
COMP 530: Operating Systems

Basic OS Programming
Abstractions

(and Lab 1 Overview)
Don Porter

Portions courtesy Kevin Jeffay

1

COMP 530: Operating Systems

Recap
• We’ve introduced the idea of a process as a

container for a running program
• This lecture: Introduce key OS APIs for a process
– Some may be familiar from lab 0
– Some will help with lab 1

COMP 530: Operating Systems

Lab 1: A (Not So) Simple Shell
• Lab 0: Parsing for a shell
– You will extend in lab 1

• I’m giving you some boilerplate code that does basics
• My goal: Get some experience using process APIs
– Most of what you will need discussed in this lecture

• You will incrementally improve the shell

3

COMP 530: Operating Systems

Tasks
• Turn input into commands; execute those commands
– Support PATH variables

• Be able to change directories
• Print the working directory at the command line
• Add debugging support
• Add scripting support
• Pipe indirection: <, >, and |
• goheels – draw an ASCII art Tar Heel

4Significant work – start early!

COMP 530: Operating Systems

Outline
• Fork recap
• Files and File Handles
• Inheritance
• Pipes
• Sockets
• Signals
• Synthesis Example: The Shell

COMP 530: Operating Systems

main {
int childPID;
S1;

childPID = fork();

if(childPID == 0)
<code for child process>

else {
<code for parent process>
wait();

}

S2;
}

Process Creation: fork/join in Linux
• The execution context for the child process is a copy of

the parent’s context at the time of the call

Code

Data

Stack

Code

Data

Stack

Parent Child

fork()

childPID
= 0

childPID
= xxx

COMP 530: Operating Systems

Process Creation: exec in Linux
• exec allows a process to replace itself with another program

– (The contents of another binary file)

Code

Data

Stack

Memory
Context

exec()

main {
S0
exec(foo)
S1
S2
}

a.out:

foo: main {
S’
}

COMP 530: Operating Systems

main {
int childPID;
S1;

childPID = fork();

if(childPID == 0)
exec(filename)

else {
<code for parent process>
wait();

}

S2;
}

Process Creation: Abstract fork in Linux
• Common case: fork followed by an exec

Code

Data

Stack

Code

Data

Stack

Parent Child

fork()
exec()

. /foo

main {
S’
}

COMP 530: Operating Systems

2 Ways to Refer to a File
• Path, or hierarchical name, of the file
– Absolute: “/home/porter/foo.txt”

• Starts at system root

– Relative: “foo.txt”
• Assumes file is in the program’s current working directory

• Handle to an open file
– Handle includes a cursor (offset into the file)

COMP 530: Operating Systems

Path-based calls
• Functions that operate on the directory tree
– Rename, unlink (delete), chmod (change permissions), etc.

• Open – creates a handle to a file
– int open (char *path, int flags, mode_t mode);

• Flags include O_RDONLY, O_RDWR, O_WRONLY
• Permissions are generally checked only at open

– Opendir – variant for a directory

COMP 530: Operating Systems

Handle-based calls
• ssize_t read (int fd, void *buf, size_t count)
– Fd is the handle
– Buf is a user-provided buffer to receive count bytes of the

file
– Returns how many bytes read

• ssize_t write(int fd, void *buf, size_t count)
– Same idea, other direction

• int close (int fd)
– Close an open file

• int lseek(int fd, size_t offset, int flags)
– Change the cursor position

COMP 530: Operating Systems

Example
char buf[9];
int fd = open (“foo.txt”, O_RDWR);
ssize_t bytes = read(fd, buf, 8);
if (bytes != 8) // handle the error
lseek(3, 0, SEEK_SET); //set cursor
memcpy(buf, “Awesome”, 7);
buf[7] = ‘\0’;
bytes = write(fd, buf, 8);
if (bytes != 8) // error
close(fd);

User-level stack

Kernel

buf
fd: 3

bytes: 8

Contents

foo.txt

Awesome

PC

Handle 3

Contents\0

Awesome\0Awesome\0

COMP 530: Operating Systems

Why handles?
• Handles in Unix/Linux serve three purposes:
1. Track the offset of last read/write
– Alternative: Application explicitly passes offset

2. Cache the access check from open()
3. Hold a reference to a file
– Unix idiom: Once a file is open, you can access the

contents as long as there is an open handle --- even if the
file is deleted from the directory

