
1

Page Replacement Algorithms

2

Virtual Memory Management
Fundamental issues : A Recap

Key concept: Demand paging
Ø  Load pages into memory only when a

page fault occurs

Issues:
Ø  Placement strategies

❖  Place pages anywhere – no placement
policy required

Ø  Replacement strategies
❖  What to do when there exist more jobs

than can fit in memory

Ø  Load control strategies
❖  Determining how many jobs can be

in memory at one time

Operating System

User Program 1

User Program 2User Program 2

User Program n

...

Memory

3

Page Replacement Algorithms
Concept

Typically Σi VASi >> Physical Memory

With demand paging, physical memory fills quickly

When a process faults & memory is full, some page must be
swapped out
Ø  Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?
Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

4

Page Replacement Algorithms
Evaluation methodology

Record a trace of the pages accessed by a process
Ø  Example: (Virtual page, offset) address trace...

(3,0), (1,9), (4,1), (2,1), (5,3), (2,0), (1,9), (2,4), (3,1), (4,8)
Ø  generates page trace

3, 1, 4, 2, 5, 2, 1, 2, 3, 4 (represented as c, a, d, b, e, b, a, b, c, d)

Hardware can tell OS when a new page is loaded into the TLB
Ø  Set a used bit in the page table entry
Ø  Increment or shift a register

Simulate the behavior of a page replacement algorithm on the
trace and record the number of page faults generated

fewer faults better performance

5

Optimal Page Replacement
Clairvoyant replacement

Replace the page that won’t be needed for the longest time in the
future

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

Time page
needed next

Initial allocation

6

Optimal Page Replacement
Clairvoyant replacement

Replace the page that won’t be needed for the longest time in the
future

c a d b e b a b c d

a a a a a a a a a d
b b b b b b b b b b
c c c c c c c c c c

Faults • •

Pa
ge

Fr
am

es

d d d d e e e e e e

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests

Time

a = 7
b = 6
c = 9
d = 10

Time page
needed next

a = 15
b = 11
c = 13
d = 14

7

Local Page Replacement
FIFO replacement

Simple to implement
Ø  A single pointer suffices

Performance with 4 page frames:

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

Physical
Memory1

2

0

Frame List

8

Local Page Replacement
FIFO replacement

Simple to implement
Ø  A single pointer suffices

Performance with 4 page frames:

c a d b e b a b c d
a a a a e e e e e d
b b b b b b a a a a
c c c c c c c b b b

Faults • • • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

Physical
Memory0

2

3

Frame List

9

Least Recently Used Page Replacement
Use the recent past as a predictor of the near future

Replace the page that hasn’t been referenced for the longest time

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

Time page
last used

10

Least Recently Used Page Replacement
Use the recent past as a predictor of the near future

Replace the page that hasn’t been referenced for the longest time

c a d b e b a b c d
a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d

Faults • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

a = 2
b = 4
c = 1
d = 3

Time page
last used

a = 7
b = 8
e = 5
d = 3

a = 7
b = 8
e = 5
c = 9

11

Least Recently Used Page Replacement
Implementation

Maintain a “stack” of recently used pages

c a d b e b a b c d

a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d

Faults • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

LRU
page stack

Page to replace

12

Least Recently Used Page Replacement
Implementation

Maintain a “stack” of recently used pages

c a d b e b a b c d

a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d

Faults • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0
1
2
3

a
b
c
d

1 2 3 4 5 6 7 8 9 100
Requests
Time

c
c
a

c
a
d

c
a
d
b

a
d
b
e

a
d
e
b

d
e
b
a

d
e
a
b

e
a
b
c

a
b
c
d

LRU
page stack

Page to replace c d e

13

What is the goal of a page replacement algorithm?
Ø A. Make life easier for OS implementer
Ø B. Reduce the number of page faults
Ø C. Reduce the penalty for page faults when they occur
Ø D. Minimize CPU time of algorithm

14

Approximate LRU Page Replacement
The Clock algorithm

Maintain a circular list of pages resident in memory
Ø  Use a clock (or used/referenced) bit to track how often a page is accessed
Ø  The bit is set whenever a page is referenced

Clock hand sweeps over pages looking for one with used bit = 0
Ø  Replace pages that haven’t been referenced for one complete revolution

of the clock

func Clock_Replacement
begin
 while (victim page not found) do
 if(used bit for current page = 0) then
 replace current page
 else
 reset used bit
 end if
 advance clock pointer
 end while  
end Clock_Replacement

resident bit
used bit
frame number

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 111Page 3: 1

15

d
c
b
a

c

Clock Page Replacement
Example

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table entries
for resident pages:

