TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

C for Java Programmers
& Lab 0

Don Porter

Portions courtesy Kevin Jeffay

= THE UNIVERSITY
|T,ﬂ ORI CAROLIN COMP 530: Operating Systems

—_— at CHAPEL HILL

Same Basic Syntax

* Data Types: int, char, [float]
— void - (untyped pointer)
— Can create other data types using typedef

* No Strings - only char arrays

— Last character needstobe a0
 Not ‘0, but \0’

=3\ | THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

struct — C’s object

e typedef struct foo {
int a;
void *b;
void (*op)(int c); // function pointer
}foo t; /] <-—---- type declaration
e Actual contiguous memory
* Includes data and function pointers

A= THE UNIVERSITY
mﬂ of NORTH CAROLINA COMP 530: Operating Systems
Pointers
* Memory placement explicit Stack Heap
(heap vs. stack) main:
. T t (d t f: struct foo:
WO Syntaxes (dof, Ampersand: a =33 a=34:
int main { Address of f b = NULL; b = NULL;
m struct foo f; op = NUL op = NULL,
fp:

struct foo *fp = &f;
f.a =32; // dot: access object directly

fp->a =33; // arrow: follow a pointer

fp = malloc(sizeof(struct foo)); struct foo {

fp->a = 34, int a;
void *b;
void (*op)(int c);

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

M

S

COMP 530: Operating Systems

Function pointer example

fp->op = operator;
fp->op(32); // Same as calling
// operator(32);

struct foo {

int a;

void *b;

void (*op)(int c);
}

Stack Heap

main:

f: o struct foo:
a=33; a=34;
9= UL b = NULL;
op = NUL

fp:

Operator:

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

More on Function Pointers

e Callows function pointers to be used as members of

a struct or passed as arguments to a function
e Continuing the previous example:

void myOp(int c){ /*...*/ }

[*..*%/

foo_t *myFoo = malloc(sizeof(foo t));
myFoo->op = myOp; // set pointer
[*..*%/

myFoo->op(5); // Actually calls myop

of NORTH CAROLINA COMP 530: Operating Systems

THE UNIVERSITY
at CHAPEL HILL

=

No Constructors or Destructors

 Must manually allocate and free memory - No
Garbage Collection!
— void *x = malloc(sizeof(foo_t));

* sizeof gives you the number of bytes in a foo_t - DO NOT COUNT
THEM YOURSELF!

— free(x);
« Memory allocator remembers the size of malloc’ ed memory

* Must also manually initialize data

— Custom function

— memset(x, 0, sizeof(*x)) will zero it

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

Memory References

e ‘’-access a member of a struct
— myFoo.a = 5;
e ‘& -geta pointer to a variable
— foo_t * fPointer = &myFoo;
e ‘->" - access a member of a struct, via a pointer to the
struct
— fPointer->a = 6;
e “*"_dereference a pointer
— if(5 == *intPointer){...}
* Without the *, you would be comparing 5 to the address of the int,
not its value.

3\ | THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems
Int example
Stack
-@ intx=15; // xis on the stack ——
H k)
int *xp = &X; X: 6
*Xp = 6; xp: NULL
printf(“%d\n”, x); // prints 6
xp = (int *) 0;

*xp = 7; // segmentation fault

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Memory References, cont.

* ‘[- refer to a member of an array
char *str = malloc(5 * sizeof(char));
str[0] = ‘a’;

— Note: *str= ‘a’ is equivalent

M

— str++; increments the pointer such that *str == str[1]

str
l str+l | otr42 str+3 str+4

str[0] str[1] str[2] str[3] str[4]

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

The Chicken or The Egg?

 Many C functions (printf, malloc, etc) are
implemented in libraries

M

* These libraries use system calls
e System calls provided by kernel
* Thus, kernel has to “reimplement” basic C libraries

— In some cases, such as malloc, can’t use these language
features until memory management is implemented

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

For more help

* man pages are your friend!
— (not a dating service)!

— Ex: ‘'man malloc’, or ‘man 3 printf’

e Section 3 is usually where libraries live - there is a command-line
utility printf as well

* Use ‘apropos term’ to search for man entries about
term

e The C Programming Language by Brian Kernighan
and Dennis Ritchie is a great reference.

P=_N THE UNIVERSITY
rhﬂ ORI CAROLIN COMP 530: Operating Systems

—_— at CHAPEL HILL

Lab O Overview

e Cprogramming on Linux refresher

* Parser for your shell (Lab 1)

23 | THE UNIVE RSITY .
@ JINORTH CAROLINA COMP 530: Operating Systems
Shells

e Shell: aka the command prompt

e At a high level:

while (more input) {
read a line of input We will give you this
parse the line into a command} Lab O

if valid command: execute it} Lab 1

}

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Detour: Environment Variables

Nearly all shell commands are actually binary files

M

— Very few commands actually implemented in the shell
— A few built-ins that change the shell itself (exit, cd)