13

COMP 530: Operating Systems

But what is a handle?
• A reference to an open file or other OS object
– For files, this includes a cursor into the file

• In the application, a handle is just an integer
– This is an offset into an OS-managed table

COMP 530: Operating Systems

Logical View

Disk

Hello! Foo.txt
inode

Process A PCB

Process B PCB

Process C PCB

Handle
Table

Handle indices
are process-

specific

Handle Table50

20

Handles
can be
shared

COMP 530: Operating Systems

Handle Recap
• Every process has a table of pointers to kernel handle

objects
– E.g., a file handle includes the offset into the file and a

pointer to the kernel-internal file representation (inode)

• Applications can’t directly read these pointers
– Kernel memory is protected
– Instead, make system calls with the indices into this table
– Index is commonly called a handle

COMP 530: Operating Systems

Rearranging the table
• The OS picks which index to use for a new handle
• An application explicitly copy an entry to a specific

index with dup2(old, new)
– Be careful if new is already in use…

COMP 530: Operating Systems

Other useful handle APIs
• mmap() – can map part or all of a file into memory
• seek() – adjust the cursor position of a file
– Like rewinding a cassette tape

COMP 530: Operating Systems

Outline
• Files and File Handles
• Inheritance
• Pipes
• Sockets
• Signals
• Synthesis Example: The Shell

COMP 530: Operating Systems

Inheritance
• By default, a child process gets a reference to every

handle the parent has open
– Very convenient
– Also a security issue: may accidentally pass something the

program shouldn’t

• Between fork() and exec(), the parent has a chance
to clean up handles it doesn’t want to pass on
– See also CLOSE_ON_EXEC flag

COMP 530: Operating Systems

Standard in, out, error
• Handles 0, 1, and 2 are special by convention
– 0: standard input
– 1: standard output
– 2: standard error (output)

• Command-line programs use this convention
– Parent program (shell) is responsible to use

open/close/dup2 to set these handles appropriately
between fork() and exec()

COMP 530: Operating Systems

Example
int pid = fork();
if (pid == 0) {

int input = open (“in.txt”,
O_RDONLY);

dup2(input, 0);
exec(“grep”, “quack”);

}
//…

COMP 530: Operating Systems

Outline
• Files and File Handles
• Inheritance
• Pipes
• Sockets
• Signals
• Synthesis Example: The Shell

COMP 530: Operating Systems

Pipes
• FIFO stream of bytes between two processes
• Read and write like a file handle
– But not anywhere in the hierarchical file system
– And not persistent
– And no cursor or seek()-ing
– Actually, 2 handles: a read handle and a write handle

• Primarily used for parent/child communication
– Parent creates a pipe, child inherits it

COMP 530: Operating Systems

Example
int pipe_fd[2];
int rv = pipe(pipe_fd);
int pid = fork();
if (pid == 0) {

close(pipe_fd[1]);
dup2(pipe_fd[0], 0);
close(pipe_fd[0]);
exec(“grep”, “quack”);

} else {
close (pipe_fd[0]);
...

Parent

Child

PCB

Handle Table

W

R

PC

PC

Goal: Create a pipe; parent writes, child reads

COMP 530: Operating Systems

Sockets
• Similar to pipes, except for network connections
• Setup and connection management is a bit trickier
– A topic for another day (or class)

COMP 530: Operating Systems

Select
• What if I want to block until one of several handles

has data ready to read?
• Read will block on one handle, but perhaps miss data

on a second…
• Select will block a process until a handle has data

available
– Useful for applications that use pipes, sockets, etc.

COMP 530: Operating Systems

Outline
• Files and File Handles
• Inheritance
• Pipes
• Sockets
• Signals
• Synthesis Example: The Shell

COMP 530: Operating Systems

Signals
• Similar concept to an application-level interrupt
– Unix-specific (more on Windows later)

• Each signal has a number assigned by convention
– Just like interrupts

• Application specifies a handler for each signal
– OS provides default

• If a signal is received, control jumps to the handler
– If process survives, control returns back to application

COMP 530: Operating Systems

Signals, cont.
• Can occur for:
– Exceptions: divide by zero, null pointer, etc.
– IPC: Application-defined signals (USR1, USR2)
– Control process execution (KILL, STOP, CONT)

• Send a signal using kill(pid, signo)
– Killing an errant program is common, but you can also

send a non-lethal signal using kill()

• Use signal() or sigaction() to set the handler for a
signal

COMP 530: Operating Systems

How signals work
• Although signals appear to be delivered

immediately…
– They are actually delivered lazily…
– Whenever the OS happens to be returning to the process

from an interrupt, system call, etc.

