
COMP 530: Operating Systems

C for Java Programmers
& Lab 0

Don Porter

Portions courtesy Kevin Jeffay

1

COMP 530: Operating Systems

Same Basic Syntax
• Data Types: int, char, [float]
– void - (untyped pointer)
– Can create other data types using typedef

• No Strings - only char arrays
– Last character needs to be a 0

• Not ‘0’, but ‘\0’

COMP 530: Operating Systems

struct – C’s object
• typedef struct foo {

int a;
void *b;
void (*op)(int c); // function pointer

} foo_t; // <------type declaration
• Actual contiguous memory
• Includes data and function pointers

COMP 530: Operating Systems

Pointers
• Memory placement explicit

(heap vs. stack)
• Two syntaxes (dot, arrow)
int main {

struct foo f;
struct foo *fp = &f;
f.a = 32; // dot: access object directly
fp->a = 33; // arrow: follow a pointer
fp = malloc(sizeof(struct foo));
fp->a = 34;
…

}

4

Stack Heap
main:
f:
a = 0;
b = NULL;
op = NULL;

struct foo:
a = 0;
b = NULL;
op = NULL;

fp:
PC

f:
a = 32;
b = NULL;
op = NULL;

f:
a = 33;
b = NULL;
op = NULL;

struct foo:
a = 34;
b = NULL;
op = NULL;

struct foo {
int a;
void *b;
void (*op)(int c);

}

Ampersand:
Address of f

COMP 530: Operating Systems

Function pointer example
fp->op = operator;
fp->op(32); // Same as calling

// operator(32);

5

struct foo {
int a;
void *b;
void (*op)(int c);

}

Code in memory:
Main

…
Operator:

...

Stack Heap
main:
f:
a = 0;
b = NULL;
op = NULL;

fp:

f:
a = 32;
b = NULL;
op = NULL;

f:
a = 33;
b = NULL;
op = NULL;

struct foo:
a = 34;
b = NULL;
op = NULL;

struct foo:
a = 34;
b = NULL;
op =

COMP 530: Operating Systems

More on Function Pointers
• C allows function pointers to be used as members of

a struct or passed as arguments to a function
• Continuing the previous example:

void myOp(int c){ /*…*/ }
/*…*/
foo_t *myFoo = malloc(sizeof(foo_t));
myFoo->op = myOp; // set pointer
/*…*/
myFoo->op(5); // Actually calls myop

COMP 530: Operating Systems

No Constructors or Destructors
• Must manually allocate and free memory - No

Garbage Collection!
– void *x = malloc(sizeof(foo_t));

• sizeof gives you the number of bytes in a foo_t - DO NOT COUNT
THEM YOURSELF!

– free(x);
• Memory allocator remembers the size of malloc’ed memory

• Must also manually initialize data
– Custom function
– memset(x, 0, sizeof(*x)) will zero it

COMP 530: Operating Systems

Memory References
• ‘.’ - access a member of a struct
– myFoo.a = 5;

• ‘&’ - get a pointer to a variable
– foo_t * fPointer = &myFoo;

• ‘->’ - access a member of a struct, via a pointer to the
struct
– fPointer->a = 6;

• ‘*’ - dereference a pointer
– if(5 == *intPointer){…}

• Without the *, you would be comparing 5 to the address of the int,
not its value.

COMP 530: Operating Systems

Int example
int x = 5; // x is on the stack
int *xp = &x;
*xp = 6;
printf(“%d\n”, x); // prints 6
xp = (int *) 0;
*xp = 7; // segmentation fault

9

Stack
main:

x: 5

PC

xp: xp: NULL

x: 6

COMP 530: Operating Systems

Memory References, cont.
• ‘[]’ - refer to a member of an array

char *str = malloc(5 * sizeof(char));
str[0] = ‘a’;

– Note: *str = ‘a’ is equivalent
– str++; increments the pointer such that *str == str[1]

str

str[0] str[1] str[2] str[3] str[4]

str+1 str+2 str+3 str+4

COMP 530: Operating Systems

The Chicken or The Egg?
• Many C functions (printf, malloc, etc) are

implemented in libraries
• These libraries use system calls
• System calls provided by kernel
• Thus, kernel has to “reimplement” basic C libraries
– In some cases, such as malloc, can’t use these language

features until memory management is implemented

COMP 530: Operating Systems

For more help
• man pages are your friend!
– (not a dating service)!
– Ex: ‘man malloc’, or ‘man 3 printf’

• Section 3 is usually where libraries live - there is a command-line
utility printf as well

• Use ‘apropos term’ to search for man entries about
term

• The C Programming Language by Brian Kernighan
and Dennis Ritchie is a great reference.

