
1

OS Structure, 
Processes & Process Management 

 
Don Porter 

Portions courtesy Emmett Witchel 



2

What	is	a	Process?	

A process is a program during execution. 
Ø  Program = static file (image) 
Ø  Process = executing program = program + execution state. 

 
A process is the basic unit of execution in an operating system 
Ø  Each process has a number, its process identifier (pid). 

Different processes may run different instances of the same 
program 
Ø  E.g., my javac and your javac process both run the Java compiler 

At a minimum, process execution requires following resources: 
Ø  Memory to contain the program code and data 
Ø  A set of CPU registers to support execution 



3

Program	to	Process	

We write a program in e.g., Java. 
A compiler turns that program into an instruction list. 
The CPU interprets the instruction list (which is more a graph of 
basic blocks). 

 

void X (int b) { 
   if(b == 1) { 

… 
int main() { 

  int a = 2; 

  X(a); 
} 



4

Process	in	Memory	

Program to process. 
 

void X (int b) { 
  if(b == 1) { 

… 
int main() { 

  int a = 2; 

  X(a); 
} 

What you wrote 
 

What is in memory. 
 

void X (int b) { 
  if(b == 1) { 

… 
int main() { 

  int a = 2; 

  X(a); 
} Code

main; a = 2
X; b = 2

Heap

Stack

What must the OS track for a 
process? 

 



5

Processes	and	Process	Management	
Details	for	running	a	program	

A program consists of code and data 

On running a program, the loader: 
Ø  reads and interprets the executable file 
Ø  sets up the process’s memory to contain the code & data from 

executable 
Ø  pushes “argc”, “argv” on the stack 
Ø  sets the CPU registers properly & calls “_start()”  

Program starts running at _start() 
_start(args) { 
    initialize_java(); 

 ret = main(args); 
 exit(ret) 

} 
we say “process” is now running, and no longer think of “program” 

    
When main() returns, OS calls “exit()” which destroys the 
process and returns all resources 



6

Keeping	track	of	a	process	

A process has code. 
Ø OS must track program counter (code location). 

A process has a stack. 
Ø OS must track stack pointer. 

OS stores state of processes’ computation in 
a process control block (PCB). 
Ø E.g., each process has an identifier (process 

identifier, or PID) 
Data (program instructions, stack & heap) 
resides in memory, metadata is in PCB (which 
is a kernel data structure in memory) 

 



7

Context	Switching	

The OS periodically switches execution from one 
process to another 
Called a context switch, because the OS saves one 
execution context and loads another 



8

What	causes	context	switches?	

Waiting for I/O (disk, network, etc.) 
Ø Might as well use the CPU for something useful 
Ø Called a blocked state 

Timer interrupt (preemptive multitasking) 
Ø Even if a process is busy, we need to be fair to other 

programs 

Voluntary yielding (cooperative multitasking) 
A few others 
Ø Synchronization, IPC, etc. 



9

Process	Life	Cycle	

Processes are always either executing, waiting to 
execute or blocked waiting for an event to occur 

Running Ready 

Blocked 

Start Done 

A preemptive scheduler will force a transition from 
running to ready.  A non-preemptive scheduler waits. 



10

Process	Contexts	
Example:	Multiprogramming	

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...
Program 1 Program 2OS I/O

Device

k: read()

k+1:

startIO()

endio{ interrupt

main{

main{

}

read{

}

}

schedule()

Memory

save�
state schedule()

restore�
state

save
state



11

When	a	process	is	waiting	for	I/O	what	is	its	
scheduling	state?	

1.  Ready 
2.  Running 
3.  Blocked 
4.  Zombie 
5.  Exited 



12

Scheduling	Processes	

OS has PCBs for active processes. 
OS puts PCB on an appropriate queue. 
Ø Ready to run queue. 
Ø Blocked for IO queue (Queue per device). 
Ø Zombie queue. 

Stopping a process and starting another is 
called a context switch. 
Ø 100-10,000 per second, so must be fast. 



13

Why	Use	Processes?	

Consider a Web server 
 get network message (URL) from client 
 fetch URL data from disk 
 compose response 
 send response 

 

How well does this web server perform?
With many incoming requests?

