
2/29/16	

1	

CSE	306:	Opera.ng	Systems	

Opera.ng	Systems	History	
and	Overview	

	

	

	

Por*ons	of	this	material	courtesy	Profs.	Wong	and	Stark	

CSE	306:	Opera.ng	Systems	

So	what	is	an	OS?	

2-2	

CSE	306:	Opera.ng	Systems	

One	view	of	an	OS	

2-3	

CSE	306:	Opera.ng	Systems	

Another	simple	view	of	an	OS	

2-4	

Hardware	

OS	

App	 App	 App	 App	

CSE	306:	Opera.ng	Systems	

A	less	happy	view	of	an	OS	

2-5	

CSE	306:	Opera.ng	Systems	

So	which	one	is	right?	
•  They	all	are	

2-6	



2/29/16	

2	

CSE	306:	Opera.ng	Systems	

An	OS	serves	three	masters	
1.  Give	users	a	desktop	environment	
2.  Give	applica*ons	a	more	usable	abstrac*on	of	the	

hardware	
3.  Give	hardware	manufacturers	an	abstrac*on	of	the	

applica*ons		

2-7	

CSE	306:	Opera.ng	Systems	

Background	(1)	
•  CPUs	have	2	modes:	user	and	supervisor	
–  Some*mes	more,	but	whatevs	

•  Supervisor	mode:		
–  Issue	commands	to	hardware	devices	
–  Power	off,	Reboot,	Suspend	
–  Launch	missiles,	Do	awesome	stuff	

•  User	mode:		
–  Run	other	code,	hardware	taXles	if	you	try	anything	
reserved	for	the	supervisor	

2-8	

CSE	306:	Opera.ng	Systems	

OS	architecture	

2-9	

Hardware	

OS	

App	 App	 App	 App	

CSE	306:	Opera.ng	Systems	

OS	architecture	

2-10	

Hardware	

Libraries	

App	 App	 App	 App	

Kernel	

User	

Super-	
visor	

CSE	306:	Opera.ng	Systems	

Master	#2:	Applica*ons	
•  Applica*on	Programming	Interface	(API)	
– Win32	(Windows)	
–  POSIX	(Unix/Linux)	
–  Cocoa/Cocoa	Touch	(Mac	OS/iOS)	

•  Applica*on-facing	func*ons	provided	by	libraries	
–  Injected	by	the	OS	into	each	applica*on	

2-11	

CSE	306:	Opera.ng	Systems	

OS	architecture	

2-12	

Hardware	

Libraries	

App	 App	 App	 App	

Kernel	

User	

Super-	
visor	



2/29/16	

3	

CSE	306:	Opera.ng	Systems	

App	

OS	architecture	

2-13	

Hardware	

Libraries	

Kernel	

User	

Super-	
visor	

App	

Libraries	

App	

Libraries	

Win32	
API	

CSE	306:	Opera.ng	Systems	

Famous	libraries,	anyone?	
•  Windows:	ntdll.dll,	kernel32.dll,	user32.dll,	gdi32.dll	
•  Linux/Unix:	libc.so,	ld.so,	libpthread.so,	libm.so	

2-14	

CSE	306:	Opera.ng	Systems	

Caveat	1	
•  Libraries	include	a	lot	of	code	for	common	func*ons	
– Why	bother	reimplemen*ng	sqrt?	

•  They	also	give	high-level	abstrac*ons	of	hardware	
–  Files,	printer,	dancing	Homer	Simpson	USB	doll	

•  How	does	this	work?	

2-15	

CSE	306:	Opera.ng	Systems	

System	Call	
•  Special	instruc*on	to	switch	from	user	to	supervisor	
mode	

•  Transfers	CPU	control	to	the	kernel	
–  One	of	a	small-ish	number	of	well-defined	func*ons	

•  How	many	system	calls	does	Windows	or	Linux	
have?	
– Windows	~1200	
–  Linux	~350	

2-16	

CSE	306:	Opera.ng	Systems	

App	

OS	architecture	

2-17	

Hardware	

Libraries	

Kernel	

User	

Super-	
visor	

App	

Libraries	

App	

Libraries	

System	Call	Table	(350—1200)	

Open	file	
“hw1.txt”	

Ok,	here’s	
handle	4	

CSE	306:	Opera.ng	Systems	

Caveat	2	
•  Some	libraries	also	call	special	apps	provided	by	the	
OS,	called	a	daemon	(or	service)	
–  Communicate	through	kernel-provided	API	

•  Example:	Print	spooler	
–  App	sends	pdf	to	spooler	
–  Spooler	checks	quotas,	etc.	
–  Turns	pdf	into	printer-specific	format	
–  Sends	reformaXed	document	to	device	via	OS	kernel	

