l. - : LW | . ‘;‘_ ‘: f’ “)\ &\
- SAINSE W - S Rt e
: as [’ - 4 'ﬁ) LY
5 2 \
a .
A \' b P e £y :, x -~ — gy
| 4 S AN ey 8 -y v sanlot Y I M_-:‘_'..ﬁ‘
;*‘} st F 3 o — v ‘A '.'- r;" I
l\r . L A . 2 W : N 4 J '4”,‘. Q- |
| -~ . 2 -RE 8 a1 b - - x . ‘:: .
T d‘ - - 2™ 2 3
e 77 a8 o g ‘2 e S
R : 4 1 v £ TRTIN
P . N 19 ENE o]
% -~ ’-‘\‘)" : g 5‘
i ~
~
L

- D)on Pors

Same Basic Syntax

+ Data Types: int, char

void - (untyped pointer)
Can create other data types using typedef
+ No Strings - only char arrays

Last character needs to be a 0
4+ Not ‘0 ,but \0°

struct — C's object

+ typedef struct foo {
Int a;
void *b;
void (*op)(int ¢); // function pointer
} foo_t; // <------type declaration
+ Actual contiguous memory

+ Includes data and function pointers

More on Function
Pointers

+ C allows function pointers to be used as members of a struct or passed as arguments to a
function

+ Continuing the previous example:

void myOp(int c){ /*...*/ }

/%%

foo_t *myFoo = malloc(sizeof(foo_t));
myFoo->op = myOp; // set pointer
bt/

myFoo->op(5); // Actually calls myop

No Constructors or
Destructors

+ Must manually allocate and free memory - No Garbage
Collection!

void *x = malloc(sizeof(foo_t));

+ sizeof gives you the number of bytes in a foo_t - DO NOT
COUNT THEM YOURSELF!

free(x);
+ Memory allocator remembers the size of malloc’ ed memory

+ Must also manually 1nitialize data

Custom function

memset(x, 0, sizeof(x)) will zero it

Memory References

4 ‘. -access a member of a struct
myFoo0.a = 5;

+ ‘&’ - get a pointer to a variable
foo_t * fPointer = &myFoo;

4+ ‘-t>’ - taccess a member of a struct, via a pointer to the
struc

fPointer->a = 6;
+ “*’ - dereference a pointer
if(5 == *intPointer){...}

+ Without the *, you would be comparing 5 to the address of the int, not
its value.

Memory References, cont.

4+ ‘[I” -refer to a member of an array

char *str = malloc(5 * sizeof(char));
StE[0]-=—a"—;
Note: *str = ‘a’ is equivalent

str++; increments the pointer such that *str == str[1]

=it Str+1 str+2| str+3| str+4]

str[0] str[1] str[2] str[3] str[4]

The Chicken or The Egg?

+ Many C functions (printf, malloc, etc) are implemented
in libraries

+ These libraries use system calls
+ System calls provided by kernel

+ Thus, kernel has to “reimplement” basic C libraries

In some cases, such as malloc, can’t use these language
features until memory management 1s implemented

Referring to Assembly
from C

+ “extern” keyword imports a variable or function

+ Can call a labeled code region as a function if it
implements proper calling convention

In most cases, though, you will just inline a “call”
instruction

For more help

+ man pages are your friend!

(not a dating service)!

Ex: ‘man malloc’, or ‘man 3 printf

+ Section 3 1s usually where libraries live - there 1s a
command-line utility printf as well

+ Use ‘apropos term’ to search for man entries about term

+ The C Programming Language by Brian Kernighan and
Dennis Ritchie 1s a great reference.

