
CSE	506:	Opera.ng	Systems	

Signals	and	Inter-Process	
Communica.on	

	

Don	Porter	

1	

CSE	506:	Opera.ng	Systems	

Housekeeping	
•  Paper	reading	assigned	for	next	class	

2	

CSE	506:	Opera.ng	Systems	

Logical	Diagram	

Memory		
Management	

CPU	
Scheduler	

User	

Kernel	

Hardware	

Binary	
Formats	

Consistency	

System	Calls	

Interrupts	 Disk	 Net	

RCU	 File	System	

Device	
Drivers	

Networking	 Sync	

Memory	
Allocators	 Threads	

Today’s	Lecture	
Process	

CoordinaKon	

3	

CSE	506:	Opera.ng	Systems	

Last	Kme…	
•  We’ve	discussed	how	the	OS	schedules	the	CPU	
–  And	how	to	block	a	process	on	a	resource	(disk,	network)	

•  Today:	
–  How	do	processes	block	on	each	other?	
–  And	more	generally	communicate?	

4	

CSE	506:	Opera.ng	Systems	

Outline	
•  Signals	
–  Overview	and	APIs	
–  Handlers	
–  Kernel-level	delivery	
–  Interrupted	system	calls	

•  Interprocess	CommunicaKon	(IPC)	
–  Pipes	and	FIFOs	
–  System	V	IPC	
– Windows	Analogs	

5	

CSE	506:	Opera.ng	Systems	

What	is	a	signal?	
•  Like	an	interrupt,	but	for	applicaKons	
–  <	64	numbers	with	specific	meanings	
–  A	process	can	raise	a	signal	to	another	process	or	thread	
–  A	process	or	thread	registers	a	handler	funcKon	

•  For	both	IPC	and	delivery	of	hardware	excepKons	
–  ApplicaKon-level	handlers:	divzero,	segfaults,	etc.	

•  No	“message”	beyond	the	signal	was	raised	
–  And	maybe	a	liale	metadata	

•  PID	of	sender,	faulKng	address,	etc.	
•  But	plaborm-specific	(non-portable)	

	 6	

CSE	506:	Opera.ng	Systems	

Example	

Pid	300	
	

int main() {
 ...
 signal(SIGUSR1, &usr_handler);
 ...

}	

Register	usr_handler()	to	handle	SIGUSR1	 7	

CSE	506:	Opera.ng	Systems	

Example	

Pid	300	
	

kill(300, SIGUSR1);	

Send	signal	to	PID	300	

Pid	400	
	

int main() {
 ...

}

int usr_handler() { …

PC	

8	

CSE	506:	Opera.ng	Systems	

Basic	Model	
•  ApplicaKon	registers	handlers	with	signal	or	sigacKon	
•  Send	signals	with	kill	and	friends	
–  Or	raised	by	hardware	excepKon	handlers	in	kernel	

•  Signal	delivery	jumps	to	signal	handler	
–  Irregular	control	flow,	similar	to	an	interrupt	

API	names	are	admiaedly	confusing	 9	

CSE	506:	Opera.ng	Systems	

Signal	Types	
•  See	man	7	signal	for	the	full	list:	(varies	by	sys/arch)	
SIGTSTP	–	1	–	Stop	typed	at	terminal	(Ctrl+Z)	
SIGKILL	–	9	–	Kill	a	process,	for	realzies	
SIGSEGV	–	11	–	SegmentaKon	fault	
SIGPIPE	–	13	–	Broken	pipe	(write	with	no	readers)	
SIGALRM	–	14	–	Timer		
SIGUSR1	–	10	–	User-defined	signal	1	
SIGCHLD	–	17	–	Child	stopped	or	terminated	
SIGSTOP	–	19	–	Stop	a	process	
SIGCONT	–	18	–	ConKnue	if	stopped	

10	

CSE	506:	Opera.ng	Systems	

Language	ExcepKons	
•  Signals	are	the	underlying	mechanism	for	ExcepKons	
and	catch	blocks	

