
1

From	Processes	to	Threads	
	

Don	Porter	
Portions	courtesy	Emmett	Witchel	

2

Processes,	Threads	and	Processors	

Hardware can execute N instruction streams at once
Ø Uniprocessor, N==1
Ø Dual-core, N==2
Ø Sun’s Niagara T2 (2007) N == 64, but 8 groups of 8

An OS can run 1 process on each processor at the
same time
Ø Concurrent execution increases performance

An OS can run 1 thread on each processor at the
same time

3

Processes	and	Threads	

Process abstraction combines two concepts
Ø  Concurrency

❖  Each process is a sequential execution stream of instructions
Ø  Protection

❖  Each process defines an address space
❖  Address space identifies all addresses that can be touched by the

program

Threads
Ø  Key idea: separate the concepts of concurrency from protection
Ø  A thread is a sequential execution stream of instructions
Ø  A process defines the address space that may be shared by

multiple threads
Ø  Threads can execute on different cores on a multicore CPU

(parallelism for performance) and can communicate with other
threads by updating memory

4

Example	Redux	

Virtual Address Space

0 0xffffffff

hello libc.so heap

2 threads requires 2 stacks in the process
No problem!
Kernel can schedule each thread separately
Ø Possibly on 2 CPUs
Ø Requires some extra bookkeeping

stk1 Linux stk2

5

The	Case	for	Threads	

Consider the following code fragment
for(k = 0; k < n; k++)

 a[k] = b[k] * c[k] + d[k] * e[k];

Is there a missed opportunity here? On a Uni-processor?
On a Multi-processor?

6

The	Case	for	Threads	

Consider a Web server
 get network message (URL) from client
 get URL data from disk
 compose response
 send response

How well does this web server perform?

7

Programmer’s	View	

void fn1(int arg0, int arg1, …) {…}

main() {

 …
 tid = CreateThread(fn1, arg0, arg1, …);
 …

}

At the point CreateThread is called, execution continues in parent

thread in main function, and execution starts at fn1 in the child
thread, both in parallel (concurrently)

8

Introducing	Threads	

A thread represents an abstract entity that executes a sequence
of instructions
Ø  It has its own set of CPU registers
Ø  It has its own stack
Ø  There is no thread-specific heap or data segment (unlike process)

Threads are lightweight
Ø  Creating a thread more efficient than creating a process.
Ø  Communication between threads easier than btw. processes.
Ø  Context switching between threads requires fewer CPU cycles and

memory references than switching processes.
Ø  Threads only track a subset of process state (share list of open

files, pid, …)

Examples:
Ø  OS-supported: Windows’ threads, Sun’s LWP, POSIX threads
Ø  Language-supported: Modula-3, Java

❖ These are possibly going the way of the Dodo

9

Context	switch	time	for	which	entity	is	greater?	

1.  Process
2.  Thread

10

How	Can	it	Help?	

How can this code take advantage of 2 threads?
for(k = 0; k < n; k++)

 a[k] = b[k] * c[k] + d[k] * e[k];

Rewrite this code fragment as:
do_mult(l, m) {

 for(k = l; k < m; k++)
 a[k] = b[k] * c[k] + d[k] * e[k];

}
main() {
 CreateThread(do_mult, 0, n/2);
 CreateThread(do_mult, n/2, n);

What did we gain?

11

How	Can	it	Help?	

Consider a Web server
 Create a number of threads, and for each thread do

v  get network message from client
v  get URL data from disk
v  send data over network

What did we gain?

12

Overlapping	Requests	(Concurrency)	

v get network message
(URL) from client

v get URL data from disk

v send data over network

v get network message
(URL) from client

v get URL data from disk

v send data over network

Request 1
Thread 1

Request 2
Thread 2

Time

(disk access latency)

(disk access latency)

Total time is less than request 1 + request 2

13

Why	threads?	(summary)	

Computation that can be divided into concurrent
chunks
Ø Same Instruction (or operation), Multiple Data (SIMD – easy)
Ø Harder to identify parallelism in more complex cases

Overlapping blocking I/O with computation
Ø  If my web server blocks on I/O for one client, why not work

on another client’s request in a separate thread?
Ø Other abstractions we won’t cover (e.g., events)

14

1.  CPU
2.  Address space
3.  PCB
4.  Stack
5.  Registers

Threads	have	their	own…?	

15

Threads	vs.	Processes	

Threads

A thread has no data segment
or heap
A thread cannot live on its own,
it must live within a process
There can be more than one
thread in a process, the first
thread calls main & has the
process’s stack
If a thread dies, its stack is
reclaimed
Inter-thread communication via
memory.
Each thread can run on a
different physical processor
Inexpensive creation and
context switch

Processes

  A process has code/data/heap &
other segments

  There must be at least one
thread in a process

  Threads within a process share
code/data/heap, share I/O, but
each has its own stack &
registers

  If a process dies, its resources
are reclaimed & all threads die

  Inter-process communication via
OS and data copying.

