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Abstract

Despite the existence of file systems tailored for flash and
over a decade of research into flash file systems, this paper
shows that no single Linux file system performs consistently
well on a commodity SSD across different workloads. We de-
fine a compleat file system as one where no workloads realize
less than 30% of the best file system’s performance, and most,
if not all, workloads realize at least 85% of the best file sys-
tem’s performance, across a diverse set of microbenchmarks
and applications. No file system is compleat on commodity
SSDs. This paper demonstrates that one can construct a single
compleat file system for commodity SSDs by introducing a
set of optimizations over BetrFS. BetrFS is a compleat file
system on HDDs, matching the fastest Linux file systems in
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its worst cases, and, in its best cases, improving performance
by up to two orders of magnitude.

Our optimized BetrFS (i.e., v0.6) is not only compleat,
it is either the fastest or within 15% of the fastest general-
purpose Linux file system on a range of microbenchmarks. At
best, these optimizations improve random write throughput
by 6x compared to the fastest SSD file system. At worst,
our file system is competitive with the other baseline file
systems. These improvements translate to application-level
gains; for instance, compared to other commodity file systems,
the Dovecot mailserver and an rsync of the Linux source on
BetrFS show speedups of 1.13x and 1.8 x, respectively.
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1 Introduction

Flash-based Solid State Drives (SSDs) are ubiquitous. Unfor-
tunately, there is no single file system that performs consis-
tently well across a range of different operations or workloads
on commodity SSDs. Table 1 (details in §7) illustrates this
point: among a set of common general-purpose Linux file
systems, no single design offers top-of-the-line performance
across the board. In each benchmark, performance tends to
be bi-modal: each file system is either within 15% of the best,
or very far from it.

Even F2FS [16], a log-structured file system designed ex-
plicitly for SSDs, fails to extract the device’s full throughput
for random-writes—a workload where log-structured designs
should shine. These results are corroborated elsewhere; for
instance, one study shows that ext4 is the fastest file system
for blogbench, whereas F2FS is the fastest on the same SSD
for compile bench, and XFS is the fastest for dbench [15].

In all of these benchmarks, the slowest file system ranged
from roughly a half to a fifth of the performance of the fastest.
The end result is that, at installation time, a system admin-
istrator decides which workloads will enjoy the underlying
hardware’s full performance, and which ones will be bot-
tlenecked on the file system. Although work is ongoing to
design and leverage high-end flash storage devices, such as
NVMe and non-volatile main memory, this paper focuses
on inexpensive SSDs because current file systems already
leave performance on the table with slower SSDs. Moreover,
addressing these computational bottlenecks is a prerequisite
to saturating faster flash devices. Further, commodity SSDs
still represent a tremendous share of deployments worldwide.

This paper investigates whether it is possible to construct a
file system with consistently good performance across opera-
tions and workloads on commodity SSDs. To our knowledge,
there is not an established metric for consistently good per-
formance in a file system, versus sacrificing one operation’s
performance for another; we adopt the term compleat! to
capture this notion of consistently good performance. Con-
cretely, given a set of representative workloads, we set a goal
of building a file system where no operation is worse than
30% of the best implementation, and most, if not all, realize
at least 85% of the best implementation’s performance. In
Table 1, data points where a file system realizes less than 30%
of the best file system’s performance are shaded in red, and
those that realize more than 85% of the best implementation’s
performance are shaded in green. Every baseline file system
has at least one red cell. We note that our empirical definition
of compleat is imperfect; one could select a different set of
workloads, or perhaps tie file system performance targets to
the performance of the underlying hardware. Our interest is
in establishing a specific and measurable target. This paper
demonstrates that it is possible to build a compleat file system.

Icompleat, adjective, having all necessary or desired elements or skills.
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Recently, file systems built using write-optimized dictio-
naries (WODs), such as LSM-trees or Bé-trees, have achieved
compleatness on an HDD. Specifically, BetrFS [5, 9, 39-41]
contributes a number of data-structural and system optimiza-
tions to realize this goal. By using a WOD to index persistent
data, a write-optimized file system can offer sequential reads
and writes at disk bandwidth while performing random writes
orders-of-magnitude faster than an update-in-place file sys-
tem. BetrFS uses full-paths as keys [40] to ensure that logical
locality in the directory hierarchy translates to physical local-
ity on the device, minimizing seeks on a disk or minimizing
total IOs on an SSD [23]. By using a WOD in combination
with full-path indexing and large (2-4 MiB) nodes, BetrFS
realizes top-of-line search performance and resists aging [5].
Compared to a general-purpose key-value workload, BetrFS’s
key-value workload features many operations that modify a
contiguous range of key-value pairs, such as recursive dele-
tion or renaming a directory; BetrFS contributes several opti-
mizations and API extensions to ensure a performant, one-to-
one mapping between file-system and key-value operations.
Finally, BetrFS has innovated in data-structural techniques to
batch and amortize the cost of complex operations, such as
rename [41], as well as amortizing the cost of data structure
maintenance in copy-on-abundant-write snapshots [40].

Unfortunately, many of the BetrFS performance properties
do not immediately translate to SSDs. In particular, Table 1
shows that, on a commodity SSD, BetrFS only achieves a
third to a sixth of the sequential bandwidth of other file sys-
tems, and the gains for searches are mixed. It may seem
counter-intuitive that a file system would exhibit such differ-
ent performance profiles when the only system change is a
faster block device, but there are principled reasons why this
is so.

This paper investigates these bottlenecks and contributes
techniques that enable a file system to offer top-of-the-
line performance across a wide range of benchmarks on
commodity SSDs. We present and evaluate these results
in a prototype file system, called BetrFS v0.6, available at
github.com/oscarlab/betrfs (additional details in the Appen-
dix). In this paper, we compare to version 0.4; v0.5 contributes
orthogonal optimizations to implement nimble clones [41].

