
1

Virtual Memory and
Address Translation

2

Review

Program addresses are virtual addresses.
Ø  Relative offset of program regions can not change during program

execution. E.g., heap can not move further from code.
Ø  Virtual addresses == physical address inconvenient.

❖  Program location is compiled into the program.

A single offset register allows the OS to place a process’ virtual
address space anywhere in physical memory.
Ø  Virtual address space must be smaller than physical.
Ø  Program is swapped out of old location and swapped into new.

Segmentation creates external fragmentation and requires large
regions of contiguous physical memory.
Ø  We look to fixed sized units, memory pages, to solve the problem.

3

Virtual Memory
Concept

Key problem: How can one support programs that
require more memory than is physically available?
Ø  How can we support programs that do not use all of their

memory at once?

Hide physical size of memory from users
Ø  Memory is a “large” virtual address space of 2n bytes
Ø  Only portions of VAS are in physical memory at any one

time (increase memory utilization).

Issues
Ø  Placement strategies

❖  Where to place programs in physical memory
Ø  Replacement strategies

❖  What to do when there exist more processes than can fit in
memory

Ø  Load control strategies
❖  Determining how many processes can be in memory at one

time
0

2n-1

Program
P’s
VAS

4

Realizing Virtual Memory
Paging

Physical memory partitioned into equal sized
page frames
Ø  Page frames avoid external fragmentation.

(0,0)

(fMAX-1,oMAX-1)

PA:

f o

(f,o)

f

o

Physical
Memory

1log2 omaxlog2 (fmax × omax)

A memory address is a pair (f, o)
f — frame number (fmax frames)
o — frame offset (omax bytes/frames)
Physical address = omax×f + o

5

0

Physical Address Specifications
Frame/Offset pair v. An absolute index

Example: A 16-bit address space with (omax =)
512 byte page frames
Ø  Addressing location (3, 6) = 1,542

19
PA:

16

(0,0)

(3,6)

f

o

Physical
Memory

111 0 10000000000

3 6

1,542

10

1,542

0

6

Questions

The offset is the same in a virtual address and a
physical address.
Ø A. True
Ø B. False

7

Realizing Virtual Memory
Paging

A process’s virtual address space is
partitioned into equal sized pages
Ø  page = page frame

(0,0)

2n-1 =
(pMAX-1,oMAX-1)

p o

(p,o)

p

VA:

o
Virtual

Address
Space

1log2 oMAXlog2 (pmax×omax)

A virtual address is a pair (p, o)
p — page number (pmax pages)
o — page offset (omax bytes/pages)
Virtual address = omax×p + o

8

Paging
Mapping virtual addresses to physical addresses

Pages map to frames
Pages are contiguous in a VAS...
Ø  But pages are arbitrarily located

in physical memory, and
Ø  Not all pages mapped at all times

Virtual
Address
Space

(p1,o1)

(p2,o2)
Physical
Memory

(f1,o1)

(f2,o2)

9

Frames and pages

Only mapping virtual pages that are in use does
what?
Ø A. Increases memory utilization.
Ø B. Increases performance for user applications.
Ø C. Allows an OS to run more programs concurrently.
Ø D. Gives the OS freedom to move virtual pages in the virtual

address space.

Address translation and changing address mappings
are
Ø A. Frequent and frequent
Ø B. Frequent and infrequent
Ø C. Infrequent and frequent
Ø D. Infrequent and infrequent

10
Page Table

Paging
Virtual address translation

A page table maps virtual
pages to physical frames

CPU

(p,o)

p

P’s
Virtual

Address
Space

Physical
Memory120 910

p o

(f,o)

116 910

f o

Physical
Addresses

Program
P

Virtual
Addresses

f

11

Virtual Address Translation Details
Page table structure

Contents:
Ø  Flags — dirty bit, resident bit, clock/

reference bit
Ø  Frame number

1 0

Page Table

p

120 910

p o

116 910

f o

Physical
Addresses

Virtual
Addresses

f0PTBR

CPU

+

1 table per process
Part of process’s state

12

1 1 0 0 1 0 0

Virtual Address Translation Details
Example

A system with 16-bit addresses
Ø  32 KB of physical memory
Ø  1024 byte pages

CPU

Page Table

Physical
Memory15

p o

(4,1023)

14 910

f o

Physical
Addresses

Virtual
Addresses

0 0 0 0 0 0 0

P’s
Virtual

Address
Space

(3,1023)
(4,0)

(0,0)

1
0

0010 9

13

Virtual Address Translation
Performance Issues

Problem — VM reference requires 2 memory references!
Ø  One access to get the page table entry
Ø  One access to get the data

Page table can be very large; a part of the page table can be on
disk.
Ø  For a machine with 64-bit addresses and 1024 byte pages, what is

the size of a page table?

What to do?
Ø  Most computing problems are solved by some form of…

❖  Caching
❖  Indirection

14

Virtual Address Translation
Using TLBs to Speedup Address Translation

Cache recently accessed page-to-frame translations in a TLB
Ø  For TLB hit, physical page number obtained in 1 cycle
Ø  For TLB miss, translation is updated in TLB
Ø  Has high hit ratio (why?)

Page Table

120 910

p o

116 910

f o
Physical

Addresses

Virtual
Addresses

CPU

TLB

f

Key Value

p

p

f

?

