Introduction to I/O and Disk Management

Secondary Storage Management Disks — just like memory, only different

- Why have disks?
 - > Memory is small. Disks are large.
 - * Short term storage for memory contents (e.g., swap space).
 - Reduce what must be kept in memory (e.g., code pages).
 - ➤ Memory is volatile. Disks are forever (?!)
 - . File storage.

	GB/dollar dol	lar/GB
RAM	0.013(0.015,0.01)	\$77(\$68,\$95)
Disks	3.3(1.4,1.1)	$30 \not\in (71 \not\in, 90 \not\in)$
		- 20

Capacity: 2GB vs. 1TB 2GB vs. 400GB 1GB vs 320GB

How to approach persistent storage

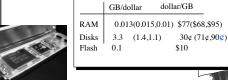
- Disks first, then file systems.
 - > Bottom up.
 - > Focus on device characteristics which dominate performance or reliability (they become focus of SW).
- Disk capacity (along with processor performance) are the crown jewels of computer engineering.
- File systems have won, but at what cost victory?
 - > Ipod, iPhone, TivO, PDAs, laptops, desktops all have file
 - > Google is made possible by a file system.
 - > File systems rock because they are:

 - Heirarchical (non-cyclical (mostly)).
 - Rich in metadata (remember cassette tapes?)
 - Indexible (hmmm, a weak point?)
- The price is complexity of implementation.

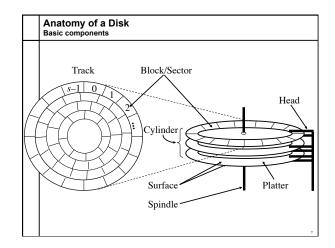
Different types of disks

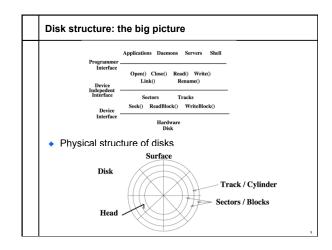
- Advanced Technology Attachment (ATA)
 - > Standard interface for connecting storage devices (e.g., hard drives and CD-ROM drives)
 - > Referred to as IDE (Integrated Drive Electronics), ATAPI, and UDMA.
 - > ATA standards only allow cable lengths in the range of 18 to 36 inches. CHEAP.
- Small Computer System Interface (SCSI)
 - > Requires controller on computer and on disk.
 - > Controller commands are sophisticated, allow reordering.
- USB or Firewire connections to ATA disc
 - > These are new bus technologies, not new control.
- Microdrive impressively small motors

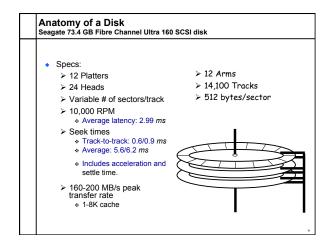
Different types of disks

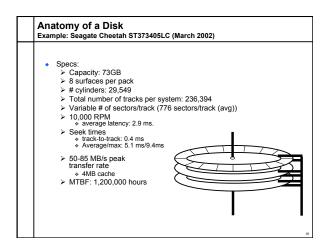

- Bandwidth ratings.
 - > These are unachievable.
 - > 50 MB/s is max off platters.
 - > Peak rate refers to transfer from disc device's memory cache.
- SATA II (serial ATA) > 3 Gb/s (still only 50 MB/s off
 - platter, so why do we care?) > Cables are smaller and can
- be longer than pATA.
- SCSI 320 MB/s
 - > Enables multiple drives on same bus

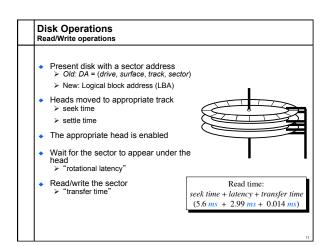
Mode	Speed
UDMA0	16.7 MB/s
UDMA1	25.0 MB/s
UDMA2	33.3 MB/s
UDMA3	44.4 MB/s
UDMA4	66.7 MB/s
UDMA5	100.0 MB/s
UDMA6	133 MB/s

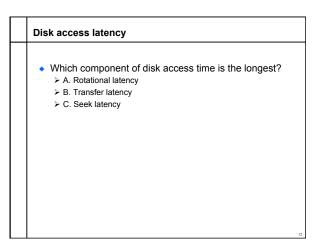

Flash: An upcoming technology

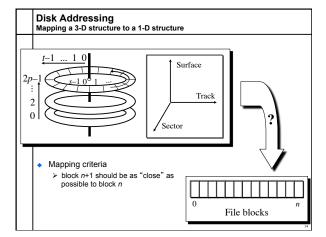

- Flash memory gaining popularity
 - > One laptop per child has 1GB flash (no disk)


 - > Vista supports Flash as accelerator > Future is hybrid flash/disk or just flash?
 - > Erased a block at a time (100,000 write-erase-cycles)
 - > Pages are 512 bytes or 2,048 bytes
 - > Read 18MB/s, write 15MB/s
 - > Lower power than (spinning) disk









Disk Addressing

- Software wants a simple "disc virtual address space" consisting of a linear array of sectors.
 - > Sectors numbered 1..N, each 512 bytes (typical size).
 - > Writing 8 surfaces at a time writes a 4KB page.
- Hardware has structure:
 - ➤ Which platter?
 - > Which track within the platter?
 - > Which sector within the track?
- The hardware structure affects latency.
 - > Reading from sectors in the same track is fast.
 - > Reading from the same cylinder group is faster than seeking.