COMP 530: Operating Systems

Lab 0 Overview
• C programming on Linux refresher
• Parser for your shell (Lab 1)

13

COMP 530: Operating Systems

Shells
• Shell: aka the command prompt

• At a high level:

while (more input) {
read a line of input
parse the line into a command
if valid command: execute it

}

14

We will give you this

Lab 0

Lab 1

COMP 530: Operating Systems

Detour: Environment Variables
• Nearly all shell commands are actually binary files
– Very few commands actually implemented in the shell
– A few built-ins that change the shell itself (exit, cd)

• Example: ls is actually in /bin/ls
– For fun, play with which, as in which ls

• So where to look for a given command?
– Note that we want some flexibility system-to-system

• Idea: dynamically set a variable that controls which
directories to search

15

COMP 530: Operating Systems

Environment Variables
• A set of key-value pairs
– Passed to main() as a third argument
– Often ignored by programmers

• Serves many different purposes
• For Lab 0, we need to look at PATH
– By convention, a single, colon-delimited set of prefixes

• Example:
/usr/local/sbin:/usr/local/bin:/usr/s
bin:/usr/bin:/sbin:/bin

16

COMP 530: Operating Systems

PATH in a shell
• If my PATH is
/usr/local/sbin:/usr/local/bin:/usr/sbin
:/usr/bin:/sbin:/bin

• Then, for a given command (ls), the shell will check, in
order, until found:

/usr/local/sbin/ls
/usr/local/bin/ls
/usr/sbin/ls
/usr/bin/ls
/sbin/ls
/bin/ls

17

COMP 530: Operating Systems

Lab 0, Exercise 1
• Your first job will be to write parsing code that takes

in a colon-delimited set of prefixes, and to create a
table of prefixes to try in future commands
– See path_table in jobs.c
– We wrote a test harness test_env.c

$ PATH=/foo:/bar ./test_env
===== Begin Path Table =====
Prefix 0: [/foo]
Prefix 1: [/bar]
===== End Path Table =====

18

COMP 530: Operating Systems

Ex 2: Parsing commands
• A typical shell command includes a main binary (e.g.,

‘ls’)
– and 0+ whitespace-separated arguments (e.g., ‘-l’)
– and possibly extra whitespace

• You will get this as a single character array
• Your job is to break this up into individual ‘tokens’

19

l s - l \0 l s

- l \0Input

commands

\0

\0

\0

COMP 530: Operating Systems

Pipelines
• A shell can compose multiple commands using

pipelines
– Key idea: standard output of one command becomes

standard input of next

• Example: ls | wc -l
– List a directory (ls) – send listing output to a wordcount

utility (wc) to count how many entries in directory

• The vertical bar (|) is a special character
– May not appear in any other valid commands
– Does not need whitespace: ls|wc –l is valid

20

COMP 530: Operating Systems

parse.c:parse_line()
• The workhorse for lab 0 (and 1)
• Takes in a line of input, outputs a 2-D array
• First dimension: one entry per pipeline stage
– Simple commands just have one entry

• Second dimension: one entry per command token

21

COMP 530: Operating Systems

How to parse a pipeline?

22

l s | \0

l s

Input

commands
(parsed)

\0

\0

\0

w c - l

w c

- l \0

\0

\0

COMP 530: Operating Systems

Other special cases
• Comments – anything past a ‘#’ character
• File redirection - sets standard input/output to a file
– Example: ls > mydir.txt

• Saves the output of ls into a file

– Example: wc –l < mydir.txt
• Sends the contents of mydir.txt into wc as standard input

• Built-in commands (see builtin.c)
– For now, you just need to recognize them and call the

appropriate handler function

23

COMP 530: Operating Systems

• You should all have accounts on
comp530fa20.cs.unc.edu
– Use your ONYEN to log in

• You are welcome to use your own laptop, but code
must work on comp530fa20 !

Working on Homework Assignments

COMP 530: Operating Systems

Checking out the starter code
• Once you have a github account registered
– Make sure you accept the invite:

• Click https://github.com/comp530-f20

• Click the link in the homework to create a private
repo

• Then, on your machine or classroom (substituting
your team for ‘team-don’ – see the green clone
button):
git clone git@github.com:comp530-f20/thsh-team-don.git

25

COMP 530: Operating Systems

• We will be using gradescope to submit and
autograde the homework
– Challenge problems and late hours done manually
– Submit challenges separately

• Ideally, use github connection to directly submit
– Upload ok

• Feel free to try early to catch issues with grading

Submitting homework

COMP 530: Operating Systems

(“Hard But that is fine.
Some of the grading scales for programming
assignments were weird and not straightforward.
Tended to place little emphasis on implementing
what the assignment actually intended and emphasized
how hard did you try to break your own program”)

• Programs that “mostly work” don’t cut it in a senior-
level course!

Dr. Jeffay’s Experience

COMP 530: Operating Systems

• Working in teams on programming assignments is OK
– But you can only collaborate with other students in the course
– Every line of code handed in must be written exclusively by team

members themselves, and
– All collaborators must be acknowledged in writing (and part of the

team)
• Use of the Internet

– Using code from the Internet in any form is not allowed
– Websites may be consulted for reference (e.g., to learn how a system

call works)
– But all such websites used or relied on must be listed as a reference

in a header comment in your program
– Warning: Sample code found on the Internet rarely helps the student

Honor Code: Acceptable and Unacceptable
Collaboration