That access data all over the disk?



14

Why	Use	Processes?	

Consider a Web server 
 get network message (URL) from client 

     create child process, send it URL 
                                                                 Child 

                                                        fetch URL data from disk 
                                                        compose response 
                                                        send response 

 

If server has configuration file open for writing 
Ø Prevent child from overwriting configuration 

How does server know child serviced request? 
Ø Need return code from child process 



15

Where	do	new	processes	come	from?	

Parent/child model 
An existing program has to spawn a new one 
Ø Most OSes have a special ‘init’ program that launches 

system services, logon daemons, etc. 
Ø When you log in (via a terminal or ssh), the login program 

spawns your shell 



16

Approach	1:	Windows	CreateProcess	

In Windows, when you create a new process, you 
specify a new program 
Ø And can optionally allow the child to inherit some resources 

(e.g., an open file handle) 



17

Approach	2:	Unix	fork/exec()	

In Unix, a parent makes a copy of itself using fork() 
Ø Child inherits everything, runs same program 
Ø Only difference is the return value from fork() 

A separate exec() system call loads a new program 

Major design trade-off: 
Ø How easy to inherit 
Ø Vs. Security (accidentally inheriting something the parent 

didn’t intend) 
Ø Note that security is a newer concern, and Windows is a 

newer design… 



18

The	Convenience	of	separating	Fork/Exec	

Life with CreateProcess(filename); 
Ø But I want to close a file in the child. 
CreateProcess(filename, list of files); 

Ø And I want to change the child’s environment. 
CreateProcess(filename, CLOSE_FD, new_envp); 

Ø Etc. (and a very ugly etc.) 

fork() = split this process into 2 (new PID) 
Ø Returns 0 in child 
Ø Returns pid of child in parent 

exec() = overlay this process with new program               
  (PID does not change) 



19

The	Convenience	of	Separating	Fork/Exec	

Decoupling fork and exec lets you do anything to the 
child’s process environment without adding it to the 
CreateProcess API. 
int pid = fork();    // create a child 
If(0 == pid) {                 // child continues here 
     // Do anything (unmap memory, close net connections…) 

 exec(“program”, argc, argv0, argv1, …); 
} 
fork() creates a child process that inherits: 
Ø  identical copy of all parent’s variables & memory 
Ø  identical copy of all parent’s CPU registers (except one) 

Parent and child execute at the same point after fork() returns: 
Ø  by convention, for the child, fork() returns 0 
Ø  by convention, for the parent, fork() returns the process identifier of 

the child 
Ø  fork() return code a convenience, could always use getpid() 



20

Program	Loading:	exec()	

The exec() call allows a process to “load” a different 
program and start execution at main (actually _start). 

It allows a process to specify the number of 
arguments (argc) and the string argument array 
(argv). 

If the call is successful 
Ø  it is the same process … 
Ø  but it runs a different program !! 

Code, stack & heap is overwritten 
Ø Sometimes memory mapped files are preserved. 

Exec does not return! 



21

General	Purpose	Process	Creation	

In the parent process: 
main() 
… 
int pid =fork();                // create a child 
if(0 == pid) {    // child continues here 

 exec_status = exec(“calc”, argc, argv0, argv1, …); 
     printf(“Something is horribly wrong\n”);   

 exit(exec_status); 
} else {     // parent continues here 
    printf(“Who’s your daddy?”); 
    … 
   child_status = wait(pid); 
} 

Exec should not 
return



22

pid = 127 
open files = “.history” 
last_cpu = 0 

pid = 128 
open files = “.history” 
last_cpu = 0 

A	shell	forks	and	then	execs	a	calculator	

int pid = fork(); 
if(pid == 0) { 
 close(“.history”); 
 exec(“/bin/calc”); 
} else { 
 wait(pid); 

int pid = fork(); 
if(pid == 0) { 
 close(“.history”); 
 exec(“/bin/calc”); 
} else { 
 wait(pid); 

Process Control
Blocks (PCBs)