Consolidated layering (§3). BetrFS’s Bé-tree is stacked on
ext4, essentially using ext4 as a block allocator; this stacking
has acceptable costs for an HDD, but not for an SSD. This
paper presents a simplified storage substrate for an in-kernel
write-optimized key-value store on faster devices. In several
cases, clarifying the division of labor among layers requires
modifying the key-value store to implement functionality in
different ways, such as moving read-ahead into the key-value
store layer. In other cases, such as with metadata caching, the
VES structures are specialized and effective; minor changes
to BetrF'S’s VFS interaction yields more effective batching of
metadata updates, and better economizes Bt-tree queries. In
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File Sequential I/O Random Writes Utility Latency

System Read(80g) Write(80g) 4 KB 4 Byte  Tokubench grep rm find
Btrfs 568 (0) 328 (2) 13(0) 0.024(0) 6.0 (0.2) 4.61(0.21) 2.53(0.05) 0.78 (0.16)
ext4 534  (0) 316 (6) 16(3) 0.026(0) 13.6 (1.5) 10.15(0.20) 1.81 (0.08) 0.86 (0.02)
F2FS 528 (1) 320 (6) 16(2) 0.033(0) 4.7 (0.2) 4.72(0.53) 2.36(0.07) 0.83 (0.06)
XFS 531 (6) 315 @& 19(@2) 0.027(0) 45 (0.1) 6.09(0.84) 2.74 (0.07) 0.84 (0.06)
ZFS 551 (0) 304 (7)) 8 (0) 0.008 (0) 12.5 (0.1) 1.25(0.01) 3.31(0.37) 0.43 (0.01)
BetrtFSv0.4 181 (40) 55 (6) 92(7) 0.269 (0) 4.0 (0.1) 2.46(0.15) 51.41(6.96) 0.27 (0.01)
BetrFSv0.6 497 (0) 310 (3) 116(2) 0.363 (0) 11.8 (0.2) 1.36 (0.02) 1.57 (0.04) 0.22 (0.01)

Table 1. Throughput in MB/s (left) and latency in seconds (right) of various file systems on a commodity SSD. Higher throughput and lower
latency are better. Standard deviation is in parentheses. BetrFS v0.4 and BetrFS v0.6 have compression disabled. Any data points within 15%
of the highest throughput or lowest latency are highlighted in green; those that are less than 30% of the best throughput (or more than 3.33 x

the best latency) are highlighted in red.

total, these changes improve sequential write throughput over
BetrFS v0.4 by 4 x, and reduce grep time by 41%.

Keyspace ranges as first-class primitives (§4). This paper
presents optimizations for range operations that act on sets
of key-value pairs that are contiguous in the keyspace. We
find that, in moving from a hard drive to an SSD, range oper-
ations are too CPU intensive to keep up with a faster device.
This paper contributes additional optimizations to range op-
erations, as well as simple changes to VFS caching behavior
that eliminate redundant queries. These optimizations speed
up recursive deletion by 9x, making BetrFS v0.6 comparable
to other file systems on this workload.

Cooperative memory management (§5). This paper de-
scribes cooperative memory management strategies for the
large buffers required by write-optimized key-value stores. In
particular, to aggregate small updates into large I/Os, a write-
optimized key-value store must be able to efficiently allocate
and potentially resize buffers that are on the order of hundreds
of kilobytes to megabytes in size—because of the nature of
how updates are aggregated, it is often difficult to accurately
predict buffer sizes at allocation time. Yet Linux’s internal
kernel memory allocators are primarily optimized for pages
or small objects, not buffers on the order of megabytes. Simi-
larly, dynamically adjusting kernel mappings of large buffers
can be expensive, involving TLB shootdowns across cores. By
adopting new memory management strategies, BetrFS v0.6
improves performance across the board, including increases
of 25% and 31% over BetrFS v0.4’s already strong 4KiB and
4B random write throughput, respectively.

VFS and key-value store integration (§6). Finally, this
paper describes a strategy for sharing versioned data, copy-on-
write, between the VFS page cache and a write-optimized key-
value store. Our design supports tracking multiple versions
of a data block in memory without obstructing writes. This
design effectively passes pages by reference through the levels
of the key-value store for efficient aggregation. Sequential-
write throughput improves 6x over BetrFS v0.4, elevating
performance to within 15% of the fastest sequential-write
implementation on an SSD file system. At a high level, this
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strategy can be viewed as using the kernel’s page cache as a
copy-on-write row cache for file contents.

Results. Our microbenchmark results are summarized in
Table 1 (additional workloads presented in §7). At its best,
BetrFS v0.6 shows a 10x improvement upon 4B random
write performance of F2FS—a log-structured file system de-
signed for SSDs; this is 35% higher than BetrFS v0.4. At its
worst, all cells BetrFS v0.6 are within our 85%-of-best goal.

Our results appear surprising at first, because write-
optimized file systems improve performance by (1) coalesc-
ing small or random writes into large sequential I/Os, and
(2) preserving locality so that sequential file reads translate
into large sequential I/Os. Since SSDs have good random 1/O,
coalescing I/Os may seem unnecessary. Yet, even on an SSD,
coalescing writes significantly improves both random write
performance and the efficiency of subsequent reads.

This paper presents BetrFS v0.6 as an existence proof of
a compleat file system for commodity SSDs; our conjec-
ture is that not every indexing data structure or file system
implementation can be made compleat. However, some of
the optimizations in this paper may generalize to other file
systems or key-value stores. For instance, the Simple File
Layer and cooperative memory management designs may
be a useful building block for porting other key-value store
implementations into an OS kernel. Our optimizations around
inode instantiation and the protocol for sharing cached data
with the VFS may also prove generally useful to other file
systems. Our work on range queries and other features that
are more specific to using a key-value substrate may prove
useful in either other key-value stores (including user-level
key-value stores such as RocksDB), or in file systems built
over emerging key-value SSDs[11, 13, 17]

2 Background

This section presents background on BetrFS, the baseline
file system to which this paper’s optimizations are applied.
It summarizes key details needed to understand the rest of
this paper, including some details that have not been previ-
ously documented. Additional BetrFS details are available
elsewhere [3, 5, 9, 39-41]
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2.1 Bé&-tree Overview

BetrFS is an in-kernel Linux file system that uses B®-trees—a
write-optimized B-tree variant—to index its on-disk data [3].
A large part of BetrFS performance stems from its mapping
of file-system operations to efficient B®-tree operations. Thus,
the B®-tree is at the core of the BetrFS design.

BE-trees export a key-value (i.e., dictionary) interface, sim-
ilar to an LSM-tree [30]. Like a B-tree, a B®-tree stores key-
value pairs in leaves. Unlike a B-tree, internal B®-tree nodes
have logs for messages; messages are serializable objects
that logically describe an operation to be performed on one
or more key-value pairs (e.g., update, delete). The message
abstraction is essential for the implementation of blind writes
and range operations [39], discussed below.

Bé-trees have good update performance because each I/O
sequentially writes a large batch of messages. Updates are en-
coded as messages and inserted into the root node; messages
accumulate in the root until its log buffer fills, at which time
a subset of messages is flushed from the root to one or more
children (recursing if necessary). Because B®-tree nodes are
considerably large compared to nodes in a B-tree (B®-tree
nodes are typically 2-4MiB), flushing moves enough data to
amortize the cost of rewriting the parent and at least one child.
LSM-tree compaction serves a similar role. This strategy of
batching updates is called write optimization, and although
individual updates are rewritten at each level of the tree, the
rewriting costs are shared by many updates—dividing the
asymptotic cost by the batch size. Thus, BE-tree updates have
an average I/O cost that is much smaller than one.

