Local Replacement and Memory Sensitivity

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Requests a b c d a b c d a b c d

Faults ° ° ° ° ° ° ° ° °

Faults °

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Page Replacement Performance

« Local page replacement
— LRU — Ages pages based on when they were last used
— FIFO — Ages pages based on when they’ re brought into memory

« Towards global page replacement ... with variable number of
page frames allocated to processes

I

4

A\

90% of the execution of a program is sequential

Most iterative constructs consist of arelatively small number of
Instructions

» When processing large data structures, the dominant cost is sequential
processing on individual structure elements

» Temporal vs. physical locality

A\

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Optimal Replacement with a Variable
Number of Frames

« VMIN — Replace a page thatis not referenced in the next ¢
accesses

« Example: =4

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Optimal Replacement with a Variable
Number of Frames

« VMIN — Replace a page thatis not referenced in the next ¢
accesses

« Example: =4

THE UNIVERSITY

=N
@ JINORTH CAROLINA COMP 530: Operating Systems

The Working Set Model

« Assume recently referenced pages are likely to be referenced again
soon...

« ...and only keep those pages recently referenced in memory (called
the working set)

— Thus pages may be removed even when no page fault occurs
— The number of frames allocated to a process will vary over time

 Aprocessis allowed to execute only if its working set fits into
memory

— The working set model performs implicit load control

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Working Set Page Replacement

« Keep track of the last 7 references (excluding faulting reference)
— The pages referenced during the last r memory accesses are
the working set
— tis called the window size

(Ll

4

« Example: Working set computation, = = 4 references:

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Working Set Page Replacement

« Keep track of the last rreferences

— The pages referenced during the last tmemory accesses are
the working set

— tis called the window size

(Ll

« Example: Working set computation, 7 = 4 references:

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

i

4

Page-Fault-Frequency Page Replacment

« An alternate approach to computing working set

« Explicitly attempt to minimize page faults
— When page fault frequency is high — increase working set
— When page fault frequency is low — decrease working set

Algorithm:
Keep track of the rate at which faults occur
When a fault occurs, compute the time since the last page fault
Record the time, 5+, of the last page fault

If the time between page faults is “large” then reduce the working
set

If tourrent = tast > T, then remove from memory all pages not
referenced in [f/asfl Teurrent]
If the time between page faults is “small” then increase working set

If tourrent = tst € T, then add faulting page to the working set

mn of Nowrn cazorisa COMP 530: Operating Systems

at CHAPEL HILL

Page Fault Frequency Replacement

Example, window size = 2

1T t.,ent — Last > 2, remove pages not referenced in [{,s, toumen:] from
the working set

1T t.ent — Last < 2, just add faulting page to the working set

ﬁ;ﬂ of Nowrn cazorisa COMP 530: Operating Systems

at CHAPEL HILL

Page Fault Frequency Replacement

Example, window size = 2

1T t.ent — Last > 2, remove pages not referenced in [{,s, toumen:] from
the working set

1T t.ent — Last < 2, just add faulting page to the working set

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Load Control: Fundamental Trade-off

* High multiprogramming level

I

» MPLpox = number of page frames

minimum number of frames required for a process to execute

+ Low paging overhead
» MPLin =1 process

¢ Issues

> What criterion should be used to determine when to increase or
decrease the MPL?

» Which task should be swapped out if the MPL must be reduced?

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Load Control Done Wrong

]

I

4

i.e., based on CPU utilization

¢ Assume memory is nearly full

€ A chain of page faults occur

— A queue of processes forms at
the paging device

¢ CPU utilization falls

« Operating system increases MPL
— New processes fault, taking memory away from existing processes

« CPU utilization goes to 0, the OS increases the MPL further...

System is thrashing — spending all of its time paging

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Load Control and Thrashing

[Hl

4

« Thrashing can be ameliorated by local page replacement

+ Better criteria for load control: Adjust MPL so that:

> mean time between page faults (MTBF) = page fault service time
(PFST)

> 2 WS; = size of memory

ey THE UNIVERSITY
@ JINORTH CAROLINA COMP 530: Operating Systems
Load Control a nd Thrashing enysical

Memory

Suspended)+

suspended
queue semaphore/condition queues

 When the multiprogramming level should be
dec;eased, which process should be swapped
out”

> Lowest priority process?
» Smallest process?

> Largest process?

» Oldest process?

» Faulting process?

