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Processes,	Threads	and	Processors	

Hardware can execute N instruction streams at once 
Ø Uniprocessor, N==1 
Ø Dual-core, N==2 
Ø Sun’s Niagara T2 (2007) N == 64, but 8 groups of 8 

An OS can run 1 process on each processor at the 
same time 
Ø Concurrent execution increases performance 

An OS can run 1 thread on each processor at the 
same time 
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Processes	and	Threads	

Process abstraction combines two concepts 
Ø  Concurrency 

❖  Each process is a sequential execution stream of instructions 
Ø  Protection 

❖  Each process defines an address space 
❖  Address space identifies all addresses that can be touched by the 

program 

Threads 
Ø  Key idea: separate the concepts of concurrency from protection 
Ø  A thread is a sequential execution stream of instructions 
Ø  A process defines the address space that may be shared by 

multiple threads 
Ø  Threads can execute on different cores on a multicore CPU 

(parallelism for performance) and can communicate with other 
threads by updating memory 
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Example	Redux	

Virtual Address Space

0 0xffffffff

hello libc.so heap 

2 threads requires 2 stacks in the process 
No problem! 
Kernel can schedule each thread separately 
Ø Possibly on 2 CPUs 
Ø Requires some extra bookkeeping 

stk1 Linux stk2 
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The	Case	for	Threads	

Consider the following code fragment 
for(k = 0; k < n; k++) 

 a[k] = b[k] * c[k] + d[k] * e[k]; 
 
Is there a missed opportunity here? On a Uni-processor?  
On a Multi-processor? 
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The	Case	for	Threads	

Consider a Web server 
 get network message (URL) from client 
 get URL data from disk 
 compose response 
 send response 

 
How well does this web server perform? 
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Programmer’s	View	

 
void fn1(int arg0, int arg1, …) {…} 
 
main() { 

 … 
 tid = CreateThread(fn1, arg0, arg1, …); 
 … 

} 
 
At the point CreateThread is called, execution continues in parent 

thread in main function, and execution starts at fn1 in the child 
thread, both in parallel  (concurrently) 



8

Introducing	Threads	

A thread represents an abstract entity that executes a sequence 
of instructions 
Ø  It has its own set of CPU registers  
Ø  It has its own stack 
Ø  There is no thread-specific heap or data segment (unlike process) 

Threads are lightweight 
Ø  Creating a thread more efficient than creating a process. 
Ø  Communication between threads easier than btw. processes. 
Ø  Context switching between threads requires fewer CPU cycles and 

memory references than switching processes. 
Ø  Threads only track a subset of process state (share list of open 

files, pid, …) 

Examples: 
Ø  OS-supported: Windows’ threads, Sun’s LWP, POSIX threads 
Ø  Language-supported: Modula-3, Java 

❖ These are possibly going the way of the Dodo 
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Context	switch	time	for	which	entity	is	greater?	

1.  Process 
2.  Thread 
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How	Can	it	Help?	

How can this code take advantage of 2 threads? 
for(k = 0; k < n; k++) 

 a[k] = b[k] * c[k] + d[k] * e[k]; 
 

Rewrite this code fragment as: 
do_mult(l, m) { 

 for(k = l; k < m; k++) 
  a[k] = b[k] * c[k] + d[k] * e[k]; 

} 
main() { 
   CreateThread(do_mult, 0, n/2); 
   CreateThread(do_mult, n/2, n); 

 
What did we gain? 
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How	Can	it	Help?	

Consider a Web server 
     Create a number of threads, and for each thread do 

v  get network message from client 
v  get URL data from disk 
v  send data over network 

 
What did we gain? 
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Overlapping	Requests	(Concurrency)	

v get network message 
(URL) from client 

v get URL data from disk 

v send data over network 

 

v get network message 
(URL) from client 

v get URL data from disk 
 

 
v send data over network 

Request 1
Thread 1

Request 2
Thread 2

Time

(disk access latency)

(disk access latency)

Total time is less than request 1 + request 2 
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Why	threads?	(summary)	

Computation that can be divided into concurrent 
chunks 
Ø Same Instruction (or operation), Multiple Data (SIMD – easy) 
Ø Harder to identify parallelism in more complex cases 

Overlapping blocking I/O with computation 
Ø  If my web server blocks on I/O for one client, why not work 

on another client’s request in a separate thread? 
Ø Other abstractions we won’t cover (e.g., events) 
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1.  CPU 
2.  Address space 
3.  PCB 
4.  Stack 
5.  Registers 

Threads	have	their	own…?	
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Threads	vs.	Processes	

Threads 

A thread has no data segment 
or heap 
A thread cannot live on its own, 
it must live within a process 
There can be more than one 
thread in a process, the first 
thread calls main & has the 
process’s stack 
If a thread dies, its stack is 
reclaimed 
Inter-thread communication via 
memory. 
Each thread can run on a 
different physical processor 
Inexpensive creation and 
context switch 

Processes 

  A process has code/data/heap & 
other segments 

  There must be at least one 
thread in a process 

  Threads within a process share 
code/data/heap, share I/O, but 
each has its own stack & 
registers 

  If a process dies, its resources 
are reclaimed & all threads die 

  Inter-process communication via 
OS and data copying. 