A related benefit of this technique is that range queries,
such as during grep, are I/O-efficient. Because B-tree flush-
ing compacts nodes, reads that have locality in the keyspace
will have locality on disk [5, 6]. Combining good locality
with large nodes means that BE-tree range queries require
fewer total I/Os than a typical file system index structure.

Unlike a pure logging data structure, a B®-tree upholds the
invariant that all messages that target a given key lie on a
single root-to-leaf path. Thus, querying the latest version of a
key-value pair requires reading a logarithmic number of nodes
when the cache is completely cold, possibly reconstructing
the value by applying messages. Of course, caching nodes
reduces a query’s I/O costs in practice, and caching materi-
alized views of key-value pairs—versions where all relevant
messages are identified and applied—reduces the CPU costs.
Updates are faster than queries because updates touch just the
root node—unless a flush is required—so BetrFS, whenever
possible, performs blind writes (i.e., encoding a modification
without first reading the old value). Consequently, things like
incrementing an inode counter or modifying a small range of
some file’s bytes are not bottlenecked by a slower read.

BE-trees can also support range operations, which specify
a start key, an end key, and an operation that is performed on
all key-value pairs within the specified range. Range delete is
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Applications
User | ] ] ]
Kernel | VES |
| Northbound |

Bé-tree implementation (TokuDB)
[ Meta Index |[ Data Index |
[ Southbound (klibc file/mem APIs) |
| ext4 |
| Block Layer |

Figure 1. BetrFS Architecture. The “northbound” layer con-
verts VFS operations into key-value store operations, indexed
by full path. The Bé-tree code maintains two indexes, which
are stored on ext4.

a particularly useful operation, especially in BetrFS where a
single range delete message can be used to atomically delete
all of a file’s blocks.

2.2 BetrFS Architecture

Figure 1 illustrates the baseline BetrFS architecture. System
calls pass through the VFS layer and caches, as in any other
file system. The BetrFS “northbound” layer translates VFS
operations into key-value operations and passes them to the
underlying B®-tree.

BetrFS maintains two indexes: one for metadata and one
for file data. The metadata index uses complete paths as keys,
and stores stat metadata structures as values. The data index
stores 4KiB file blocks using (full path, block index) tuples
as keys.

Most VFS-level operations are straightforward translations
to key-value operations. For example, a file is created by
adding an entry to the metadata index (where the key is the
full path name). One can append to a file by inserting 4KiB
blocks to the data index (where the key is the full path and
block number)and updating the size in the metadata index.

Our Bé-tree implementation was ported into the Linux
kernel from TokuDB. As a user-level key-value store and
database, TokuDB was programmed against a file abstraction
and some other standard user-level C programming libraries.
The “southbound” layer translates TokuDB’s POSIX-style
file API into VFS-level requests, which it then issues to an
underlying ext4 file system. In BetrFS, the Bé-tree implemen-
tation only writes to 11 files, and only to three files with any
frequency: one WAL log file and two DB files—one each for
the metadata and data index—that store B®-tree nodes. Within
the southbound layer is also a small shim, called klibc, that
translates additional supporting functions, such as memory
allocation, to Linux kernel APIs.

Example: File writes. When an application writes to a file,
the modifications are buffered in the VFS page cache, as with
any standard file system. When the VFS asks the file system
to write a cached block to disk, the block’s contents are sent
to the BE-tree layer: a key-value pair is created and inserted
into the BE-tree’s root node, as well as the Bt-tree’s log. At
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this point, the in-memory B®-tree root node is dirty, and it
may accumulate and flush more messages. Each time a node
flushes messages to a child, the parent and child are copied
and dirtied within memory.

When the Bé-tree writes the dirtied nodes to disk, each node
is serialized into a large, contiguous buffer, then compressed.
Early versions of BetrFS relied on compression to reduce
the on-disk storage costs of highly redundant keys, as well
as to reduce the total I/O. More recent BetrFS versions use
lifting [40, 41] to achieve similar space savings, both on disk
and in memory, and to reduce the computational costs of in-
memory key comparisons. Lifting is essentially a trie-style
encoding, where the longest common prefix of all keys in a
subtree is removed and stored along with the pivots and child
pointer. In this paper, we disable Bé-tree node compression,
as the computational costs can delay 1/Os for little benefit.

Example: File reads. File reads largely follow a similar
path: when the VFS asks the northbound layer for a file block,
the northbound layer queries the data index for the relevant
file block. If they are not in memory, the Bé-tree will read all
of the nodes on the root-to-leaf path into memory, and apply
any pending messages that affect the query.

Because nodes are much larger than a file block, reading an
entire leaf node helps the performance of sequential accesses,
but amplifies the I/O costs for small, random reads. In order
to improve this case, leaf nodes are partitioned into multiple
basement nodes (typically 32, each roughly 128KiB). Base-
ment nodes are serialized as packed lists of key-value pairs,
and any basement node can be read into memory without the
rest of the leaf. A heuristic based on recent access patterns
decides whether to read a basement node or the entire leaf.

Crash Consistency. BetrFS uses a redo log and periodic
Bé-tree checkpoints to ensure crash consistency. On-disk B®-
tree nodes are copy-on-write, and checkpointing ensures that
there is always a persistent point-in-time consistent copy of
the tree. After a crash, the redo log is replayed against the
newest stable B®-tree checkpoint. Any new BE-tree nodes
written to disk since that checkpoint are discarded and recon-
structed from the log. The checkpointing process also deletes
stale checkpoints and nodes that are not reachable from any
active checkpoints. To detect potential corruptions at rest,
BetrFS checksums each node on disk, and uses checksums to
detect corrupted log entries.

The crash recovery semantics are roughly equivalent to
full-data journaling in ext4. More precisely, all operations
(including data writes) are effectively written to the log in the
order they are received from the VFS. After a crash, the state
is consistent with a prefix of the log, up to the last log flush.
Note that sync variants induce a log flush, so after any sync,
the log up to that point in time is durable.

Range Messages. BetrFS extends the standard key-value
API with two key range operations, which in turn are encoded
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as messages in the BE-tree. Important operations, such as
renaming or deleting files, require updating potentially many
key-value pairs. In the first version of BetrFS, these operations
suffered poor scaling due to the sheer volume of messages.
Subsequent BetrFS versions introduced a range message
abstraction that can operate on all key-value pairs within a
contiguous key range [39]. First, a range delete atomically
removes a contiguous set of keys from the B®-tree, which is
more efficient than issuing a series of individual deletions for
each block. Second, BetrFS adds a range rename operation,
which can atomically replace the prefix on a range of keys
(and associated values), potentially replacing older keys with
the target names [40, 41].