1

d
c
b
a

a
2

d
c
b
a

d
3

d
c
b
a

b
4

e
5

b
6

a
7

b
8

c
9

d
10

1
1
1
1

a
b
c
d

16

d
c
b
a

c

Clock Page Replacement
Example

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table entries
for resident pages:

1

d
c
b
a

a
2

d
c
b
a

d
3

d
c
b
a

b
4

d
c
b
e

e
5

•
d
c
b
e

b
6

d
a
b
e

a
7

•
d
a
b
e

b
8

c
a
b
e

c
9

•
c
a
b
d

d
10

•

1
0
0
0

e
b
c
d

1
1
0
0

e
b
c
d

1
0
1
0

e
b
a
d

1
1
1
0

e
b
a
d

1
1
1
1

e
b
a
c

1
0
0
0

d
b
a
c

1
1
1
1

a
b
c
d

17

Optimizing Approximate LRU Replacement
The Second Chance algorithm

There is a significant cost to replacing “dirty” pages
Ø  Why?

❖ Must write back contents to disk before freeing!
Modify the Clock algorithm to allow dirty pages to always survive one
sweep of the clock hand
Ø  Use both the dirty bit and the used bit to drive replacement

resident bit
used bit
dirty bit

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 191Page 3: 1

0

0

1

0

1

Before clock
sweep

After clock
sweep

used dirty

0
0
1
1

0
1
0
1

used dirty

0
0
0

0
0
1

replace page

Second Chance Algorithm

18

d
c
b
a

c

The Second Chance Algorithm
Example

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table
entries

for resident
pages:

1

d
c
b
a

aw

2

d
c
b
a

d
3

d
c
b
a

bw

4
b
6

aw

7
b
8

10
10
10
10

a
b
c
d

e
5

c
9

d
10

19

d
c
b
a

c

The Second Chance Algorithm
Example

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c
d

0
Requests

Time

Page table
entries for

resident
pages:

1

d
c
b
a

aw

2

d
c
b
a

d
3

d
c
b
a

bw

4

d
e
b
a

b
6

d
e
b
a

aw

7

d
e
b
a

b
8

00
00
10
00

a*

b*

e
d

00
10
10
00

a
b
e
d

11
10
10
00

a
b
e
d

11
10
10
10

a
b
e
c

00
10
00
00

a*

d
e
c

10
10
10
10

a
b
c
d

11
11
10
10

a
b
c
d

d
e
b
a

e
5

•
c
e
b
a

c
9

•
c
e
d
a

d
10

•

20

The Problem With Local Page Replacement
How much memory do we allocate to a process?

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c

a b c d a b c d a b c d

Faults

Pa
ge

Fr
am

es 0
1
2

a
b
c

1 2 3 4 5 6 7 8 9 10 11 120
Requests
Time

–

21

The Problem With Local Page Replacement
How much memory do we allocate to a process?

Faults

Pa
ge

Fr
am

es

0
1
2
3

a
b
c

a b c d a b c d a b c d

a a a d d d c c c b b b
b b b b a a a d d d c c
c c c c c b b b a a a d

Faults • • • • • • • • •

Pa
ge

Fr
am

es 0
1
2

a
b
c

1 2 3 4 5 6 7 8 9 10 11 120
Requests
Time

–

a a a a a a a a a a a a
b b b b b b b b b b b b
c c c c c c c c c c c c
 d d d d d d d d d

 •

22

Page Replacement Algorithms
Performance

Local page replacement
Ø  LRU — Ages pages based on when they were last used
Ø  FIFO — Ages pages based on when they’re brought into memory

Towards global page replacement ... with variable number of
page frames allocated to processes

The principle of locality

Ø  90% of the execution of a program is sequential
Ø  Most iterative constructs consist of a relatively small number of

instructions
Ø  When processing large data structures, the dominant cost is sequential

processing on individual structure elements
Ø  Temporal vs. physical locality

23

Optimal Page Replacement
For processes with a variable number of frames

VMIN — Replace a page that is not referenced in the next τ
accesses

Example: τ = 4

c c d b c e c e a d

Faults

Pa
ge

s
in

 M
em

or
y Page a

Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

Page e -

t = 0

t = -1

24

Optimal Page Replacement
For processes with a variable number of frames

VMIN — Replace a page that is not referenced in the next τ
accesses

Example: τ = 4

c c d b c e c e a d
- - - - - - - - F -
- - - F - - - - - -
F • • • • • • • - -

Faults • • • • •

Pa
ge

s
in

 M
em

or
y

• • • - - - - - - F

Page a
Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

- - - - - F • • - -Page e -

t = 0

t = -1

25

Explicitly Using Locality
The working set model of page replacement

Assume recently referenced pages are likely to be referenced again
soon…

... and only keep those pages recently referenced in memory (called
the working set)
Ø  Thus pages may be removed even when no page fault occurs
Ø  The number of frames allocated to a process will vary over time