  Each process can run on a 
different physical processor 

  Expensive creation and context 
switch 
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Implementing	Threads	

Processes define an address 
space; threads share the 
address space 

Process Control Block (PCB) 
contains process-specific 
information  
Ø  Owner, PID, heap pointer, 

priority, active thread, and 
pointers to thread information 

Thread Control Block (TCB) 
contains thread-specific 
information 
Ø  Stack pointer, PC, thread state 

(running, …), register values, a 
pointer to PCB, … Code 

Initialized data 

Heap 

DLL’s 

mapped segments 

Process’s  
address space 

Stack – thread1 

PC 
SP 

State 
Registers 

… 

TCB for  
Thread1 

Stack – thread2 

PC 
SP 

State 
Registers 

… 

TCB for  
Thread2 
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Threads’	Life	Cycle	

Threads (just like processes) go through a sequence of start, 
ready, running, waiting, and done states  

Running Ready 

Waiting 

Start Done 
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Threads	have	the	same	scheduling	states	as	
processes	

1.  True 
2.  False 

In fact, OSes generally schedule threads to CPUs, not processes 
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User-level threads (M to 1 model) 
Ø  + Fast to create and switch 
Ø  + Natural fit for language-level threads 
Ø  - Duplicate effort (2 thread schedulers) 

❖ The schedulers can fight with each other 
Ø  - All user-level threads in process block on OS calls 

❖  E.g., read from file can block all threads 

Kernel-level threads (1 to 1 model) 
Ø  + Kernel-level threads do not block process for syscall 
Ø  + Only one scheduler (and kernel has global view) 
Ø  - Can be difficult to make efficient (create & switch) 

User-level	vs.	Kernel-level	threads	

user 

kernel 

Process0 Process1 
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Kernel-level threads have won for systems 
Ø  Linux, Solaris 10, Windows 
Ø  pthreads tend to be kernel-level threads 

User-level threads still used in some Java runtimes 
Ø User tells JVM how many underlying system threads 

❖  Default: 1 system thread 
Ø  Java runtime intercepts blocking calls, makes them non-

blocking 
Ø  JNI code that makes blocking syscalls can block JVM 
Ø  JVMs are phasing this out because kernel threads are 

efficient enough and intercepting system calls is complicated 

Kernel-level thread vs. process 
Ø Each process requires its own page table & hardware state 

(significant on the x86) 

Languages	vs.	Systems	
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Editorial	on	User	vs.	Kernel	threads	

There is a 25+ year history of debating user vs. 
kernel threads 
Ø  These discussions are couched in grand principles 

The real issue is simple: Performance!! 
Ø  If the kernel implementation of thread context switching is 

slow, everyone starts writing user-level thread packages 

❖ Java did this for a while 
Ø  If the kernel implementation gets faster, everyone just uses 

kernel threads, since they are easier 

❖ Java does this now, Linux 2.6 overhauled its 
thread implementation 
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Latency	and	Throughput	

Latency: time to complete an operation 
Throughput: work completed per unit time 
Multiplying vector example: reduced latency 
Web server example: increased throughput 
Consider plumbing 
Ø  Low latency: turn on faucet and water comes out 
Ø High bandwidth: lots of water (e.g., to fill a pool) 

What is “High speed Internet?” 
Ø  Low latency: needed to interactive gaming 
Ø High bandwidth: needed for downloading large files 
Ø Marketing departments like to conflate latency and 

bandwidth… 
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Relationship	between	Latency	and	Throughput	

Latency and bandwidth only loosely coupled 
Ø Henry Ford: assembly lines increase bandwidth without 

reducing latency 

My factory takes 1 day to make a Model-T ford. 
Ø But I can start building a new car every 10 minutes 
Ø At 24 hrs/day, I can make 24 * 6 = 144 cars per day 
Ø A special order for 1 green car, still takes 1 day 
Ø  Throughput is increased, but latency is not. 

Latency reduction is difficult 
Often, one can buy bandwidth 
Ø E.g., more memory chips, more disks, more computers 
Ø Big server farms (e.g., google) are high bandwidth 
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Latency,	Throughput,	and	Threads	

Can threads improve throughput? 
Ø Yes, as long as there are parallel tasks and CPUs available 

Can threads improve latency? 
Ø Yes, especially when one task might block on another task’s 

IO 

Can threads harm throughput? 
Ø Yes, each thread gets a time slice.   
Ø  If # threads >> # CPUs, the %of CPU time each thread gets 

approaches 0 

Can threads harm latency?  
Ø Yes, especially when requests are short and there is little I/O 
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Best	Practices?	

For CPU-intensive work, applications generally create 
one thread per CPU 
For work with I/O, the number of threads is tuned to 
keep the CPU busy but not overloaded 
Ø E.g., 3 * # CPUs 
Ø  Tuning effort often application-specific 

Applications like web servers often keep thread 
pools, or a set of n ready threads 
Ø New requests are assigned to an existing thread to avoid 

overloading the system 
Ø Plus, reduce setup/tear down costs! 
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Thread	or	Process	Pool	

Creating a thread or process 
for each unit of work (e.g., 
user request) is dangerous 
Ø  High overhead to create & 

delete thread/process 
Ø  Can exhaust CPU & 

memory resource 
Thread/process pool controls 
resource use 
Ø  Allows service to be well 

conditioned. 

Load
Th

ro
ug

hp
ut

Well conditioned
Not well conditioned
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When	a	user	level	thread	does	I/O	it	blocks	the	
entire	process.	

1.  True 
2.  False 
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Lecture	Summary	

Understand the distinction between a process and 
thread 
Understand the motivation for threads 
Kernel vs. User threads 
Concepts of Throughput vs. Latency 
Thread pools 