The range message abstraction also unlocks further op-
timizations. For example, BetrFS introduced the PacMan
optimization [39] as a way to reduce range delete message
overheads. In the PacMan optimization, a range delete ap-
plies to all keys with some prefix p specified by the range
delete. Suppose a range delete is inserted for all keys with
prefix “/foo/*”; in the course of flushing, an older point mes-
sage inserting key “/foo/bar” or range delete for the prefix
“/foo/baz/*” could be dropped, or “eaten” by the new range
message. More formally, we define a message as overlapping
with a range delete when the message’s key(s) are contained
within the keyrange of the range delete message.

2.3 Performance Problems of Existing File Systems (on
SSDs)

Table 1 reports several benchmarks where BetrFS v0.4 per-
forms considerably worse than the competition on an SSD
(i.e., “red” cells). In profiling and analyzing these workloads,
we identified four underlying issues, some of which affect
multiple workloads. This subsection explains the reasons for
these problems, and indicates the sections that describe the
solutions.

Sequential Writes and Excessive File Data Copies (§3
and §6). As described above, when the VFS writes file data
into the northbound layer, the data is copied into a new page
and added to the B®-tree as a message. With its focus on
smaller values and slower disks, the B®-tree implementation
copies all values (even 4KiB pages) on each flush. We note
that there are already optimizations in BetrFS to avoid writing
every flush to disk in cases where a number of writes are
following the same root-to-leaf path; however, the complete
data is always memcpy-ed at each level. Finally, there is a
copy at the final write to the underlying file system. As data
is flushed down each level of the tree in memory, it is also
copied into a new page. Finally, when data is written into
ext4 via the southbound layer, it is copied once more. Similar
copying occurs on the read path.

A related issue is performance “stutters” caused by the
interaction of background page eviction and double-buffering.
The VFS layer employs both time-based and space-based
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heuristics to manage dirty-page write-back. In BetrFS, when
the dirty-page threshold reaches a “high water mark™ and
pages are written, they are written to ext4; different pages in
ext4 are then dirtied and scheduled for write-back, leading to
no net change in the dirty page count.

It is common for file systems with complex on-disk formats,
such as ZFS, to maintain their own caches that are distinct
from the VFS page cache [8]. The design in this paper can
facilitate reuse of VFES caching mechanisms in file systems
that need to maintain their own node caches.

Small Writes and Double-journaling (§3). For a concrete
example of the double-journaling problem, consider small,
synchronous operations, such as those found in a rename-
intensive microbenchmark. A sync () in BetrFS leads to a
small, synchronous write to the BetrFS journal, which leads
to a small write followed by a sync () in ext4, which then
leads to a journal transaction to commit a metadata update in
ext4. Double journaling is clearly not a best practice—one
journal is sufficient.

Although the choice to stack on ext4 is specific to BetrFS,
we note there is a larger, ongoing debate in the community
about how to balance the need for rapid prototyping with
representative performance data [21]. Most commonly, this
discussion focuses on whether user-level frameworks, such as
FUSE, are representative [35]. Our results indicate that, for
a reasonable subset of POSIX, one can efficiently “shim” a
user-level implementation into Linux, gaining the benefits of
both approaches. We expect solutions to this problem would
be of potential interest to developers of stacked file systems
or who wish to port user-level code to the kernel.

Sequential Read and Read-Ahead (§3). Effectively every
file system we studied, except BetrFS v0.4, can approach SSD
bandwidth on large, sequential reads because read-ahead is
a simple, effective strategy; so simple that most file systems
just inherit the VFS’s read-ahead heuristics. We find VFS-
level read-ahead heuristics are not a good fit for BetrFS’s
“lower-level”, which reads large Bé-tree nodes from ext4, as
the heuristics only operate on the order of KiB. For a B-tree
that stores data in 4 MiB nodes, ideally, while processing the
current 4 MiB, one should be prefetching the entire next leaf
and any additional ancestor nodes, applying messages, and
materializing a view of the next leaf. Identifying read-ahead
entirely at lower levels is also challenging and error-prone, as
unrelated application requests may be interleaved.

File Creation and Existence Checks (§3). We observe a
performance pathology in workloads that create a large num-
ber of small files, such as TokuBench. From the perspective of
the key-value store, the VFS layer issues an alternating series
of point queries to the metadata index—to check whether the
file exists—followed by an insert message that creates the
new file’s inode. By default, on every query BetrFS imple-
ments a heuristic that applies messages in memory only to

615

Jiao, Yizheng, et al.

the leaf node of each root-to-leaf path traversed by the query.
This effectively creates a materialized view of all pending
messages at the leaf, intended to optimize subsequent queries.
However, carrying a single message down the BE-tree on ev-
ery existence check defeats the purpose of batching these
updates.

Recursive Delete and Range Message Pathologies (§4).
BetrFS implements file removal with a range delete operation.
Range deletes are sufficiently fast on HDDs but become a
bottleneck when performing recursive directory deletions
on SSDs. For recursive delete operations that create small
numbers of range messages, performance was comparable to
other file systems; the recursive deletion workload examined
in this paper is several times larger than prior reported results,
and execution time jumps non-linearly from seconds to nearly
a minute as the number of deletions scales.

Ideally, BetrFS would issue a single range delete message
to compactly represent a recursive directory deletion, but that
is not the case. During recursive deletion (e.g., rm -rf), the
VES traverses the directory hierarchy to check permissions
and to delete individual file system objects in an order that
ensures the file system namespace remains consistent after
a system crash. Thus, the VFS deletes a directory and its
contents in a bottom-up fashion (i.e., all children are deleted
prior to deleting the parent). This iterative, bottom-up deletion
pattern fills BetrFS’s B-tree nodes with a large number of
range delete messages that have adjacent-but-not-overlapping
ranges (e.g., rangedel (dir/bar*), rangedel (dir/baz*),
...). So although BetrFS’s PacMan optimization [39] locally
compacts any overlapping range delete messages within an
interior node, it cannot aggregate these messages.

