
COMP 530: Operating Systems

Page Replacement
Algorithms

Don Porter

Portions courtesy Emmett Witchel and Kevin Jeffay

1

COMP 530: Operating Systems

• Key concept: Demand paging
– Load pages into memory only when a

page fault occurs

• Issues:
– Placement strategies

• Place pages anywhere – no placement
policy required

– Replacement strategies
• What to do when there exist more jobs

than can fit in memory

– Load control strategies
• Determining how many jobs can be

in memory at one time

Operating System

User Program 1

User Program 2User Program 2

User Program n

...

Memory

Virtual Memory Management: Recap

COMP 530: Operating Systems

• Typically Si VASi >> Physical Memory

• With demand paging, physical memory fills quickly
• When a process faults & memory is full, some page must be

swapped out
– Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?
Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

Page Replacement Algorithms

COMP 530: Operating Systems

• Record a trace of the pages accessed by a process
– Example: (Virtual page, offset) address trace...

(3,0), (1,9), (4,1), (2,1), (5,3), (2,0), (1,9), (2,4), (3,1), (4,8)
– generates page trace

3, 1, 4, 2, 5, 2, 1, 2, 3, 4 (represented as c, a, d, b, e, b, a, b, c, d)
• Hardware can tell OS when a new page is loaded into the TLB

– Set a used bit in the page table entry
– Increment or shift a register

Simulate the behavior of a page replacement algorithm on the trace and
record the number of page faults generated

fewer faults better performance

Page Replacement: Eval. Methodology

COMP 530: Operating Systems

• Replace the page that won’t be needed for the longest time in the
future

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

Time page
needed next

Initial allocation

Optimal Strategy: Clairvoyant Replacement

COMP 530: Operating Systems

• Replace the page that won’t be needed for the longest time in the
future

c a d b e b a b c d

a a a a a a a a a d
b b b b b b b b b b
c c c c c c c c c c

Faults • •

Pa
ge

Fr
am

es

d d d d e e e e e e

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

a = 7
b = 6
c = 9
d = 10

Time page
needed next

a = 15
b = 11
c = 13
d = 14

Optimal Strategy: Clairvoyant Replacement

COMP 530: Operating Systems

• Simple to implement
– A single pointer suffices

• Performance with 4 page frames:

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

Physical
Memory1

2

0

Frame List

Local Replacement: FIFO

COMP 530: Operating Systems

• Simple to implement
– A single pointer suffices

• Performance with 4 page frames:

c a d b e b a b c d
a a a a e e e e e d
b b b b b b a a a a
c c c c c c c b b b

Faults • • • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

Physical
Memory0

2

3

Frame List

Local Replacment: FIFO

COMP 530: Operating Systems

• Use the recent past as a predictor of the near future
• Replace the page that hasn’t been referenced for the longest time

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

Time page
last used

Least Recently Used (LRU) Replacement

COMP 530: Operating Systems

c a d b e b a b c d
a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d

Faults • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

a = 2
b = 4
c = 1
d = 3

Time page
last used

a = 7
b = 8
e = 5
d = 3

a = 7
b = 8
e = 5
c = 9

Least Recently Used (LRU) Replacement
• Use the recent past as a predictor of the near future
• Replace the page that hasn’t been referenced for the longest time

COMP 530: Operating Systems

• Maintain a “stack” of recently used pages

c a d b e b a b c d

a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d

Faults • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100

Requests

Time

LRU
page stack

Page to replace

How to Implement LRU?

COMP 530: Operating Systems

• Maintain a “stack” of recently used pages

c a d b e b a b c d

a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d

Faults • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100

Requests

Time

c
c
a

c
a
d

c
a
d
b

a
d
b
e

a
d
e
b

d
e
b
a

d
e
a
b

e
a
b
c

a
b
c
d

LRU
page stack

Page to replace c d e

How to Implement LRU?

COMP 530: Operating Systems

• What is the goal of a page replacement
algorithm?
– A. Make life easier for OS implementer
– B. Reduce the number of page faults
– C. Reduce the penalty for page faults when they

occur
– D. Minimize CPU time of algorithm

COMP 530: Operating Systems

• Maintain a circular list of pages resident in memory
– Use a clock (or used/referenced) bit to track how often a page is accessed
– The bit is set whenever a page is referenced

• Clock hand sweeps over pages looking for one with used bit = 0
– Replace pages that haven’t been referenced for one complete revolution

of the clock

func Clock_Replacement
begin

while (victim page not found) do
if(used bit for current page = 0) then

replace current page
else

reset used bit
end if
advance clock pointer

end while
end Clock_Replacement

resident bit
used bit
frame number

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 111Page 3: 1

Approximate LRU: The Clock Algorithm

COMP 530: Operating Systems

d
c
b
a

c

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table entries
for resident pages:

1

d
c
b
a

a
2

d
c
b
a

d
3

d
c
b
a

b
4

e
5

b
6

a
7

b
8

c
9

d
10

1
1
1
1

a
b
c
d

Clock Example

COMP 530: Operating Systems

d
c
b
a

c

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table entries
for resident pages:

1

d
c
b
a

a
2

d
c
b
a

d
3

d
c
b
a

b
4

d
c
b
e

e
5

•
d
c
b
e

b
6

d
a
b
e

a
7

•
d
a
b
e

b
8

c
a
b
e

c
9

•
c
a
b
d

d
10

•

1
0
0
0

e
b
c
d

1
1
0
0

e
b
c
d

1
0
1
0

e
b
a
d

1
1
1
0

e
b
a
d

1
1
1
1

e
b
a
c

1
0
0
0

d
b
a
c

1
1
1
1

a
b
c
d

Clock Example

COMP 530: Operating Systems

• There is a significant cost to replacing “dirty” pages
– Why?

• Must write back contents to disk before freeing!
• Modify the Clock algorithm to allow dirty pages to always survive one

sweep of the clock hand
– Use both the dirty bit and the used bit to drive replacement

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 191Page 3: 1

0

0

1

0

1

Before clock
sweep

After clock
sweep

used dirty

0
0
1
1

0
1
0
1

used dirty

0
0
0

0
0
1

replace page

Second Chance Algorithm

Optimization: Second Chance Algorithm

resident bit
used bit
frame number

COMP 530: Operating Systems

d
c
b
a

c

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table
entries

for resident
pages:

1

d
c
b
a

aw
2

d
c
b
a

d
3

d
c
b
a

bw
4

b
6

aw
7

b
8

10

10

10

10

a
b
c
d

e
5

c
9

d
10

Second Chance Example

COMP 530: Operating Systems

d
c
b
a

c

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table
entries for

resident
pages:

1

d
c
b
a

aw
2

d
c
b
a

d
3

d
c
b
a

bw
4

d
e
b
a

b
6

d
e
b
a

aw
7

d
e
b
a

b
8

00

00

10

00

a*
b*
e
d

00

10

10

00

a
b
e
d

11

10

10

00

a
b
e
d

11

10

10

10

a
b
e
c

00

10

00

00

a*
d
e
c

10

10

10

10

a
b
c
d

11

11

10

10

a
b
c
d

d
e
b
a

e
5

•
c
e
b
a

c
9

•
c
e
d
a

d
10

•

Second Chance Example

COMP 530: Operating Systems

Faults

Pa
ge

Fr
am

es

0

1

2

3

a

b

c

a b c d a b c d a b c d

Faults

Pa
ge

Fr
am

es 0

1

2

a

b

c

1 2 3 4 5 6 7 8 9 10 11 120

Requests

Time

–

Local Replacement and Memory Sensitivity

COMP 530: Operating Systems

Faults

Pa
ge

Fr
am

es

0

1

2

3

a

b

c

a b c d a b c d a b c d

a a a d d d c c c b b b

b b b b a a a d d d c c

c c c c c b b b a a a d

Faults • • • • • • • • •

Pa
ge

Fr
am

es 0

1

2

a

b

c

1 2 3 4 5 6 7 8 9 10 11 120

Requests

Time

–

a a a a a a a a a a a a

b b b b b b b b b b b b

c c c c c c c c c c c c

d d d d d d d d d

•

Local Replacement and Memory Sensitivity

COMP 530: Operating Systems

• Local page replacement
– LRU — Ages pages based on when they were last used
– FIFO — Ages pages based on when they’re brought into memory

• Towards global page replacement ... with variable number of
page frames allocated to processes

The principle of locality

Ø 90% of the execution of a program is sequential
Ø Most iterative constructs consist of a relatively small number of

instructions
Ø When processing large data structures, the dominant cost is sequential

processing on individual structure elements
Ø Temporal vs. physical locality

Page Replacement Performance

COMP 530: Operating Systems

• VMIN — Replace a page that is not referenced in the next t
accesses

• Example: t = 4

c c d b c e c e a d

Faults

Pa
ge

s
in

 M
em

or
y Page a

Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100

Requests

Time

Page e -

t = 0

t = -1

Optimal Replacement with a Variable
Number of Frames

COMP 530: Operating Systems

c c d b c e c e a d
- - - - - - - - F -
- - - F - - - - - -
F • • • • • • - - -

Faults • • • • •

Pa
ge

s
in

 M
em

or
y

• • • - - - - - - F

Page a
Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100

Requests

Time

- - - - - F • • - -Page e -

t = 0

t = -1

• VMIN — Replace a page that is not referenced in the next t
accesses

• Example: t = 4

Optimal Replacement with a Variable
Number of Frames

COMP 530: Operating Systems

• Assume recently referenced pages are likely to be referenced again
soon…

• ... and only keep those pages recently referenced in memory (called
the working set)
– Thus pages may be removed even when no page fault occurs
– The number of frames allocated to a process will vary over time