 Example: 1sis actuallyin /bin/1s
— For fun, play with which, asinwhich 1s

* So where to look for a given command?
— Note that we want some flexibility system-to-system

ldea: dynamically set a variable that controls which
directories to search

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Environment Variables

e A set of key-value pairs

— Passed to main() as a third argument
— Often ignored by programmers

* Serves many different purposes
For Lab O, we need to look at PATH

— By convention, a single, colon-delimited set of prefixes

 Example:

/usr/local/sbin:/usr/local/bin:/usr/s
bin:/usr/bin:/sbin:/bin

=2\ | THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

PATH in a shell

 If my PATH is

/usr/local/sbin:/usr/local/bin:/usr/sbin
: /usr/bin:/sbin: /bin

* Then, for a given command (ls), the shell will check, in
order, until found:

/usr/local/sbin/ls
/usr/local/bin/1ls
/usr/sbin/1ls
/usr/bin/ls
/sbin/1ls

/bin/1s

=2\ | THE UNIVERSITY
LI’,__E of NORTH CAROLINA COMP 530: Operating Systems

Lab O, Exercise 1

* Your first job will be to write parsing code that takes
in a colon-delimited set of prefixes, and to create a
table of prefixes to try in future commands

— See path_table in jobs.c
— We wrote a test harness test_env.c

S PATH=/foo:/bar ./test_env
===== Begin Path Table =====
Prefix O: [/foo]

Prefix 1: [/bar]

===== End Path Table =====

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

Ex 2: Parsing commands

* A typical shell command includes a main binary (e.g.,
‘Is)
— and 0+ whitespace-separated arguments (e.g., -I’)
— and possibly extra whitespace

* You will get this as a single character array
* Your job is to break this up into individual ‘tokens’

EpRON

commands \0

=N THE UNIVERSITY
mﬂ of NORTH CAROLINA COMP 530: Operating Systems

—_— at CHAPEL HILL

Pipelines
* A shell can compose multiple commands using
pipelines

— Key idea: standard output of one command becomes
standard input of next

e Example:1ls | we -1

— List a directory (Is) — send listing output to a wordcount
utility (wc) to count how many entries in directory

* The vertical bar (|) is a special character

— May not appear in any other valid commands
— Does not need whitespace: 1s|we -1 isvalid

@ o woTn oL COMP 530: Operating Systems
parse.c:parse_line()
* The workhorse for lab 0 (and 1)

* Takes in a line of input, outputs a 2-D array

e First dimension: one entry per pipeline stage
— Simple commands just have one entry

* Second dimension: one entry per command token

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

How to parse a pipeline?

[[=Tel T-[o]v]

i

Input

e

commands
(parsed)

1 L[]
B0

A= THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

Other special cases

e Comments — anything past a ‘#’ character

* File redirection - sets standard input/output to a file
— Example: 1s > mydir. txt

e Saves the output of Is into a file

— Example:we -1 < mydir. txt
* Sends the contents of mydir.txt into wc as standard input

e Built-in commands (see builtin.c)

— For now, you just need to recognize them and call the
appropriate handler function

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Working on Homework Assignments

 You should all have accounts on
comp530fa20.cs.unc.edu

— Use your ONYEN to log in

* You are welcome to use your own laptop, but code
must work on comp530fa20 !

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Checking out the starter code

* Once you have a github account registered

— Make sure you accept the invite:
* Click https://github.com/comp530-f20

e Click the link in the homework to create a private
repo

 Then, on your machine or classroom (substituting
your team for ‘team-don’ — see the green clone

button):
git clone git@github.com:comp530-f20/thsh-team-don.git

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

Submitting homework

* We will be using gradescope to submit and
autograde the homework

— Challenge problems and late hours done manually
— Submit challenges separately

 |deally, use github connection to directly submit
— Upload ok

* Feel free to try early to catch issues with grading

COMP 530: Operating Systems

Dr. Jeffay’s Experience

COMMENTS: written comments may help improve this course in the future. What were the best and worst parts?
What could be improved?

ﬂ But dhat i< Q?B

SOH')Q DP ‘Wﬂ(d/,ﬂ(} 4)5470 C‘Or (Jrvjmmmmj
—wCiid ar? ot ”
Tesded Lo f/ace iHe Gmphas/s o \mp
~ oA 4{{ ﬁgS\(QrmMﬂd"M”M'? (n¥ended ond thfz
had N You \Rf\j o bresn Youv OV PP

(" HardBothatistine
Some of the grading scales for programming
assignments were weird and not straightforward.

* Programs that “mos‘t‘ly work” don’t cut it in a senior-
level course!

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

M

S

Honor Code: Acceptable and Unacceptable
Collaboration

* Working in teams on programming assignments 1s OK
— But you can only collaborate with other students in the course

— Every line of code handed in must be written exclusively by team
members themselves, and

— All collaborators must be acknowledged in writing (and part of the
team)

e Use of the Internet

— Using code from the Internet in any form is not allowed

— Websites may be consulted for reference (e.g., to learn how a system
call works)

— But all such websites used or relied on must be listed as a reference
in a header comment in your program

— Warning: Sample code found on the Internet rarely helps the student