Not only is PacMan unable to aggregate these range deletes,
it spends considerable CPU resources trying. When the Pac-
Man optimization runs, it compares every range message in
a node to every other message in the node, consuming mes-
sages that fall within the target range (e.g., deleting a covered
key-value pair or merging overlapping range delete messages
into a single message with the combined range). During rm
-rf, many range delete messages are created, but no range
deletes allow for any of the other messages to be discarded.
So PacMan is a quadratic algorithm that runs during every
node flush but has no effect on the tree. Furthermore, BetrFS
must perform flushing to make space in the root node even
though, in many cases, all the range delete messages could
be logically summarized as a single delete to obviate the I/O
costs of flushing.

Because techniques based on modifying contiguous
keyspace ranges are relatively new, they have been studied
less than other WOD optimizations; but they are gaining popu-
larity. For instance, RocksDB also recently introduced a range
delete operation [20]. We expect that these optimizations, as
well as analysis of the interactions among range and point
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operations, will be of benefit to any key-value store or file
system that uses range operations in a WOD.

Small Writes and Buffer Resizing (§5). Memory manage-
ment was a critical bottleneck when moving BetrFS from a
hard drive to an SSD, largely because buffer sizes are difficult
to predict when managing BEé-tree messages in memory. For
instance, flushing from a parent to a child may fill the child’s
buffer, and the child may need to further flush to a grandchild.
In such a cascaded flush, the child may temporarily allocate a
larger in-memory buffer than it will ultimately need on disk to
hold these messages until flushing to the grandchild. This is-
sue primarily affects workloads that issue small writes, which
in turn serialize more messages during a flush.

The node sizes of the B-trees in BetrFS are in the range of
2-4 MiB. BetrFS needs to allocate large buffers for storing the
messages of each node as well as for serializing/deserializing
nodes before/after I/Os. In the Linux kernel, kmalloc is the
conventional way for allocating memory for kernel objects.
kmalloc promises high performance in the scenarios that
objects have standard sizes, most I/Os will be small (order of
pages), and that large, irregular buffers are the exceptional
case. However, kmalloc only supports larger allocations in a
best-effort manner; in practice, they quickly fail once physi-
cally contiguous pages in the buddy allocator are exhausted.
Consequently, BetrFS uses vmalloc to allocate large buffers.
vmalloc isa more reliable way to allocate buffers on the or-
der of megabytes in the kernel, though vmalloc is relatively
expensive, as vmalloc changes the kernel’s memory mapping
on every CPU.

One more issue related to memory allocation is that the
BE-tree implementation used in BetrFS was developed in user-
space, using standard malloc, realloc, and free interfaces. In
particular, most of this code was written with the assump-
tion that realloc is an efficient way to dynamically grow a
buffer that is hard to predict a priori. A key implementation
assumption here is that most allocators have an efficient mem-
oization of both allocated sizes and can often identify and
reclaim fragmented space, say from rounding up to a power
of two, on a realloc call. In Linux, however, vmalloc can
only identify the size of an object by an expensive search of
the kernel’s memory mappings, and there is not an efficient
way to incrementally grow a vmalloc’ed buffer. To be clear,
these assumptions are true for small objects, using kmalloc;
the challenge for BetrFS is efficient management of large,
variable-sized objects in the kernel.

The overheads of memory management became critical for
workloads that dealt with a large volume of small messages,
such as TokuBench, random writes, and recursive deletion—
accounting for at least 10% of execution time for each one.

More broadly, the Linux kernel’s allocation interfaces are
optimized for relatively small objects; managing large buffers
is inefficient. Although scatter-gather style IO can mitigate
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Data Index
223 GiB

Meta Index
25 GiB

Name
Size

SuperBlock
8 MB

Log
2 GiB

Table 2. Simplified SFL on-disk layout. The sizes are given for a
rough indication of proportion on a 250GiB disk. The SuperBlock
region is abstracted as eight logical files.

this issue for large data extents or aligned pages, similar is-
sues are likely to arise in log-structured file systems or other
file systems that need to serialize variable-sized metadata
or other smaller objects into larger on-disk extents. As de-
vices continue to grow faster, the computational budget per
I/O will continue to shrink. Thus, we expect these memory
management techniques to be of broad utility.

3 Consolidating Storage Layers

Stacking BetrFS on ext4 is the root cause of a number of the
performance issues analyzed in §2.3, such as double journal-
ing, double buffering, copying, existence checks, and ineffec-
tive read-ahead. This section presents a simplified substrate
for porting user-level code into a Linux file system. We then
discuss optimizations for read-ahead and existence checks in
a multi-layer file system. The changes in this section address
performance bottlenecks in sequential I/O, scans, small file
creation and metadata-intensive workloads (recursive dele-
tion).

3.1 The Simple File Layer

To expedite development, BetrFS ported TokuDB [33]—a
user-space BE-tree implementation—to the Linux kernel by
implementing the k1ibc “shim” layer. K1ibc translates many
user-level interfaces to Linux kernel APIs, and importantly, it
emulates POSIX file interfaces on top of ext4 (See Fig. 1).
We observe that running TokuDB on a complete file system
is unnecessary. The BetrFS B®-tree implementation only uses
11 fixed files. Two—one per index—are large, fallocate ()-
ed files that store tree nodes; one stores the log; and the other
9 store small amounts of infrequently-changing metadata,
such as whether the key-value store was shutdown cleanly or
not. Effectively, these files approximate a static disk layout:
a region of disk for nodes, a region for the log’s circular
buffer, and a superblock for global metadata. Features such as
dynamic block allocation, or even dynamic file creation, are
not necessary for BetrFS’s write-optimized key-value store.
Based on this observation, we introduce a storage back-end,
called the Simple File Layer (SFL), that gives the abstraction
of precisely the 11 files and APIs that the B-tree implementa-
tion requires, and addresses all four issues mentioned above.
Table 2 illustrates the SFL on-disk layout (note that several
metadata files are consolidated into a single superblock-style
region). SFL still provides some measure of POSIX-like APIs,
e.g., named files, so that the upper layer (i.e., B-tree indices)
need not change the interfaces to SFL (i.e., klibc). Although
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SFL is somewhat tailored to BetrFS v0.6’s BE-tree implemen-
tation, a similar file-system shim may be used to efficiently
port other user-level code into a kernel.

Finally, the SFL interface eliminates double buffering, by
exporting a direct I/O-style interface.

To eliminate page copying overheads and double buffering,
we design the SFL I/O interface to accept references to physi-
cal page frames, similar to direct IO, where the caller handles
all buffer management, including freeing buffers after an I/O
completes. The I/O interface can be used synchronously or
asynchronously. We note that a similar model when stacking
on ext4 requires kernel modification, as current code paths
reject attempts to use direct IO on kernel addresses. SFL does
not support a file handle with a cursor; rather, all read and
write requests supply a file offset and a pre-allocated buffer.
Each file occupies a single contiguous extent; the minimum
IO size of SFL to the block layer is 4KiB, the same with ext4.