•  JVM	or	other	runKme	system	sets	signal	handlers	
–  Signal	handler	causes	execuKon	to	jump	to	the	catch	block	

11	

CSE	506:	Opera.ng	Systems	

Signal	Handler	Control	Flow	

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivering a Signal | 443

starts executing the signal handler, because the handler’s starting address was forced
into the program counter. When that function terminates, the return code placed on
the User Mode stack by the setup_frame() or setup_rt_frame() function is exe-
cuted. This code invokes the sigreturn() or the rt_sigreturn() system call; the cor-
responding service routines copy the hardware context of the normal program to the
Kernel Mode stack and restore the User Mode stack back to its original state (by
invoking restore_sigcontext()). When the system call terminates, the normal pro-
gram can thus resume its execution.

Let’s now examine in detail how this scheme is carried out.

Setting up the frame

To properly set the User Mode stack of the process, the handle_signal() function
invokes either setup_frame() (for signals that do not require a siginfo_t table; see
the section “System Calls Related to Signal Handling” later in this chapter) or setup_
rt_frame() (for signals that do require a siginfo_t table). To choose among these
two functions, the kernel checks the value of the SA_SIGINFO flag in the sa_flags field
of the sigaction table associated with the signal.

The setup_frame() function receives four parameters, which have the following
meanings:

sig
Signal number

ka
Address of the k_sigaction table associated with the signal

oldset
Address of a bit mask array of blocked signals

Figure 11-2. Catching a signal

Normal
program

flow

Signal
handler

Return code
on the stack

do_signal()

handle_signal()

setup_frame()

system_call()

sys_sigreturn()

restore_sigcontext()

User Mode Kernel Mode

From	Understanding	the	Linux	Kernel	 12	

CSE	506:	Opera.ng	Systems	

Alternate	Stacks	
•  Signal	handlers	execute	on	a	different	stack	than	
program	execuKon.		
– Why?	

•  Safety:	App	can	ensure	stack	is	actually	mapped	
–  And	avoid	assumpKons	about	applicaKon	not	using	space	below	rsp	

–  Set	with	sigaltstack()	system	call	

•  Like	an	interrupt	handler,	kernel	pushes	register	
state	on	interrupt	stack	
–  Return	to	kernel	with	sigreturn()	system	call	
–  App	can	change	its	own	on-stack	register	state!	

	

13	

CSE	506:	Opera.ng	Systems	

Nested	Signals	
•  What	happens	when	you	get	a	signal	in	the	signal	
handler?	

•  And	why	should	you	care?	

14	

CSE	506:	Opera.ng	Systems	

The	Problem	with	NesKng	
int main() {

 /* ... */
 signal(SIGINT, &handler);
 signal(SIGTERM, &handler);
 /* ... */

}
int handler() {

 free(buf1);
 free(buf2);

}

SIGINT	

SIGTERM	

Signal	Stack	

PC	 Calls	
munmap()	

Another	signal	
delivered	on	

return	
Double	free!	

15	

CSE	506:	Opera.ng	Systems	

Nested	Signals	
•  The	original	signal()	specificaKon	was	a	total	mess!	
–  Now	deprecated---do	not	use!	

•  New	sigacKon()	API	lets	you	specify	this	in	detail	
– What	signals	are	blocked	(and	delivered	on	sigreturn)	
–  Similar	to	disabling	hardware	interrupts	

•  As	you	might	guess,	blocking	system	calls	inside	of	a	
signal	handler	are	only	safe	with	careful	use	of	
sigacKon()	

16	

CSE	506:	Opera.ng	Systems	

ApplicaKon	vs.	Kernel	
•  App:	signals	appear	to	be	delivered	roughly	
immediately	

•  Kernel	(lazy):		
–  Send	a	signal	==	mark	a	pending	signal	in	the	task	

•  And	make	runnable	if	blocked	with	TASK_INTERRUPTIBLE	flag	

–  Check	pending	signals	on	return	from	interrupt	or	syscall	
•  Deliver	if	pending	

17	

CSE	506:	Opera.ng	Systems	

Example	

Pid	300	
RUNNING	

	

kill(300, SIGUSR1);	

Send	signal	to	PID	300	

Pid	400	
	

int main() {
 read();

}

int usr_handler() { …

PC	

…	

…	
10	Pid	300	

INTERRUPTIBLE	

	
Block	on	disk	

read!	