2-18	



2/29/16	

4	

CSE	306:	Opera.ng	Systems	

App	

OS	architecture	

2-19	

Hardware	

Libraries	

Kernel	

User	

Super-	
visor	

App	

Libraries	

Daemon	

Libraries	

System	Call	Table	(350—1200)	

CSE	306:	Opera.ng	Systems	

Master	3:	Hardware	
•  OS	kernels	are	programmed	at	a	higher	low	level	of	
abstrac*on	
–  Disk	blocks	vs.	specific	types	of	disks	

•  For	most	types	of	hardware,	the	kernel	has	a	“lowest	
common	denominator”	interface	
–  E.g.,	Disks,	video	cards,	network	cards,	keyboard	
–  Think	Java	abstract	class	
–  Some*mes	called	a	hardware	abstrac*on	layer	(HAL)	

•  Each	specific	device	(Nvidia	GeForce	600)	needs	to	
implement	the	abstract	class	
–  Each	implementa*on	is	called	a	device	driver	

2-20	

CSE	306:	Opera.ng	Systems	

App	

OS	architecture	

2-21	

Hardware	

Libraries	

Kernel	
	

User	

Super-	
visor	

App	

Libraries	

Daemon	

Libraries	

System	Call	Table	(350—1200)	

HAL	

Driver	 Driver	 Driver	

CSE	306:	Opera.ng	Systems	

What	about	Master	1	
•  What	is	the	desktop?	
•  Really	just	a	special	daemon	that	interacts	closely	
with	keyboard,	mouse,	and	display	drivers	
–  Launches	programs	when	you	double	click,	etc.	
–  Some	program	libraries	call	desktop	daemon	to	render	
content,	etc.	

2-22	

CSE	306:	Opera.ng	Systems	

An	OS	serves	three	masters	
1.  Give	users	a	desktop	environment		
–  Desktop,	or	window	manager,	or	GUI	

2.  Give	applica*ons	a	more	usable	abstrac*on	of	the	
hardware	
–  Libraries	(+	system	calls	and	daemons)	

3.  Give	hardware	manufacturers	an	abstrac*on	of	the	
applica*ons		
–  Device	Driver	API	(or	HAL)	

2-23	

CSE	306:	Opera.ng	Systems	

Mul*plexing	Resources	
•  Many	applica*ons	may	need	to	share	the	hardware	
•  Different	strategies	based	on	the	device:	
–  Time	sharing:	CPUs,	disk	arm	

•  Each	app	gets	the	resource	for	a	while	and	passes	it	on	
–  Space	sharing:	RAM,	disk	space	

•  Each	app	gets	part	of	the	resource	all	the	*me	

–  Exclusive	use:	mouse,	keyboard,	video	card	
•  One	app	has	exclusive	use	for	an	indefinite	period	



2/29/16	

5	

CSE	306:	Opera.ng	Systems	

So	what	is	Linux?	
•  Really	just	an	OS	kernel		
–  Including	lots	of	device	drivers	

•  Conflated	with	environment	consis*ng	of:	
–  Linux	kernel	
–  Gnu	libc	
–  X	window	manager	daemon	
–  CUPS	printer	manager	
–  Etc.	

2-25	

CSE	306:	Opera.ng	Systems	

So	what	is	Ubuntu?		Centos?	
•  A	distribu.on:	bundles	all	of	that	stuff	together	
–  Pick	versions	that	are	tested	to	work	together	
–  Usually	also	includes	a	sonware	update	system	

2-26	

CSE	306:	Opera.ng	Systems	

OSX	vs	iOS?	
•  Same	basic	kernel	(a	few	different	compile	op*ons)	
•  Different	window	manager	and	libraries	

2-27	

CSE	306:	Opera.ng	Systems	

What	is	Unix?	
•  A	very	old	OS	(1970s),	innova*ve,	s*ll	in	use	
•  Innova*ons:	
–  Kernel	wriXen	in	C	(first	one	not	in	assembly)	

•  Co-designed	C	language	with	Unix	
–  Several	nice	API	abstrac*ons		

•  Fork,	pipes,	everything	a	file	

•  Several	implementa*ons:	*BSDs,	Solaris,	etc.	
–  Linux	is	a	Unix-like	kernel	

2-28	

CSE	306:	Opera.ng	Systems	

What	is	POSIX?	
•  A	standard	for	Unix	compa*bility	
•  Even	Windows	is	POSIX	compliant!	
	