SFL eliminates double-journaling by using immutable
metadata; SFL statically partitions the disk space into 11
extents, one for each of the files used by the B:-tree imple-
mentation. Crash consistency for changes to the file system-
level data and metadata is already handled by the B:-tree log;
SFL is only responsible for ensuring that synchronous writes
are written synchronously.

We modify the Bé-tree code to use a statically allocated
disk region as a circular log buffer, and we converted the
log engine code so that each log entry includes a sequence
number and a checksum. The checksum is used to validate
the integrity of a log entry. As a hint for recovery, we store
a recent starting point to search for the range of valid log
entries, but this is only updated periodically; the log can be
reconstructed by brute force if need be.

3.2 Read-ahead

In order to ensure effective read-ahead with large nodes on
disk, BetrFS v0.6 implements a cooperative read-ahead de-
sign. We use a standard sequential read heuristic in the north-
bound layer, which identifies a run of sequential read accesses
to a file. This hint is passed to the BE-tree layer, which causes
the BE-tree to asynchronously read either the next two base-
ment nodes in the current leaf, or the next leaf node if the
query hits a leaf’s last basement node.

3.3 Existence Checks and File Creation

In order to address the problem where existence checks on
file creation thwart batching of updates, BetrFS v0.6 defers
and batches insertion of messages that create inodes into the
BE-tree. Here, we use the BE-tree recovery log and the VFS to
hold a newly created inode in the dirty state instead of insert-
ing the messages directly into the tree. We first observe that
logging inode creation in the BetrFS v0.6 redo log is sufficient
for crash recovery, provided that the inode is inserted into the
BE-tree before that region of the log is reclaimed. Further, as
long as the new inode is cached in the VFS in the dirty state,
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subsequent queries for this inode will be serviced correctly
from the VFS cache. Assuming the system does not crash,
the inode will eventually be written back to the B-tree, likely
after accumulating subsequent changes, and after subsequent
existence queries have moved onto different root-to-leaf paths.
We call this optimization conditional logging.

We note that conditional logging is implemented in the
northbound layer and the B®-tree, not below it, and should
not violate any persistence assumptions in the B&-tree code.
Moreover, this optimization is transparent to applications
and does not affect the behavior of file creation from the
perspective of application code.

The main additional coordination mechanism this optimiza-
tion requires is an additional reference count on sections of
the B®-tree redo log, tracking how many dirty inodes still
require this section of log for durability. In the worst case, a
dirty inode can delay reuse of a section of the circular log
buffer on disk. In practice, however, the period for checkpoint-
ing in the Bé-trees of BetrFS v0.6 is a minute, while the VFS
keeps a dirty inode in the cache for at most 30 seconds (set
by dirty_expire_centisecs). As a result, 50% of dirty in-
odes will be inserted in the next checkpoint window. We note
the log file is large enough to hold all log entries written by
more than 2 consecutive checkpoint windows. Therefore, in
practice all dirty inodes will be written to the B®-tree before
it could obstruct reuse of a portion of the log buffer.

4 Range Message Optimizations

This section presents optimizations to address the perfor-
mance pathologies in how range deletion interacts with other
operations that are issued by recursive file deletion.

Coalescing range delete messages. The first, and largest
performance issue with range delete messages is that we
discovered that for a large, recursive deletion, each range
deletion message was non-overlapping. Consider the message
sequence produced by a recursive deletion: for each directory
deleted, there are a series of range delete messages that corre-
spond to files in that directory. None of these range deletes
will actually overlap, and the PacMan heuristic will not be
able to consolidate them, as PacMan cannot efficiently infer
that there are no keys between the two ranges.

To address this issue, we augment the rmdir implementa-
tion in the Northbound to issue a range delete for the entire
directory. Previously, range deletes were only used for unlink-
ing a file. This seems counter-intuitive and perhaps dangerous,
at first, since POSIX requires that a directory be empty before
it can be removed. However, the purpose of this range delete
is not to delete live data; it is to coalesce or drop stale mes-
sages during flushing, including previously deleted key-value
pairs from files that were once in that directory and other,
disjoint range deletes.

The PacMan optimization will traverse these messages by
recency—the opposite order that they were issued; in other
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words, PacMan will consider a directory’s range delete mes-
sage before it considers any narrower range delete messages
for the directory’s children. Thus the directory’s range delete
message will “gobble” the range delete messages for the files
in that directory, and so on. Adding directory range deletes
last lets PacMan apply more beneficial messages first.

This change alone creates an order-of-magnitude perfor-
mance improvement over BetrFS in a recursive deletion
benchmark, and it does so without modifying the quadratic
time algorithm or reducing BetrFS v0.6’s I/O activity (the
recursive deletion benchmark is too small to realize any re-
ductions in I/O activity from the discarded messages).

Bypassing BE-tree queries for empty directories. Rmdir
semantics requires a directory to be empty, which baseline
BetrFS confirms by issuing a B&-tree query. This query turns
out to be a performance bottleneck because, in a WOD,
adding a message to the tree—which is how inserts/deletes
are implemented—is much faster than performing a query.

In our optimization, we avoid these B®-tree queries by
maintaining consistent link counts (nlink) of the in-memory
directory inodes in the VFS layer. An rm -rf already recur-
sively visits each child directory to identify a list of files to
delete. This initial traversal warms the relevant VFS inode
caches, making these checks fast. We note that the VFS al-
ready maintains this information and expects it to be correct;
our primary change was ensuring that these cached values
are coherent with the link counts on disk. In summary, main-
taining these counters substantially improves performance by
avoiding redundant B®-tree queries.

Removing redundant messages. The VFS protocol for
removing an inode is complex, in order to handle edge
cases such as open handles to unlinked files. We found
the lower-level implementation of BetrFS issued two file
deletion messages on two different VFS hooks (unlink
and evict_inode). BetrFS v0.6 introduces a flag to the in-
memory inode to avoid sending a redundant delete message
for a file. Although adding messages to a write-optimized dic-
tionary is relatively inexpensive, it is not free; removing the
extra message further lowered the computational overheads
of a recursive deletion.

