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Virtual Memory and 
Address Translation
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Review 

Program addresses are virtual addresses. 
Ø  Relative offset of program regions can not change during program 

execution.  E.g., heap can not move further from code. 
Ø  Virtual addresses == physical address inconvenient. 

❖  Program location is compiled into the program. 

A single offset register allows the OS to place a process’ virtual 
address space anywhere in physical memory. 
Ø  Virtual address space must be smaller than physical. 
Ø  Program is swapped out of old location and swapped into new. 

Segmentation creates external fragmentation and requires large 
regions of contiguous physical memory. 
Ø  We look to fixed sized units, memory pages, to solve the problem. 
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Virtual Memory 
Concept  

Key problem: How can one support programs that 
require more memory than is physically available? 
Ø  How can we support programs that do not use all of their 

memory at once? 

Hide physical size of memory from users 
Ø  Memory is a “large” virtual address space of 2n bytes  
Ø  Only portions of VAS are in physical memory at any one 

time (increase memory utilization). 
 

Issues 
Ø  Placement strategies 

❖  Where to place programs in physical memory 
Ø  Replacement strategies 

❖  What to do when there exist more processes than can fit in 
memory 

Ø  Load control strategies 
❖  Determining how many processes can be in memory at one 

time 
0

2n-1

Program
P’s
VAS

4

Realizing Virtual Memory 
Paging 

Physical memory partitioned into equal sized 
page frames 
Ø  Page frames avoid external fragmentation. 
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A memory address is a pair (f, o) 
f   — frame number (fmax frames) 
o   — frame offset (omax  bytes/frames) 
Physical address = omax×f + o  
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Physical Address Specifications 
Frame/Offset pair v. An absolute index 

Example: A 16-bit address space with (omax =) 
512 byte page frames 
Ø  Addressing location (3, 6) = 1,542 
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Questions 

The offset is the same in a virtual address and a 
physical address. 
Ø A. True 
Ø B. False 
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Realizing Virtual Memory 
Paging 

A process’s virtual address space is 
partitioned into equal sized pages 
Ø  page  =  page frame 
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A virtual address is a pair (p, o) 
p  — page number (pmax pages) 
o  — page offset (omax bytes/pages) 
Virtual address = omax×p + o 
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Paging 
Mapping virtual addresses to physical addresses 

Pages map to frames 
Pages are contiguous in a VAS...  
Ø  But pages are arbitrarily located  

in physical memory, and 
Ø  Not all pages mapped at all times 
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Frames and pages 

Only mapping virtual pages that are in use does 
what? 
Ø A. Increases memory utilization. 
Ø B. Increases performance for user applications. 
Ø C. Allows an OS to run more programs concurrently. 
Ø D. Gives the OS freedom to move virtual pages in the virtual 

address space. 

Address translation and changing address mappings 
are 
Ø A. Frequent and frequent 
Ø B. Frequent and infrequent 
Ø C. Infrequent and frequent 
Ø D. Infrequent and infrequent 
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Page Table 

Paging 
Virtual address translation 

A page table maps virtual 
pages to physical frames 

CPU 

(p,o)

p

P’s
Virtual

Address
Space

Physical
Memory120 910

p o

(f,o)

116 910

f o

Physical 
Addresses 

Program
P

Virtual 
Addresses 

f

11

Virtual Address Translation Details 
Page table structure 

Contents: 
Ø  Flags — dirty bit, resident bit, clock/

reference bit 
Ø  Frame number 
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1 table per process 
Part of process’s state 
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Virtual Address Translation Details 
Example 

A system with 16-bit addresses 
Ø  32 KB of physical memory 
Ø  1024 byte pages 
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Virtual Address Translation 
Performance Issues 

Problem — VM reference requires 2 memory references! 
Ø  One access to get the page table entry 
Ø  One access to get the data 

Page table can be very large; a part of the page table can be on 
disk. 
Ø  For a machine with 64-bit addresses and 1024 byte pages, what is 

the size of a page table? 

What to do? 
Ø  Most computing problems are solved by some form of… 

❖  Caching 
❖  Indirection 
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Virtual Address Translation  
Using TLBs to Speedup Address Translation 

Cache recently accessed page-to-frame translations in a TLB 
Ø  For TLB hit, physical page number obtained in 1 cycle 
Ø  For TLB miss, translation is updated in TLB 
Ø  Has high hit ratio (why?) 
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Dealing With Large Page Tables  
Multi-level paging 

Add additional levels of indirection 
to the page table by sub-dividing 
page number into k parts  
Ø  Create a “tree” of page tables 
Ø  TLB still used, just not shown 
Ø  The architecture determines the 

number of levels of page table 
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Dealing With Large Page Tables  
Multi-level paging 

Example: Two-level paging 
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The Problem of Large Address Spaces 
 

With large address spaces (64-bits) forward mapped page tables 
become cumbersome. 
Ø  E.g. 5 levels of tables. 
 

Instead of making tables proportional to size of virtual address 
space, make them proportional to the size of physical address 
space. 
Ø  Virtual address space is growing faster than physical. 