• A process is allowed to execute only if its working set fits into
memory
– The working set model performs implicit load control

The Working Set Model

COMP 530: Operating Systems

• Keep track of the last t references (excluding faulting reference)
– The pages referenced during the last t memory accesses are

the working set
– t is called the window size

• Example: Working set computation, t = 4 references:

c c d b c e c e a d

Faults

Pa
ge

s
in

 M
em

or
y Page a

Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100

Requests

Time

Page e •

t = 0

t = -1

t = -2

Working Set Page Replacement

COMP 530: Operating Systems

c c d b c e c e a d
• • • - - - - - F •
- - - F • • • - - -
F • • • • • • • • •

Faults • • • • •

Pa
ge

s
in

 M
em

or
y

• • • • • • - - - F

Page a
Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100

Requests

Time

• - - - - F • • • •Page e •

t = 0

t = -1

t = -2

• Keep track of the last t references
– The pages referenced during the last t memory accesses are

the working set
– t is called the window size

• Example: Working set computation, t = 4 references:

Working Set Page Replacement

COMP 530: Operating Systems

• An alternate approach to computing working set
• Explicitly attempt to minimize page faults

– When page fault frequency is high — increase working set
– When page fault frequency is low — decrease working set

Algorithm:
Keep track of the rate at which faults occur
When a fault occurs, compute the time since the last page fault

Record the time, tlast, of the last page fault
If the time between page faults is “large” then reduce the working
set

If tcurrent – tlast > t, then remove from memory all pages not
referenced in [tlast, tcurrent]

If the time between page faults is “small” then increase working set
If tcurrent – tlast ≤ t, then add faulting page to the working set

Page-Fault-Frequency Page Replacment

COMP 530: Operating Systems

• Example, window size = 2
• If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent] from

the working set
• If tcurrent – tlast ≤ 2, just add faulting page to the working set

tcur – tlast

c c d b c e c e a d

Faults

Pa
ge

s
in

 M
em

or
y Page a

Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100

Requests

Time

Page e •

Page Fault Frequency Replacement

COMP 530: Operating Systems

3tcur – tlast 2 3 1

c c d b c e c e a d
• • • - - - - - F •
- - - F • • • • - -
F • • • • • • • • •

Faults • • • • •

Pa
ge

s
in

 M
em

or
y

• • • • • • • • - F

Page a
Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100

Requests

Time

• • • - - F • • • •Page e •

1

• Example, window size = 2
• If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent] from

the working set
• If tcurrent – tlast ≤ 2, just add faulting page to the working set

Page Fault Frequency Replacement

COMP 530: Operating Systems

• High multiprogramming level

Issues
Ø What criterion should be used to determine when to increase or

decrease the MPL?
Ø Which task should be swapped out if the MPL must be reduced?

Low paging overhead
Ø MPLmin = 1 process

minimum number of frames required for a process to execute

number of page frames
Ø MPLmax =

Load Control: Fundamental Trade-off

COMP 530: Operating Systems

i.e., based on CPU utilization

! Assume memory is nearly full
! A chain of page faults occur

– A queue of processes forms at
the paging device

! CPU utilization falls
• Operating system increases MPL

– New processes fault, taking memory away from existing processes
• CPU utilization goes to 0, the OS increases the MPL further...

System is thrashing — spending all of its time paging

I/O
Device

...

Paging
Device

CPU

Load Control Done Wrong

COMP 530: Operating Systems

Better criteria for load control: Adjust MPL so that:
Ø mean time between page faults (MTBF) = page fault service time

(PFST)
Ø S WSi = size of memory

1.0

CPU
Utilization

Multiprogramming Level

• Thrashing can be ameliorated by local page replacement

Nmax NI/O-BALANCE

MTBF
PFST

1.0

Load Control and Thrashing

COMP 530: Operating Systems

• When the multiprogramming level should be
decreased, which process should be swapped
out?

Suspended

suspended
queue

ready
queue

semaphore/condition queues

Waiting

RunningReady

?

Paging Disk

Physical
Memory

Ø Lowest priority process?
Ø Smallest process?
Ø Largest process?
Ø Oldest process?
Ø Faulting process?

Load Control and Thrashing