Fully caching readdir with opportunistic inode instanti-
ation. The VFS embeds several implementation assumptions
into its file system API, including the assumption that a di-
rectory’s metadata (inode) is stored separately from its data
(listing). As a result, the VFS does not cache child meta-
data during a parent’s readdir—neither directory entries nor
inodes [34]; instead, separate lookup calls are needed. In
BetrFS, a readdir scans contiguous items in the metadata
index, and these items contain both the names and the inodes
for a directory’s children. Thus, the same range query that
returns the file names under a directory can also populate the
VES caches without extra I/O.
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We augment BetrFS v0.6 readdir to populate child in-
odes and directory entries in VES caches. Then, subsequent
lookups can avoid the significant overheads of redundant
queries to the key-value layer, such as constructing additional
keys, additional key comparisons, and checks along the the
BE-tree’s root-to-leaf path. The power of this optimization
is most apparent in a cold cache recursive deletion; because
rm -rf deletes each entry in a directory tree, bottom-up,
all inodes are opportunistically cached during the top-down
traversal. This optimization is measured in isolation in the
evaluation (Table 3, +DC row), and removes more than one
second of latency from recursive deletion (from 3.4s to 2.3s).

Revisiting the apply-on-query optimization. Baseline
BetrFS has an optimization heuristic, that, upon a query,
pushes certain messages down the BE-tree and applies them
to in-memory key-value pairs in cached leaves. We call this
heuristic apply-on-query. The goal of this optimization is to
exploit query locality: subsequent queries to the same base-
ment node can quickly check whether an interior node has
fresh and relevant pending messages, versus a CPU-intensive
buffer traversal to identify the relevant messages.

Apply-on-query behaves differently depending on the
cached leaf node’s state. If the cached leaf node is clean,
then apply-on-query searches for and applies any pending
message that targets a key-value pair in the basement node
involved in the query, even if no messages on the root-to-leaf
path actually affect the query’s result (e.g., when messages
affect neighbors of the target key). Note that, in this case,
the leaf’s in-memory state remains clean, and the B®-tree’s
on-disk state is unchanged.

If the cached leaf node is dirty, then apply-on-query at-
tempts to reduce 1I/Os by flushing pending messages that
target any key-value pair in the entire leaf. We use the term
“flush” when a message is applied to a dirty in-memory node
and, ultimately, to the on-disk B%-tree. Apply-on-query was
designed for HDDs, where it is worthwhile to spend tremen-
dous amounts of computation to save even one additional I/O.
By aggressively flushing pending messages to a leaf node that
would be written back regardless, apply-on-query can reduce
write amplification to this leaf.

For a workload like recursive deletion, which alternates
range deletions and range queries (from readdir ) and moves
through the keyspace sequentially, this heuristic causes an
interesting pathology when the leaf node is clean. Suppose the
first deletion adds a range delete at the “left” of the keyspace
that maps onto a clean basement node. A subsequent query to
the next, disjoint key (for the next file to delete) will trigger
an apply-on-query for the prior range delete, even though
that range delete is non-overlapping. This process continues
across the entire keyspace covered by the leaf node.

In such a workload, one incurs all of the costs of apply-on-
query, and gets none of the locality benefits, as the deleted
keys will not be queried again. Moreover, one must still
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recheck all ancestor nodes on the root-to-leaf path for relevant
messages to apply. We note that checking range messages is
more expensive than checking point messages, both because
there are two key comparisons (versus one) and because the
indexing structure is more complex to handle partially over-
lapping ranges. So a range-delete intensive workload exacer-
bates these costs. On an SSD, with a tighter computational
budget per I/O, this optimization uses sufficient CPU time that
it significantly increases latency of a range-delete-intensive
application, with potentially marginal benefits in terms of
total I/Os.

In BetrFS v0.6, we introduce a new apply-on-query policy:
we only flush or apply pending messages if one or more pend-
ing messages affect the outcome of the query. Said differently,
if at least one pending message in an interior node targets
a key-value pair in the query, BetrFS v0.6 does apply-on-
query as before; otherwise, the in-memory tree state is left
unchanged. The key takeaway is that faster devices necessitate
revisiting the relative weights of I/O and CPU amplification.
The CPU cost of identifying all pending messages for an
entire basement or leaf node is quite large, but, at least for
common file system workloads, the resulting I/O savings are
not. BetrFS v0.6 must already find and apply pending mes-
sages that affect the query, and this information is often a
sufficient signal to exploit query locality.

After all other optimizations in this paper have been applied
to the code base, this optimization alone further reduces re-
cursive deletion latency by roughly one second (from 2.56s to
1.57s). We show the performance impact of this optimization
in Table 3 in the +QRY row.

5 Cooperative Memory Management

This section describes optimizations for the management of
large node buffers in the kernel. As §2.3 explains, when the
BE-tree code writes a node to disk, it must serialize a sig-
nificant amount of irregular content, such as keys and small
messages, into a large (at least hundreds of KiB) buffer. Yet
Linux’s internal memory allocators are tuned for allocations
of a page or smaller. These overheads manifest primarily in
workloads that issue many small writes, such as the random
write microbenchmark and TokuBench.

We address these issues through a cooperative memory
management framework, where the Bé-tree code is trusted
to assist in the memory management bookkeeping, and the
klibc memory allocator can also signal opportunities for
more effective memory use to the Bé-tree code.

First, we observe that most BE-tree code that uses large,
dynamically sized buffers already tracks its own used and
free space. We modify the internal free and realloc inter-
faces to pass this information back to our k1ibc allocator (a
wrapper for kmalloc and vmalloc). This optimization elides
the expensive searches for vmalloc sizes in the kernel code,
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or the need to add our own memoization, when freeing a
vmalloc’ed region.

Second, and because memory management is critical to
overall performance of the code, a number of side caches
and allocators had developed over time as point fixes for
specific bottlenecks. However, this also led to an increase
in complexity and important information being lost by the
time an allocation reaches the lowest level of the file system;
thus, part of this work involved removing intermediate caches
and memory pools, and streamlining one efficient allocator.
Although baseline BetrFS had a small cache of 32 128K
vmalloc’ed regions, targeting one common size, we found
this was insufficient in practice, and expanded this cache of
larger buffers to include additional, common powers of two.

Third, we introduce a cooperative memory management in-
terface, where the B®-tree and supporting kernel code can ne-
gotiate buffer sizes that can be allocated efficiently. Previously,
Be-tree code selected seemingly arbitrary buffer sizes, and
grew them as they overflowed—typically by doubling the size.
We augment our internal allocator to also return the available
space at allocation time (similar to user-space malloc_size),
and adapt code sites that rely heavily on realloc, often fol-
lowed by relatively expensive re-initialization, to always lever-
age the full buffer amount at allocation time.

Unlike malloc_size, our interface can deliberately return
much more space than requested. Based on profiling the be-
havior of the code, we found a number of sites where the final
size of a buffer is bi-modal: it is either relatively small, or
will grow to be megabytes in size. We found that by simply
avoiding incremental powers-of-two, we could get buffers to
their expected sizes quickly, and elide additional copies.