A process is allowed to execute only if its working set fits into
memory
Ø  The working set model performs implicit load control

26

Working Set Page Replacement
Implementation

Keep track of the last τ references
Ø  The pages referenced during the last τ memory accesses are

 the working set
Ø  τ is called the window size

Example: Working set computation, τ = 4 references:

c c d b c e c e a d

Faults

Pa
ge

s
in

 M
em

or
y Page a

Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

Page e •

t = 0

t = -1

t = -2

27

Working Set Page Replacement
Implementation

Keep track of the last τ references
Ø  The pages referenced during the last τ memory accesses are

 the working set
Ø  τ is called the window size

Example: Working set computation, τ = 4 references:
Ø  What if τ is too small? too large?

c c d b c e c e a d
• • • - - - - - F •
- - - F • • • • - -
F • • • • • • • • •

Faults • • • • •

Pa
ge

s
in

 M
em

or
y

• • • • • • - - - F

Page a
Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

• - - - - F • • • •Page e •

t = 0

t = -1

t = -2

28

Page-Fault-Frequency Page Replacement
An alternate working set computation

Explicitly attempt to minimize page faults
Ø  When page fault frequency is high — increase working set
Ø  When page fault frequency is low — decrease working set

Algorithm:
 Keep track of the rate at which faults occur

When a fault occurs, compute the time since the last page fault
Record the time, tlast, of the last page fault

If the time between page faults is “large” then reduce the working
set

If tcurrent – tlast > τ, then remove from memory all pages not
referenced in [tlast, tcurrent]

If the time between page faults is “small” then increase working set
If tcurrent – tlast ≤ τ, then add faulting page to the working set

29

Page-Fault-Frequency Page Replacement
Example, window size = 2

If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent] from
the working set
If tcurrent – tlast ≤ 2, just add faulting page to the working set

tcur – tlast

c c d b c e c e a d

Faults

Pa
ge

s
in

 M
em

or
y Page a

Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

Page e •

30

Page-Fault-Frequency Page Replacement
Example, window size = 2

If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent] from
the working set
If tcurrent – tlast ≤ 2, just add faulting page to the working set

3tcur – tlast 2 3 1

c c d b c e c e a d
• • • - - - - - F •
- - - F • • • • - -
F • • • • • • • • •

Faults • • • • •

Pa
ge

s
in

 M
em

or
y

• • • • • • • • - F

Page a
Page b
Page c
Page d

•
-
-
•

1 2 3 4 5 6 7 8 9 100
Requests
Time

• • • - - F • • • •Page e •

1

31

Load Control
Fundamental tradeoff

High multiprogramming level

Issues
Ø  What criterion should be used to determine when to increase or

decrease the MPL?
Ø  Which task should be swapped out if the MPL must be reduced?

Low paging overhead
Ø  MPLmin = 1 process

minimum number of frames required for a process to execute
number of page framesØ  MPLmax =

32

Load Control
How not to do it: Base load control on CPU utilization

◆  Assume memory is nearly full
◆  A chain of page faults occur

Ø  A queue of processes forms at
the paging device

◆  CPU utilization falls
Operating system increases MPL
Ø  New processes fault, taking memory away from existing processes

CPU utilization goes to 0, the OS increases the MPL further...

System is thrashing — spending all of its time paging

I/O
Device

...

Paging
Device

CPU

33

Better criteria for load control: Adjust MPL so that:
Ø  mean time between page faults (MTBF) = page fault service time

(PFST)
Ø  Σ WSi = size of memory

1.0

CPU
Utilization

Multiprogramming Level

Thrashing can be ameliorated by local page replacement

Load Control
Thrashing

Nmax NI/O-BALANCE

MTBF
PFST

1.0

34

Load Control
Thrashing

When the multiprogramming level should be
decreased, which process should be swapped
out?

Suspended

suspended
queue

ready
queue

semaphore/condition queues

Waiting

Running Ready

?

Paging Disk

Physical
Memory

Ø  Lowest priority process?
Ø  Smallest process?
Ø  Largest process?
Ø  Oldest process?
Ø  Faulting process?