2-29	

CSE	306:	Opera.ng	Systems	

History	of	Opera*ng	Systems	
•  Two	ways	to	look	at	history:	
–  Evolu*on	of	the	Theory	
–  Evolu*on	of	the	Machine/Hardware	



2/29/16	

6	

CSE	306:	Opera.ng	Systems	

Evolu*on	of	OS	Theory	
1.  Centralized	opera*ng	system	

–  Resource	management	and	mul*programming,	Virtuality	
2.  Network	opera*ng	system	

–  Resource	sharing	to	achieve	Interoperability	
3.  Distributed	opera*ng	system	

–  Singe	computer	view	of	a	mul*ple	computer	system	for	
Transparency	

4.  Coopera*ve	autonomous	system	
–  Coopera*ve	work	with	Autonomicity	

CSE	306:	Opera.ng	Systems	

Evolu*on	of	OS	Machine/Hardware	

CSE	306:	Opera.ng	Systems	

1940’s	–	First	Computers	
•  One	user/programmer	at	a	*me	(serial		
–  Program	loaded	manually	using	switches	
–  Debug	using	the	console	lights	

•  ENIAC	
–  1st	gen	purpose	machine	
–  Calcula*ons	for	Army	
–  Each	panel	had	specific		
func*on	

ENIAC	(Electronic	Number	Integrator	and	Computer)	

CSE	306:	Opera.ng	Systems	

1940’s	–	First	Computers	

Pros:	
•  Interac*ve	–	immediate	

response	on	lights	
•  Programmers	were	women	

J	

Cons:	
•  Lots	of	Idle	*me	

–  Expensive	computa*on	

•  Error-prone/tedious	
•  Each	program	needs	all	driver	

code	

•  Vacuum	Tubes	and	Plugboards	
•  Single	group	of	people	designed,	built,	

programmed,	operated	and	maintained	
each	machine	

•  No	Programming	language,	only	absolute	
machine	language	(101010)	

•  O/S?	What	is	an	O/S?	
•  All	programs	basically	did	numerical	

calcula*ons	
	

CSE	306:	Opera.ng	Systems	

1950’s	–	Batch	Processing	
•  Deck	of	cards	to	describe	job	
•  Jobs	submiXed	by	mul*ple	users	are	sequenced	
automa*cally	by	a	resident	monitor	

•  Resident	monitor	was	a	basic	O/S	
–  S/W	controls	sequence	of	events	
–  Command	processor	
–  Protec*on	from	bugs	(eventually)	
–  Device	drivers	

CSE	306:	Opera.ng	Systems	

Monitor’s	Perspec*ve	

•  Monitor	controls	the	sequence	of	
events	

•  Resident	Monitor	is	sonware	always	
in	memory	

•  Monitor	reads	in	job	and	gives	
control	

•  Job	returns	control	to	monitor	



2/29/16	

7	

CSE	306:	Opera.ng	Systems	

1950’s	–	Batch	Processing	

Pros:	
•  CPU	kept	busy,	less	idle	*me	
•  Monitor	could	provide	I/O	

services	

Cons:	
•  No	longer	interac*ve	–	longer	

turnaround	*me	
•  Debugging	more	difficult	
•  CPU	s*ll	idle	for	I/O-bound	

jobs	
•  Buggy	jobs	could	require	

operator	interven*on	

IBM	7090	

CSE	306:	Opera.ng	Systems	

Mul*programmed	Batch	Systems	
•  CPU	is	onen	idle		
–  Even	with	automa*c	job	sequencing.	
–  I/O	devices	are	slow	compared	to	processor	

CSE	306:	Opera.ng	Systems	

Uniprogramming	
•  Processor	must	wait	for	I/O	instruc*on	to	complete	
before	preceding	

CSE	306:	Opera.ng	Systems	

Mul*programming	
•  When	one	job	needs	to	wait	for	I/O,	the	processor	
can	switch	to	the	other	job	

CSE	306:	Opera.ng	Systems	

Mul*programming	
CSE	306:	Opera.ng	Systems	

1960’s	–	Mul*programming		
(*me-sharing)		

•  CPU	and	I/O	devices	are	mul*plexed	(shared)	
between	a	number	of	jobs	
– While	one	job	is	wai*ng	for	I/O	another	can	use	the	CPU	
–  SPOOLing:	Simultaneous	Peripheral	Opera*on	OnLine	

•  1st	and	simplest	mul*programming	system	

•  Monitor	(resembles	O/S)	
–  Starts	job,	spools	opera*ons,	I/O,		
switch	jobs,	protec*on	between	memory	
	

		



2/29/16	

8	

CSE	306:	Opera.ng	Systems	

1960’s	–	Mul*programming		
(*me-sharing)		

Pros:	
•  Paging	and	swapping	(RAM)	
•  Interac*veness	
•  Output	available	at	comple*on	
•  CPU	kept	busy,	less	idle	*me	

Cons:	
•  H/W	more	complex	
•  O/S		complexity?	