Use one entry for each physical page with a hash table 
Ø  Translation table occupies a very small fraction of physical memory 
Ø  Size of translation table is independent of VM size 

Page table has 1 entry per virtual page 
Hashed/Inverted page table has 1 entry per physical frame 
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Virtual Address Translation 
Using Page Registers (aka Hashed/Inverted Page Tables) 

Each frame is associated with a register containing 
Ø  Residence bit: whether or not the frame is occupied 
Ø  Occupier: page number of the page occupying frame 
Ø  Protection bits 

Page registers: an example  
Ø  Physical memory size: 16 MB 
Ø  Page size: 4096 bytes 
Ø  Number of frames: 4096 
Ø  Space used for page registers (assuming 8 bytes/register): 32 

Kbytes 
Ø  Percentage overhead introduced by page registers: 0.2% 
Ø  Size of virtual memory: irrelevant 
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Page Registers 
How does a virtual address become a physical address? 

CPU generates virtual addresses, where is the 
physical page? 
Ø Hash the virtual address 
Ø Must deal with conflicts 

TLB caches recent translations, so page lookup can 
take several steps 
Ø Hash the address 
Ø Check the tag of the entry 
Ø Possibly rehash/traverse list of conflicting entries 

TLB is limited in size 
Ø Difficult to make large and accessible in a single cycle. 
Ø  They consume a lot of power (27% of on-chip for 

StrongARM) 
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Indexing Hashed Page Tables  
Using Hash Tables 

Hash page numbers to find corresponding frame number 
Ø  Page frame number is not explicitly stored (1 frame per entry) 
Ø  Protection, dirty, used, resident bits also in entry 
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Searching Hahed Page Tables 
Using Hash Tables 

Page registers are placed in an array 

Page i is placed in slot f(i) where f is an agreed-upon 
hash function 

To lookup page i, perform the following: 
Ø Compute f(i) and use it as an index into the table of page 

registers 
Ø Extract the corresponding page register 
Ø Check if the register tag contains i, if so, we have a hit 
Ø Otherwise, we have a miss 
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Searching Hashed Page Tables 
Using Hash Tables (Cont’d.) 

Minor complication 
Ø  Since the number of pages is usually larger than the number of 

slots in a hash table, two or more items may hash to the same 
location 

Two different entries that map to same location are said to 
collide 

Many standard techniques for dealing with collisions 
Ø  Use a linked list of items that hash to a particular table entry 
Ø  Rehash index until the key is found or an empty table entry is 

reached (open hashing) 
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Questions 

Why use hashed/inverted page tables? 
Ø A. Forward mapped page tables are too slow. 
Ø B. Forward mapped page tables don’t scale to larger virtual 

address spaces. 
Ø C. Inverted pages tables have a simpler lookup algorithm, so 

the hardware that implements them is simpler. 
Ø D. Inverted page tables allow a virtual page to be anywhere 

in physical memory. 
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Virtual Memory (Paging) 
The bigger picture 

A process’s VAS is its context 
Ø  Contains its code, data, and stack  

Code pages are stored in a user’s file on disk 
Ø  Some are currently residing in memory; most are 

not 

Data and stack pages are also stored in a file 
Ø  Although this file is typically not visible to  users 
Ø  File only exists while a program is executing 

  OS determines which portions of a process’s 
VAS are mapped in memory  at any one time 
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Virtual Memory 
Page fault handling 

References to non-mapped pages generate 
a page fault 
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OS resumes/initiates some other process 
Read of page completes 

OS maps the missing page into memory 
OS restart the faulting process 

Page fault handling steps: 
Processor runs the interrupt handler 
OS blocks the running process 

OS starts read of the unmapped page 

26

Virtual Memory Performance 
Page fault handling analysis 

To understand the overhead of paging, compute the effective 
memory access time (EAT)  
Ø  EAT = memory access time × probability of a page hit +    

           page fault service time × probability of a page fault 

Example: 
Ø  Memory access time: 60 ns 
Ø  Disk access time: 25 ms 
Ø  Let p = the probability of a page fault 
Ø  EAT = 60(1–p) + 25,000,000p 

To realize an EAT within 5% of minimum, what is the largest 
value of p we can tolerate?  

 

27

Virtual Memory 
Summary 

Physical and virtual memory partitioned into equal 
size units 

Size of VAS unrelated to size of physical memory 

Virtual pages are mapped to physical frames 

Simple placement strategy 

There is no external fragmentation 

Key to good performance is minimizing page faults 
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Segmentation vs. Paging 

Segmentation has what advantages over paging? 
Ø A. Fine-grained protection. 
Ø B. Easier to manage transfer of segments to/from the disk. 
Ø C. Requires less hardware support 
Ø D. No external fragmentation 

Paging has what advantages over segmentation? 
Ø A. Fine-grained protection. 
Ø B. Easier to manage transfer of pages to/from the disk. 
Ø C. Requires less hardware support. 
Ø D. No external fragmentation. 


