
3/4/16

1

C for Java Programmers
Don Porter

Same Basic Syntax

ò  Data Types: int, char

ò  void - (untyped pointer)

ò  Can create other data types using typedef

ò  No Strings - only char arrays

ò  Last character needs to be a 0

ò  Not ‘0’, but ‘\0’

struct – C’s object

ò  typedef struct foo {

 int a;

 void *b;

 void (*op)(int c); // function pointer

 } foo_t; // <------type declaration

ò  Actual contiguous memory

ò  Includes data and function pointers

More on Function
Pointers

ò  C allows function pointers to be used as members of a struct or passed as arguments to a
function

ò  Continuing the previous example:

void myOp(int c){ /*…*/ }

/*…*/

foo_t *myFoo = malloc(sizeof(foo_t));

myFoo->op = myOp; // set pointer

/*…*/

myFoo->op(5); // Actually calls myop

No Constructors or
Destructors

ò  Must manually allocate and free memory - No Garbage
Collection!

ò  void *x = malloc(sizeof(foo_t));

ò  sizeof gives you the number of bytes in a foo_t - DO NOT
COUNT THEM YOURSELF!

ò  free(x);

ò  Memory allocator remembers the size of malloc’ed memory

ò  Must also manually initialize data

ò  Custom function

ò  memset(x, 0, sizeof(x)) will zero it

Memory References

ò  ‘.’ - access a member of a struct

ò  myFoo.a = 5;
ò  ‘&’ - get a pointer to a variable

ò  foo_t * fPointer = &myFoo;
ò  ‘->’ - access a member of a struct, via a pointer to the

struct

ò  fPointer->a = 6;
ò  ‘*’ - dereference a pointer

ò  if(5 == *intPointer){…}

ò  Without the *, you would be comparing 5 to the address of the int, not
its value.

3/4/16

2

Memory References, cont.

ò  ‘[]’ - refer to a member of an array

 char *str = malloc(5 * sizeof(char));

 str[0] = ‘a’;

ò  Note: *str = ‘a’ is equivalent

ò  str++; increments the pointer such that *str == str[1]
str

str[0] str[1] str[2] str[3] str[4]

str+1 str+2 str+3 str+4

The Chicken or The Egg?

ò  Many C functions (printf, malloc, etc) are implemented
in libraries

ò  These libraries use system calls

ò  System calls provided by kernel

ò  Thus, kernel has to “reimplement” basic C libraries

ò  In some cases, such as malloc, can’t use these language
features until memory management is implemented

Referring to Assembly
from C

ò  “extern” keyword imports a variable or function

ò  Can call a labeled code region as a function if it
implements proper calling convention

ò  In most cases, though, you will just inline a “call”
instruction

For more help

ò  man pages are your friend!

ò  (not a dating service)!

ò  Ex: ‘man malloc’, or ‘man 3 printf’
ò  Section 3 is usually where libraries live - there is a

command-line utility printf as well

ò  Use ‘apropos term’ to search for man entries about term

ò  The C Programming Language by Brian Kernighan and
Dennis Ritchie is a great reference.