The Impact of File Mappings

Array elements map to contiguous sectors on disk > Case1: Elements map to the middle of the disk

$$\begin{array}{c|c} 5.6 + 3.0 + 6.0 & \frac{2.048}{424} = 8.6 + 29.0 = 37.6 \, ms \\ \hline \text{Seek} & \text{Time} & \text{Entire} & \text{Time} & \text{Entire} & \text{Time} & \text{Entire} & \text{Time} & \text{Entire} & \text{Ent$$

The Impact of File Mappings File access times: Contiguous allocation

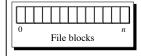
Array elements map to contiguous sectors on disk > Case1: Elements map to the middle tracks of the platter

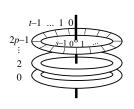
$$5.6 + 3.0 + 6.0 \frac{2.048}{424} = 8.6 + 29.0 = 37.6 \, ms$$

Case2: Elements map to the inner tracks of the platter

$$5.6 + 3.0 + 6.0 \frac{2,048}{212} = 8.6 + 58.0 = 66.6 \, ms$$

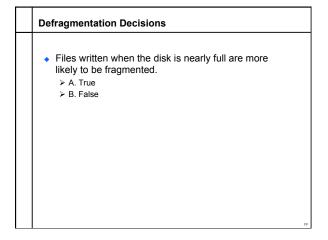
Case3: Elements map to the outer tracks of the platter

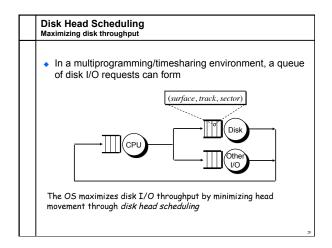

$$5.6 + 3.0 + 6.0 \frac{2.048}{636} = 8.6 + 19.3 = 27.9 \, ms$$

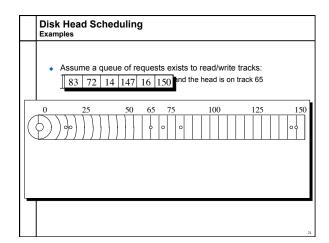

Disk Addressing

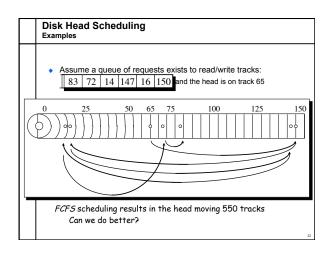
The impact of file mappings: Non-contiguous allocation

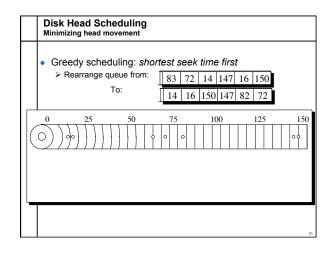
- · Array elements map to random sectors on disk
 - > Each sector access results in a disk seek

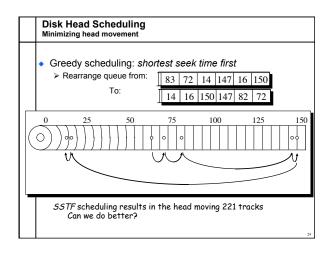

$$2,048 \times (5.6 + 3.0) = 17.6$$
 seconds

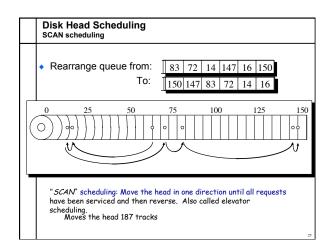


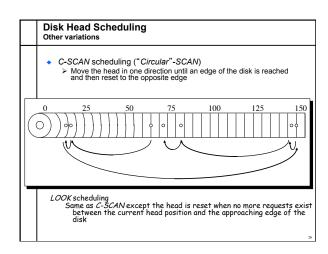



Practical Knowledge


- If the video you are playing off your hard drive skips, defragment your file system.
- OS block allocation policy is complicated. Defragmentation allows the OS to revisit layout with global information.
- Unix file systems need defragmentation less than Windows file systems, because they have better allocation policies.







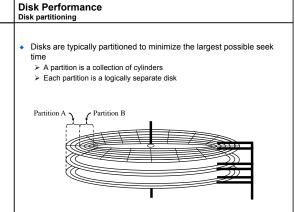
➤ Smaller → spin faster; smaller distance for head to travel; and lighter weight

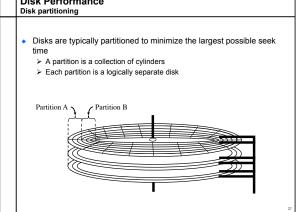
➤ More bits/square inch → small disks with large capacities

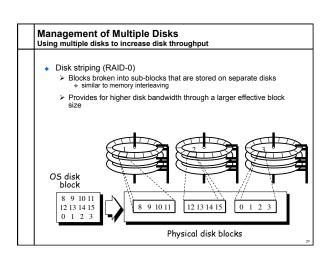
➤ Seek time, rotation latency: 5-10%/year (2-3x per decade) ➤ Bandwidth: 20-30%/year (~10x per decade)

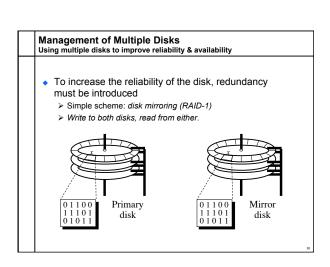
> Disk capacities are improving much faster than performance

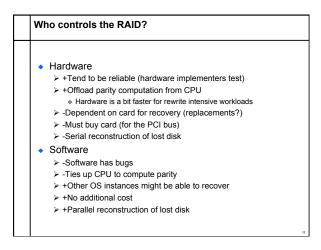
Disks - Technology Trends


Disks are getting denser


Disks are getting cheaper


> 2x/year since 1991 Disks are getting faster


Overall:


Disks are getting smaller in size