OS
USER

int pid = fork(); 
if(pid == 0) { 
 close(“.history”); 
 exec(“/bin/calc”); 
} else { 
 wait(pid); 

int calc_main(){ 
  int q = 7; 
  do_init(); 
  ln = get_input(); 
  exec_in(ln); 

pid = 128 
open files =  
last_cpu = 0 

int pid = fork(); 
if(pid == 0) { 
 close(“.history”); 
 exec(“/bin/calc”); 
} else { 
 wait(pid); 



23

pid = 127 
open files = “.history” 
last_cpu = 0 

pid = 128 
open files = “.history” 
last_cpu = 0 

A	shell	forks	and	then	execs	a	calculator	

int shell_main() { 
  int a = 2; 
  … Code

main; a = 2

Heap

Stack

0xFC0933CA 

int shell_main() { 
  int a = 2; 
  … Code

main; a = 2

Heap

Stack

0xFC0933CA 

int calc_main() { 
  int q = 7; 
  … Code

Heap

Stack

0x43178050 

pid = 128 
open files = 
last_cpu = 0 

Process Control
Blocks (PCBs)

OS
USER



24

At	what	cost,	fork()?	

Simple implementation of fork(): 
Ø  allocate memory for the child process 
Ø  copy parent’s memory and CPU registers to child’s 
Ø  Expensive !! 

In 99% of the time, we call exec() after calling fork() 
Ø  the memory copying during fork() operation is useless 
Ø  the child process will likely close the open files & connections 
Ø  overhead is therefore high 

vfork() 
Ø  a system call that creates a process “without” creating an identical 

memory image 
Ø  child process should call exec() almost immediately 
Ø  Unfortunate example of implementation influence on interface 

❖  Current Linux & BSD 4.4 have it for backwards compatibility 
Ø  Copy-on-write to implement fork avoids need for vfork 



25

Orderly	Termination:	exit()	

After the program finishes execution, it calls exit() 
This system call: 
Ø  takes the “result” of the program as an argument 
Ø  closes all open files, connections, etc. 
Ø  deallocates memory 
Ø  deallocates most of the OS structures supporting the process 
Ø  checks if parent is alive: 

v  If so, it holds the result value until parent requests it; in this case, 
process does not really die, but it enters the zombie/defunct state 

v  If not, it deallocates all data structures, the process is dead 
Ø  cleans up all waiting zombies 

Process termination is the ultimate garbage collection (resource 
reclamation). 



26

The	wait()	System	Call	

A child program returns a value to the parent, so the parent 
must arrange to receive that value 

The wait() system call serves this purpose 
Ø  it puts the parent to sleep waiting for a child’s result 
Ø  when a child calls exit(), the OS unblocks the parent and returns 

the value passed by exit() as a result of the wait call (along with the 
pid of the child) 

Ø  if there are no children alive, wait() returns immediately 
Ø  also, if there are zombies waiting for their parents, wait() returns 

one of the values immediately (and deallocates the zombie) 



27

Process	Control	

OS must include calls to enable special control of a process: 
    
Priority manipulation: 
Ø  nice(), which specifies base process priority (initial priority) 
Ø  In UNIX, process priority decays as the process consumes CPU 

Debugging support: 
Ø  ptrace(), allows a process to be put under control of another 

process 
Ø  The other process can set breakpoints, examine registers, etc.   

Alarms and time: 
Ø  Sleep puts a process on a timer queue waiting for some number of 

seconds, supporting an alarm functionality 



28

Tying	it	All	Together:	The	Unix	Shell	

while(! EOF) { 
read input 
handle regular expressions 
int pid = fork();    // create a child 
if(pid == 0) {    // child continues here 

 exec(“program”, argc, argv0, argv1, …); 
} 
else {     // parent continues here 
… 
} 
 
 

 Translates <CTRL-C> to the kill() system call with SIGKILL 

 Translates <CTRL-Z> to the kill() system call with SIGSTOP 

 Allows input-output redirections, pipes, and a lot of other stuff that 
we will see later 



29

Summary	

Understand what a process is 
The high-level idea of context switching and process 
states 
How a process is created 
Pros and cons of different creation APIs 
Ø  Intuition of copy-on-write fork and vfork 