IBM	System	360	

CSE	306:	Opera.ng	Systems	

1970’s	-	Minicomputers	and	
Microprocessors	

•  Trend	toward	many	small	personal	computers	or	
worksta*ons,	rather	than	a	single	mainframe.	
–  Advancement	of	Integrated	circuits	

•  Timesharing	
–  Each	user	has	a	terminal	and	shares	a	single	machine	
(Unix)	

CSE	306:	Opera.ng	Systems	

1980’s	–	Personal	Computers	&	
Networking		

•  Microcomputers		=	PC	(size	and	$)	
•  MS-DOS,	GUI,	Apple,	Windows	

•  Networking:	Decentraliza*on	of	compu*ng	required	
communica*on	
–  Not	cost-effec*ve	for	every	user	to	have	printer,	full	copy	
of	sonware,	etc.	

–  Rise	of	cheap,	local	area	networks	(Ethernet),	and	access	
to	wide	area	networks	(Arpanet).	

CSE	306:	Opera.ng	Systems	

1980’s	–	Personal	Computers	&	
Networking		

•  OS	issues:	
–  Communica*on	protocols,	client/server	paradigm	
–  Data	security,	encryp*on,	protec*on	
–  Reliability,	consistency,	availability	of	distributed	data	
–  Heterogeneity	
–  Reducing	Complexity	

•  Ex:	Byte	Ordering	

CSE	306:	Opera.ng	Systems	

1990’s	–	Global	Compu*ng	
•  Dawn	of	the	Internet	
–  Global	compu*ng	system	

•  Powerful	CPUs	cheap!	Mul*core	systems	
•  High	speed	links	
•  Standard	protocols	(HTTP,	FTP,	HTML,	XML,	etc)	
•  OS	Issues:	
–  Communica*on	costs	dominate	

•  CPU/RAM/disk	speed	mismatch	
•  Send	data	to	program	vs.	sending	program	to	data	

–  QoS	gurantees	
–  Security	

CSE	306:	Opera.ng	Systems	

In	the	year	2000…	



2/29/16	

9	

CSE	306:	Opera.ng	Systems	

2000’s	–	Embedded	and	Ubiquitous	
Compu*ng	

•  Mobile	and	wearable	computers	
•  Networked	household	devices	
•  Absorp*on	of	telephony,	entertainment	func*ons	
into	compu*ng	systems	

•  OS	issues:	
–  Security,	privacy	
– Mobility,	ad-hoc	networks,	power	management	
–  Reliability,	service	guarantees	

CSE	306:	Opera.ng	Systems	

2000’s	–	Embedded	and	Ubiquitous	Compu*ng	
•  Real-*me	compu*ng	
–  Guaranteed	upper	bound	on	task	comple*on	

•  Dedicated	computers/Embedded	systems	
–  Applica*on	specific,	designed	to	complete	par*cular	tasks	

•  Distributed	systems	
–  Redundant	resources,	transparent	to	user	

CSE	306:	Opera.ng	Systems	

Mul*-core	
•  New	hotness	in	CPU	design.		Not	going	away.	
– Why?			

•  Being	able	to	program	with	threads	and	concurrent	
algorithms	will	be	a	crucial	job	skill	going	forward	
–  Don’t	leave	SBU	without	mastering	these	skills	
– We	will	do	some	thread	programming	in	Lab	3	

CSE	306:	Opera.ng	Systems	

Editorial	
•  Some	textbooks	imply	modern	OSes	are	
microkernels	

•  This	is	false	
– Windows	NT	and	OSX	were	designed	as	microkernels	
–  Then	reverted	to	essen*ally	monolithic	designs	in	prac*ce	

•  Linux	was	never	a	microkernel	
–  Google	the	famous	Torvalds	Tanenbaum	debate	

•  Similarly,	Distributed	OSes	are	mostly	abandoned	

CSE	306:	Opera.ng	Systems	

Object	orienta*on	
•  Objects	are	a	key	feature	of	the	Windows	NT	kernel	
design		
–  IMO	a	good	idea	

•  Linux	actually	has	its	own	bizarre	version	of	object	
orienta*on	using	C	structs	and	func*on	pointers	
–  In	Unix,	everything	is	a	file	
–  How	did	they	pull	this	off?			
–  Poor-man’s	object	inheritance	

CSE	306:	Opera.ng	Systems	

Summary	
•  OS’s	began	with	big	expensive	computers	used	
interac*vely	by	one	user	at	a	*me.	

•  Batch	systems	sequences	jobs	to	keep	computer	
busier.	Interac*vity	sacrificed.	

•  Mul*programming	developed	to	make	more	efficient	
use	of	expensive	hardware	and	restore	
interac*veness.	

•  Cheap	CPU/memory/storage	make	communica*on	
the	dominant	cost.	

•  Mul*programming	s*ll	central	for	handling	
concurrent	interac*on	with	environment.	



2/29/16	

10	

CSE	306:	Opera.ng	Systems	

Summary	(2)	
•  Understand	what	an	OS	is	
–  Three	masters	
–  Nomenclature	

•  Ques*ons?	

2-55	


