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• Key concept: Demand paging 
– Load pages into memory only when a 

page fault occurs 

• Issues:
– Placement strategies

• Place pages anywhere – no placement 
policy required 

– Replacement strategies
• What to do when there exist more jobs 

than can fit in memory

– Load control strategies
• Determining how many jobs can be 

in memory at one time

Operating System

User Program 1

User Program 2User Program 2

User Program n

...

Memory

Virtual Memory Management: Recap
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• Typically Si VASi >> Physical Memory

• With demand paging, physical memory fills quickly
• When a process faults & memory is full, some page must be 

swapped out
– Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?
Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

Page Replacement Algorithms
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• Record a trace of the pages accessed by a process
– Example: (Virtual page, offset) address trace...

(3,0),  (1,9),  (4,1),  (2,1),  (5,3),  (2,0),  (1,9),  (2,4),  (3,1),  (4,8)
– generates page trace

3, 1, 4, 2, 5, 2, 1, 2, 3, 4 (represented as c, a, d, b, e, b, a, b, c, d)
• Hardware can tell OS when a new page is loaded into the TLB

– Set a used bit in the page table entry
– Increment or shift a register

Simulate the behavior of a page replacement algorithm on the trace and 
record the number of page faults generated

fewer faults           better performance

Page Replacement: Eval. Methodology
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• Replace the page that won’t be needed for the longest time in the 
future
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Optimal Strategy: Clairvoyant Replacement
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• Replace the page that won’t be needed for the longest time in the 
future
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• Simple to implement
– A single pointer suffices

• Performance with 4 page frames:
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• Simple to implement
– A single pointer suffices

• Performance with 4 page frames:
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• Use the recent past as a predictor of the near future
• Replace the page that hasn’t been referenced for the longest time
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• Maintain a “stack” of recently used pages
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• Maintain a “stack” of recently used pages
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• What is the goal of a page replacement 
algorithm?
– A. Make life easier for OS implementer
– B. Reduce the number of page faults
– C. Reduce the penalty for page faults when they 

occur
– D. Minimize CPU time of algorithm
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• Maintain a circular list of pages resident in memory
– Use a clock (or used/referenced) bit to track how often a page is accessed 
– The bit is set whenever a page is referenced

• Clock hand sweeps over pages looking for one with used bit = 0
– Replace pages that haven’t been referenced for one complete revolution 

of the clock

func Clock_Replacement
begin

while (victim page not found) do
if(used bit for current page = 0) then

replace current page
else

reset used bit
end if
advance clock pointer

end while
end Clock_Replacement

resident bit
used bit 
frame number

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 111Page 3: 1

Approximate LRU: The Clock Algorithm
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• There is a significant cost to replacing “dirty” pages
– Why?  

• Must write back contents to disk before freeing!
• Modify the Clock algorithm to allow dirty pages to always survive one 

sweep of the clock hand
– Use both the dirty bit and the used bit to drive replacement
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Optimization: Second Chance Algorithm
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• Local page replacement
– LRU — Ages pages based on when they were last used
– FIFO — Ages pages based on when they’re brought into memory

• Towards global page replacement ... with variable number of 
page frames allocated to processes

The principle of locality

Ø 90% of the execution of a program is sequential
Ø Most iterative constructs consist of a relatively small number of 

instructions
Ø When processing large data structures, the dominant cost is sequential 

processing on individual structure elements
Ø Temporal vs. physical locality

Page Replacement Performance
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• VMIN — Replace a page that is not referenced in the next t
accesses

• Example: t = 4
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• Assume recently referenced pages are likely to be referenced again 
soon…

• ... and only keep those pages recently referenced in memory (called 
the working set)
– Thus pages may be removed even when no page fault occurs
– The number of frames allocated to a process will vary over time

• A process is allowed to execute only if its working set fits into 
memory
– The working set model performs implicit load control

The Working Set Model
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• Keep track of the last t references (excluding faulting reference)
– The pages referenced during the last t memory accesses are 

the working set
– t is called the window size

• Example: Working set computation, t = 4 references:
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– The pages referenced during the last t memory accesses are 

the working set
– t is called the window size

• Example: Working set computation, t = 4 references:

Working Set Page Replacement
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• An alternate approach to computing working set
• Explicitly attempt to minimize page faults

– When page fault frequency is high — increase working set
– When page fault frequency is low  — decrease working set

Algorithm: 
Keep track of the rate at which faults occur
When a fault occurs, compute the time since the last page fault

Record the time, tlast, of the last page fault
If the time between page faults is “large” then reduce the working 
set

If tcurrent – tlast > t, then remove from memory all pages not 
referenced in [tlast,  tcurrent ]

If the time between page faults is “small” then increase working set
If tcurrent – tlast ≤ t, then add faulting page to the working set

Page-Fault-Frequency Page Replacment
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• Example, window size = 2
• If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent ] from 

the working set
• If tcurrent – tlast ≤ 2, just add faulting page to the working set

tcur – tlast
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3tcur – tlast 2 3 1
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• If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent ] from 

the working set
• If tcurrent – tlast ≤ 2, just add faulting page to the working set
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• High multiprogramming level

Issues
Ø What criterion should be used to determine when to increase or 

decrease the MPL?
Ø Which task should be swapped out if the MPL must be reduced?

Low paging overhead
Ø MPLmin = 1 process

minimum number of frames required for a process to execute

number of page frames
Ø MPLmax =

Load Control: Fundamental Trade-off
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i.e., based on CPU utilization

! Assume memory is nearly full
! A chain of page faults occur

– A queue of processes forms at 
the paging device

! CPU utilization falls
• Operating system increases MPL

– New processes fault, taking memory away from existing processes
• CPU utilization goes to 0, the OS increases the MPL further...

System is thrashing — spending all of its time paging

I/O
Device

...

Paging
Device

CPU

Load Control Done Wrong
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Better criteria for load control: Adjust MPL so that:
Ø mean time between page faults (MTBF)  = page fault service time 

(PFST)
Ø S WSi = size of memory

1.0

CPU
Utilization

Multiprogramming Level

• Thrashing can be ameliorated by local page replacement

Nmax NI/O-BALANCE

MTBF
PFST

1.0

Load Control and Thrashing
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• When the multiprogramming level should be 
decreased, which process should be swapped 
out?

Suspended

suspended
queue

ready
queue

semaphore/condition queues

Waiting

RunningReady

?

Paging Disk

Physical
Memory

Ø Lowest priority process?
Ø Smallest process?
Ø Largest process?
Ø Oldest process?
Ø Faulting process?

Load Control and Thrashing