Mark	pending	
signal,	
unblock	

What	happens	
to	read?	

18	

CSE	506:	Opera.ng	Systems	

Interrupted	System	Calls	
•  If	a	system	call	blocks	in	the	INTERRUPTIBLE	state,	a	
signal	wakes	it	up	

•  Yet	signals	are	delivered	on	return	from	a	system	call	
•  How	is	this	resolved?	
•  The	system	call	fails	with	a	special	error	code	
–  EINTR	and	friends	
– Many	system	calls	transparently	retry	aver	sigreturn	
–  Some	do	not	–	check	for	EINTR	in	your	applicaKons!	

19	

CSE	506:	Opera.ng	Systems	

Default	handlers	
•  Signals	have	default	handlers:	
–  Ignore,	kill,	suspend,	conKnue,	dump	core	
–  These	execute	inside	the	kernel	

•  Installing	a	handler	with	signal/sigacKon	overrides	
the	default	

•  A	few	(SIGKILL)	cannot	be	overridden	

20	

CSE	506:	Opera.ng	Systems	

RT	Signals	
•  Default	signals	are	only	in	2	states:	signaled	or	not	
–  If	I	send	2	SIGUSR1’s	to	a	process,	only	one	may	be	
delivered	

–  If	system	is	slow	and	I	furiously	hit	Ctrl+C	over	and	over,	
only	one	SIGINT	delivered	

•  Real	Kme	(RT)	signals	keep	a	count	
–  Deliver	one	signal	for	each	one	sent	

21	

CSE	506:	Opera.ng	Systems	

Signal	Summary	
•  AbstracKon	like	hardware	interrupts	
–  Some	care	must	be	taken	to	block	other	interrupts	
–  Easy	to	write	buggy	handlers	and	miss	EINTR		

•  Understand	control	flow	from	applicaKon	and	kernel	
perspecKve	

•  Understand	basic	APIs	

22	

CSE	506:	Opera.ng	Systems	

Other	IPC	
•  Pipes,	Sockets,	and	FIFOs	
•  System	V	IPC	
•  Windows	comparison	

23	

CSE	506:	Opera.ng	Systems	

Pipes	
•  Stream	of	bytes	between	two	processes	
•  Read	and	write	like	a	file	handle	
–  But	not	anywhere	in	the	hierarchical	file	system	
–  And	not	persistent	
–  And	no	cursor	or	seek()-ing	
–  Actually,	2	handles:	a	read	handle	and	a	write	handle	

•  Primarily	used	for	parent/child	communicaKon	
–  Parent	creates	a	pipe,	child	inherits	it	

24	

CSE	506:	Opera.ng	Systems	

Example	
int pipe_fd[2];
int rv = pipe(pipe_fd);
int pid = fork();
if (pid == 0) {

 close(pipe_fd[1]); //Close unused write end
 dup2(pipe_fd[0], 0); // Make the read end stdin
 exec(“grep”, “quack”);

} else {
 close (pipe_fd[0]); // Close unused read end …

25	

CSE	506:	Opera.ng	Systems	

FIFOs	(aka	Named	Pipes)	
•  ExisKng	pipes	can’t	be	opened---only	inherited	
–  Or	passed	over	a	Unix	Domain	Socket	(beyond	today’s	lec)	

•  FIFOs,	or	Named	Pipes,	add	an	interface	for	opening	
exisKng	pipes	

26	

CSE	506:	Opera.ng	Systems	

Sockets	
•  Similar	to	pipes,	except	for	network	connecKons	
•  Setup	and	connecKon	management	is	a	bit	trickier	
–  A	topic	for	another	day	(or	class)	

27	

CSE	506:	Opera.ng	Systems	

Select	
•  What	if	I	want	to	block	unKl	one	of	several	handles	
has	data	ready	to	read?	