• So if I signal another process, the other process may
not receive it until it is scheduled again

• Does this matter?

COMP 530: Operating Systems

More details
• When a process receives a signal, it is added to a

pending mask of pending signals
– Stored in PCB

• Just before scheduling a process, the kernel checks if
there are any pending signals
– If so, return to the appropriate handler
– Save the original register state for later
– When handler is done, call sigreturn() system call

• Then resume execution

COMP 530: Operating Systems

Meta-lesson
• Laziness rules!
– Not on homework
– But in system design

• Procrastinating on work in the system often reduces
overall effort
– Signals: Why context switch immediately when it will

happen soon enough?

COMP 530: Operating Systems

Language Exceptions
• Signals are the underlying mechanism for Exceptions

and catch blocks
• JVM or other runtime system sets signal handlers
– Signal handler causes execution to jump to the catch block

COMP 530: Operating Systems

Windows comparison
• Exceptions have specific upcalls from the kernel to

ntdll
• IPC is done using Events
– Shared between processes
– Handle in table
– No data, only 2 states: set and clear
– Several variants: e.g., auto-clear after checking the state

COMP 530: Operating Systems

Outline
• Files and File Handles
• Inheritance
• Pipes
• Sockets
• Signals
• Synthesis Example: The Shell

COMP 530: Operating Systems

Shell Recap
• Almost all ‘commands’ are really binaries
– /bin/ls

• Key abstraction: Redirection over pipes
– ‘>’, ‘<‘, and ‘|’implemented by the shell itself

COMP 530: Operating Systems

Shell Example
• Ex: ls | grep foo

• Shell pseudocde:

while(EOF != read_input) {
parse_input();
// Sets up chain of pipes
// Forks and exec’s ‘ls’ and ‘grep’ separately
// Wait on output from ‘grep’, print to console

// print console prompt
}

thsh

fork()

exec(ls)

cshthsh ls

COMP 530: Operating Systems

A note on Lab 1

• You’re going to be creating lots of processes in this
assignment

• If you fork a process and it never terminates…
• You’ve just created a Z O M B I E P R O C E S S!!
– Zombies will fill up the process table in the Linux kernel
– Nobody can create a new process
– This means no one can launch a shell to kill the zombies!

thsh

fork()

exec(ls)

wait()

cshthsh ls

COMP 530: Operating Systems

A note on Lab 1

• Be safe! Limit the number of processes you can create
– add the command “limit maxproc 10” to the file ~/.cshrc
– (remember to delete this line at the end of the course!)

• Periodically check for and KILL! zombie processes
– ps -ef | egrep -e PID -e YOUR-LOGIN-NAME
– kill pid-number

• Read the HW handout carefully for zombie-hunting details!

thsh

fork()

exec(ls)

wait()

cshthsh ls

COMP 530: Operating Systems

What about Ctrl-Z?
• Shell really uses select() to listen for new keystrokes
– (while also listening for output from subprocess)

• Special keystrokes are intercepted, generate signals
– Shell needs to keep its own “scheduler” for background

processes
– Assigned simple numbers like 1, 2, 3

• ‘fg 3’ causes shell to send a SIGCONT to suspended
child

COMP 530: Operating Systems

Other hints
• Splice(), tee(), and similar calls are useful for

connecting pipes together
– Avoids copying data into and out-of application

COMP 530: Operating Systems

Collaboration Policy Reminder
• You can work alone or as part of a team
– Must be the same as lab 0; may change starting in lab 2
– Every line of code handed in must be written by one of the

pair (or the boilerplate)
• No sharing code with other groups
• No code from Internet

– Any other collaboration must be acknowledged in writing
– High-level discussion is ok (no code)

• See written assignment and syllabus for more details

43Not following these rules is an Honor Code violation

COMP 530: Operating Systems

Summary
• Understand how handle tables work
– Survey basic APIs

• Understand signaling abstraction
– Intuition of how signals are delivered

• Be prepared to start writing your shell in lab 1!