  Each process can run on a
different physical processor

  Expensive creation and context
switch

16

Implementing	Threads	

Processes define an address
space; threads share the
address space

Process Control Block (PCB)
contains process-specific
information
Ø  Owner, PID, heap pointer,

priority, active thread, and
pointers to thread information

Thread Control Block (TCB)
contains thread-specific
information
Ø  Stack pointer, PC, thread state

(running, …), register values, a
pointer to PCB, … Code

Initialized data

Heap

DLL’s

mapped segments

Process’s
address space

Stack – thread1

PC
SP

State
Registers

…

TCB for
Thread1

Stack – thread2

PC
SP

State
Registers

…

TCB for
Thread2

17

Threads’	Life	Cycle	

Threads (just like processes) go through a sequence of start,
ready, running, waiting, and done states

Running Ready

Waiting

Start Done

18

Threads	have	the	same	scheduling	states	as	
processes	

1.  True
2.  False

In fact, OSes generally schedule threads to CPUs, not processes

19

User-level threads (M to 1 model)
Ø  + Fast to create and switch
Ø  + Natural fit for language-level threads
Ø  - Duplicate effort (2 thread schedulers)

❖ The schedulers can fight with each other
Ø  - All user-level threads in process block on OS calls

❖  E.g., read from file can block all threads

Kernel-level threads (1 to 1 model)
Ø  + Kernel-level threads do not block process for syscall
Ø  + Only one scheduler (and kernel has global view)
Ø  - Can be difficult to make efficient (create & switch)

User-level	vs.	Kernel-level	threads	

user

kernel

Process0 Process1

20

Kernel-level threads have won for systems
Ø  Linux, Solaris 10, Windows
Ø  pthreads tend to be kernel-level threads

User-level threads still used in some Java runtimes
Ø User tells JVM how many underlying system threads

❖  Default: 1 system thread
Ø  Java runtime intercepts blocking calls, makes them non-

blocking
Ø  JNI code that makes blocking syscalls can block JVM
Ø  JVMs are phasing this out because kernel threads are

efficient enough and intercepting system calls is complicated

Kernel-level thread vs. process
Ø Each process requires its own page table & hardware state

(significant on the x86)

Languages	vs.	Systems	

21

Editorial	on	User	vs.	Kernel	threads	

There is a 25+ year history of debating user vs.
kernel threads
Ø  These discussions are couched in grand principles

The real issue is simple: Performance!!
Ø  If the kernel implementation of thread context switching is

slow, everyone starts writing user-level thread packages

❖ Java did this for a while
Ø  If the kernel implementation gets faster, everyone just uses

kernel threads, since they are easier

❖ Java does this now, Linux 2.6 overhauled its
thread implementation

22

Latency	and	Throughput	

Latency: time to complete an operation
Throughput: work completed per unit time
Multiplying vector example: reduced latency
Web server example: increased throughput
Consider plumbing
Ø  Low latency: turn on faucet and water comes out
Ø High bandwidth: lots of water (e.g., to fill a pool)

What is “High speed Internet?”
Ø  Low latency: needed to interactive gaming
Ø High bandwidth: needed for downloading large files
Ø Marketing departments like to conflate latency and

bandwidth…

23

Relationship	between	Latency	and	Throughput	

Latency and bandwidth only loosely coupled
Ø Henry Ford: assembly lines increase bandwidth without

reducing latency

My factory takes 1 day to make a Model-T ford.
Ø But I can start building a new car every 10 minutes
Ø At 24 hrs/day, I can make 24 * 6 = 144 cars per day
Ø A special order for 1 green car, still takes 1 day
Ø  Throughput is increased, but latency is not.

Latency reduction is difficult
Often, one can buy bandwidth
Ø E.g., more memory chips, more disks, more computers
Ø Big server farms (e.g., google) are high bandwidth

24

Latency,	Throughput,	and	Threads	

Can threads improve throughput?
Ø Yes, as long as there are parallel tasks and CPUs available

Can threads improve latency?
Ø Yes, especially when one task might block on another task’s

IO

Can threads harm throughput?
Ø Yes, each thread gets a time slice.
Ø  If # threads >> # CPUs, the %of CPU time each thread gets

approaches 0

Can threads harm latency?
Ø Yes, especially when requests are short and there is little I/O

25

Best	Practices?	

For CPU-intensive work, applications generally create
one thread per CPU
For work with I/O, the number of threads is tuned to
keep the CPU busy but not overloaded
Ø E.g., 3 * # CPUs
Ø  Tuning effort often application-specific

Applications like web servers often keep thread
pools, or a set of n ready threads
Ø New requests are assigned to an existing thread to avoid

overloading the system
Ø Plus, reduce setup/tear down costs!

26

Thread	or	Process	Pool	

Creating a thread or process
for each unit of work (e.g.,
user request) is dangerous
Ø  High overhead to create &

delete thread/process
Ø  Can exhaust CPU &

memory resource
Thread/process pool controls
resource use
Ø  Allows service to be well

conditioned.

Load
Th

ro
ug

hp
ut

Well conditioned
Not well conditioned

27

When	a	user	level	thread	does	I/O	it	blocks	the	
entire	process.	

1.  True
2.  False

28

Lecture	Summary	

Understand the distinction between a process and
thread
Understand the motivation for threads
Kernel vs. User threads
Concepts of Throughput vs. Latency
Thread pools