•  Read	will	block	on	one	handle,	but	perhaps	miss	data	
on	a	second…	

•  Select	will	block	a	process	unKl	a	handle	has	data	
available	
–  Useful	for	applicaKons	that	use	pipes,	sockets,	etc.	

28	

CSE	506:	Opera.ng	Systems	

Synthesis	Example:	The	Shell	
•  Almost	all	‘commands’	are	really	binaries	
–  /bin/ls	

•  Key	abstracKon:	RedirecKon	over	pipes	
–  ‘>’,	‘<‘,	and	‘|’implemented	by	the	shell	itself	

29	

CSE	506:	Opera.ng	Systems	

Shell	Example	
•  Ex:	ls | grep foo
•  ImplementaKon	sketch:		
–  Shell	parses	the	enKre	string	
–  Sets	up	chain	of	pipes	
–  Forks	and	exec’s	‘ls’	and	‘grep’	separately	
– Wait	on	output	from	‘grep’,	print	to	console	

30	

CSE	506:	Opera.ng	Systems	

Job	control	in	a	shell	
•  Shell	keeps	its	own	“scheduler”	for	background	processes	
•  How	to:	
–  Put	a	process	in	the	background?	

•  SIGTSTP	handler	catches	Ctrl-Z	
•  Send	SIGSTOP	to	current	foreground	child	

–  Resume	execuKon	(fg)?	
•  Send	SIGCONT	to	paused	child,	use	waitpid()	to	block	unKl	finished	

–  Execute	in	background	(bg)?	
•  Send	SIGCONT	to	paused	child,	but	block	on	terminal	input	

31	

CSE	506:	Opera.ng	Systems	

Other	hints	
•  Splice(),	tee(),	and	similar	calls	are	useful	for	
connecKng	pipes	together	
–  Avoids	copying	data	into	and	out-of	applicaKon	

32	

CSE	506:	Opera.ng	Systems	

System	V	IPC	
•  Semaphores	–	Lock	
•  Message	Queues	–	Like	a	mail	box,	“small”	messages	
•  Shared	Memory	–	parKcularly	useful	
–  A	region	of	non-COW	anonymous	memory	
– Map	at	a	given	address	using	shmat()	

•  Can	persist	longer	than	an	applicaKon	
– Must	be	explicitly	deleted	
–  Can	leak	at	system	level	
–  But	cleared	aver	a	reboot	

33	

CSE	506:	Opera.ng	Systems	

System	V	Keys	and	IDs	
•  Programmers	pick	arbitrary	32-bit	keys	
–  Use	these	keys	to	name	shared	abstracKons	

•  Find	a	key	using	shmget(),	msgget(),	etc.	
–  Kernel	internally	maps	key	to	a	32-bit	ID	

34	

CSE	506:	Opera.ng	Systems	

Windows	Comparison	
•  Hardware	excepKons	are	treated	separately	from	IPC	
–  Upcalls	to	ntdll.dll	(libc	equivalent),	to	call	handlers	

•  All	IPC	types	can	be	represented	as	handles	
–  Process	terminaKon/suspend/resume	signaled	with	
process	handles	

–  Signals	can	be	an	Event	handle	
–  Semaphores	and	Mutexes	have	handles	
–  Shared	memory	equally	complicated	(but	sKll	handles)	

•  Single	select()-like	API	to	wait	on	a	handle	to	be	
signaled	

35	

CSE	506:	Opera.ng	Systems	

Summary	
•  Understand	signals	
•  Understand	high-level	properKes	of	pipes	and	other	
Unix	IPC	abstracKons	
–  High-level	comparison	with	Windows	

36	