X

15

Dealing With Large Page Tables
Multi-level paging

Add additional levels of indirection
to the page table by sub-dividing
page number into k parts
Ø  Create a “tree” of page tables
Ø  TLB still used, just not shown
Ø  The architecture determines the

number of levels of page table

Third-Level
Page Tables

p2 o
Virtual Address

First-Level
Page Table

p3

Second-Level
Page Tables

p1

p1

p2

p3

16

Dealing With Large Page Tables
Multi-level paging

Example: Two-level paging

Second-Level
Page Table

120 1016

p1 o

116 10

f o
Physical

Addresses
Virtual

Addresses

CPU

First-Level
Page Table

page table

p2

f

p1

PTBR

p2

+ +

Memory

17

The Problem of Large Address Spaces

With large address spaces (64-bits) forward mapped page tables
become cumbersome.
Ø  E.g. 5 levels of tables.

Instead of making tables proportional to size of virtual address
space, make them proportional to the size of physical address
space.
Ø  Virtual address space is growing faster than physical.

Use one entry for each physical page with a hash table
Ø  Translation table occupies a very small fraction of physical memory
Ø  Size of translation table is independent of VM size

Page table has 1 entry per virtual page
Hashed/Inverted page table has 1 entry per physical frame

18

Virtual Address Translation
Using Page Registers (aka Hashed/Inverted Page Tables)

Each frame is associated with a register containing
Ø  Residence bit: whether or not the frame is occupied
Ø  Occupier: page number of the page occupying frame
Ø  Protection bits

Page registers: an example
Ø  Physical memory size: 16 MB
Ø  Page size: 4096 bytes
Ø  Number of frames: 4096
Ø  Space used for page registers (assuming 8 bytes/register): 32

Kbytes
Ø  Percentage overhead introduced by page registers: 0.2%
Ø  Size of virtual memory: irrelevant

19

Page Registers
How does a virtual address become a physical address?

CPU generates virtual addresses, where is the
physical page?
Ø Hash the virtual address
Ø Must deal with conflicts

TLB caches recent translations, so page lookup can
take several steps
Ø Hash the address
Ø Check the tag of the entry
Ø Possibly rehash/traverse list of conflicting entries

TLB is limited in size
Ø Difficult to make large and accessible in a single cycle.
Ø  They consume a lot of power (27% of on-chip for

StrongARM)

20

Indexing Hashed Page Tables
Using Hash Tables

Hash page numbers to find corresponding frame number
Ø  Page frame number is not explicitly stored (1 frame per entry)
Ø  Protection, dirty, used, resident bits also in entry

h(PID, p)

120 9

p o

116 9

f o
Physical

Addresses

Virtual
Address

PTBR

CPU

Hash

PID

Inverted Page Table

10page

Memory

0

fmax– 1
fmax– 2

running
PID

+ 1

=? =?
tag check

21

Searching Hahed Page Tables
Using Hash Tables

Page registers are placed in an array

Page i is placed in slot f(i) where f is an agreed-upon
hash function

To lookup page i, perform the following:
Ø Compute f(i) and use it as an index into the table of page

registers
Ø Extract the corresponding page register
Ø Check if the register tag contains i, if so, we have a hit
Ø Otherwise, we have a miss

22

Searching Hashed Page Tables
Using Hash Tables (Cont’d.)

Minor complication
Ø  Since the number of pages is usually larger than the number of

slots in a hash table, two or more items may hash to the same
location

Two different entries that map to same location are said to
collide

Many standard techniques for dealing with collisions
Ø  Use a linked list of items that hash to a particular table entry
Ø  Rehash index until the key is found or an empty table entry is

reached (open hashing)

23

Questions

Why use hashed/inverted page tables?
Ø A. Forward mapped page tables are too slow.
Ø B. Forward mapped page tables don’t scale to larger virtual

address spaces.
Ø C. Inverted pages tables have a simpler lookup algorithm, so

the hardware that implements them is simpler.
Ø D. Inverted page tables allow a virtual page to be anywhere

in physical memory.

24

Virtual Memory (Paging)
The bigger picture

A process’s VAS is its context
Ø  Contains its code, data, and stack

Code pages are stored in a user’s file on disk
Ø  Some are currently residing in memory; most are

not

Data and stack pages are also stored in a file
Ø  Although this file is typically not visible to users
Ø  File only exists while a program is executing

  OS determines which portions of a process’s
VAS are mapped in memory at any one time

Code

Data

Stack

File System
(Disk)

OS/MMU

Physical
Memory

25

Virtual Memory
Page fault handling

References to non-mapped pages generate
a page fault

Program
P’s
VAS

Disk

CPU

Physical
Memory

Page
Table

0

OS resumes/initiates some other process
Read of page completes

OS maps the missing page into memory
OS restart the faulting process

Page fault handling steps:
Processor runs the interrupt handler
OS blocks the running process

OS starts read of the unmapped page

26

Virtual Memory Performance
Page fault handling analysis

To understand the overhead of paging, compute the effective
memory access time (EAT)
Ø  EAT = memory access time × probability of a page hit +

 page fault service time × probability of a page fault

Example:
Ø  Memory access time: 60 ns
Ø  Disk access time: 25 ms
Ø  Let p = the probability of a page fault
Ø  EAT = 60(1–p) + 25,000,000p

To realize an EAT within 5% of minimum, what is the largest
value of p we can tolerate?

27

Virtual Memory
Summary

Physical and virtual memory partitioned into equal
size units

Size of VAS unrelated to size of physical memory

Virtual pages are mapped to physical frames

Simple placement strategy

There is no external fragmentation

Key to good performance is minimizing page faults

28

Segmentation vs. Paging

Segmentation has what advantages over paging?
Ø A. Fine-grained protection.
Ø B. Easier to manage transfer of segments to/from the disk.
Ø C. Requires less hardware support
Ø D. No external fragmentation

Paging has what advantages over segmentation?
Ø A. Fine-grained protection.
Ø B. Easier to manage transfer of pages to/from the disk.
Ø C. Requires less hardware support.
Ø D. No external fragmentation.