6 Sharing Pages between the VFS and BE-tree

This section describes how BetrFS v0.6 shares pages of
file data in the VFS page cache with the B®-tree internal
structures—realizing zero-copy I/O between the VFS and
the disk, in the absence of updates to the same page during
write back. These optimizations are introduced to address
the issue of excessive data copying, thereby improving the
performance of large, sequential reads and writes.

By default, Linux file systems place written data in the
in-kernel page cache, in the “dirty” state. A dirty page may
remain in the page cache for a short period, in anticipation
that an application may issue additional writes to the same
page. Dirty pages are eventually written to the underlying
file system; during write back, the pages are locked and may
not be updated by applications until the write completes,
preventing on-disk consistency problems.

Zero-copy 10O in a write-optimized dictionary is more com-
plicated than a traditional file system for two reasons. In
baseline BetrFS, one reason file data is copied from the VFS
into a new buffer in the Bé-tree is to avoid holding the page
lock and obstructing application writes for a long time. Unlike
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a traditional file system, which would typically write the dirty
page to disk immediately, BetrFS will hold a dirty B®-tree
node (containing the dirty page) in memory for an additional
period to accrue more messages. For both crash consistency
and performance, BetrFS has two additional requirements:

e The same file block may exist in multiple versions, over
a potentially long time. If a 4KiB page is rewritten a
new copy is inserted into the tree, but multiple, older
versions may exist in interior B%-tree nodes, both in
memory and on disk. Once a version of a file block is
in the BE-tree, it is not modified again by the BE-tree
implementation. Modifying a page frame that is added
to the BE-tree is equivalent to editing the history of
updates.

e One does not know at the start of write-back where
on disk a page will be placed. This is both because of
potentially flushing messages between the start of write-
back and a forcing condition (such as an fsync), and
the fact that on disk, B%-tree nodes are copy-on-write.

To implement zero-copy I/0 and satisfy these requirements,
BetrFS v0.6 moves pages through the tree by reference to the
physical frame number while in memory, rather than by value.
This design ensures that there is, at most, one copy per write
to a page. We note that SFL (§3) is also a necessary building
block for zero-copy I/0. Although a seemingly simple change,
this introduces some design challenges.

Tracking Messages. We add a new message type to
the BE-tree implementation for insert messages, called
insertByRef (key, reference, derefMem()), which ac-
cepts a key, an opaque reference to a value, and a function to
convert the reference back to a value. In the case of BetrFS
v0.6, we use page frame numbers as our reference, and a
function such as kmap () to copy memory contents, if needed.

VFS-level Copy-on-Write. When a page is inserted to the
BE-tree using the insertByRef message, we need to ensure
that page contents do not change again until any references
to the page are released by the B®-tree, as the B®-tree expects
messages to be immutable until they are obviated.

In order to avoid obstructing subsequent writes, we modify
the “northbound” code that interacts with the VES layer to
change write-back to copy-on-write using the PG_private
flag and file-system level hooks. The BE-tree implementation
will not write this page; if a VFS operation (e.g., a write()
system call or a write via mmap) occurs, the VES will call into
a lower-level function which first checks the private fields,
giving BetrFS v0.6 the opportunity to allocate a new page to
accept the write. In the case where the B®-tree releases all
references to the page before a subsequent write, the copy can
be elided and, the existing VFS page can accept the write.

On-disk Node Format. Zero-copy 1/0O is not possible in
the BetrFS node layout. Within a basement node, key-value
pairs are packed in a series of keyl, valuel, key2, value2,
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etc. We modify the basement node (sub-leaf node, §2) layout
to first pack keys and any small values at the front of the
basement node, and then place all 4KiB values in aligned
sectors at the end of the basement node. With this layout,
when a node is read into a buffer, all file blocks in a typical
file will already be placed in 4KiB-aligned buffers in memory.

In the case of writing a node, this also reduces the serial-
ization cost when combined with scatter-gather style I/O. The
keys and small values must still be serialized, but a list of
page reference can be directly passed to SFL.

Interior B&-tree nodes follow a similar design, with small
messages packed at the front of the node, and page-sized
values in aligned locations at the end of the node.

Reads and Caching. When a node is read into memory in
BetrFS v0.6, we allocate a virtually contiguous region of ker-
nel memory to map the node if needed, but do not necessarily
require the pages in that region to be physically contiguous.
Node contents, including data blocks, can be cached, copy-
on-write, by both the B2-tree internally, and in the page cache.
Each layer may also free memory independently. For instance,
suppose a single page is shared between the VFES and a larger
BE-tree node; here, the BE-tree node can be freed, except for
the one page, which becomes exclusively owned by the VFS.

7 Evaluation

In this section, we evaluate BetrFS v0.6 performance using a
combination of microbenchmarks and application workloads.
Our evaluation seeks to answer the following questions:
e To what degree does each optimization described in the
paper improve performance?
e Do these optimizations translate into application-level
performance improvements?

All experiments were conducted on a PowerEdge T130
with a 4-core 3.00 GHz Intel Xeon E3-1220 v6 CPU, and 32
GB RAM. The system runs 64-bit Ubuntu 18.04.6 with Linux
kernel version 4.19.99 when we test BetrFS v0.4 and BetrFS
v0.6 variants and 5.9.15 for other file systems, in order to
give the competition the advantage of any recent advances.
We boot with the root file system on a 500 GB TOSHIBA
DTO1ACAO HDD. The SSD under test is a 250 GB Samsung
EVO 860 SSD with a 512-byte page size and 12 GB write
cache; we measure a peak raw sequential bandwidth at 567
MBY/s for reads. For writes, the peak bandwidth is 502 MB/s
when the data size is smaller than 12 GB and drops to 392
MB/s when the data size is larger than 12 GB, which we
attribute to device-internal operations.

We compare BetrFS v0.6 with several general-purpose file
systems, including BetrFS, Btrfs, F2FS, ext4, XFS, and ZFS.
We mount these file systems with default parameters, unless
otherwise specified. We use the versions of XFS, Btrfs, ext4,
and F2FS that are part of the Linux 5.9.15 kernel, and zfs
version 0.8.6 from zfsonlinux.org.
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File Sequential I/O Random Writes Utility Latency

System Read(80g) Write(80g) 4 KB 4 Byte  Tokubench grep m find
Ext4 534 (0) 316 (6) 16(3) 0.026 (0) 13.6 (1.5) 10.15(0.20) 1.81(0.08) 0.86 (0.02)
Btrfs 568 (0) 328 (2 13(0) 0.024(0) 6.0 (0.2) 4.61(0.21) 2.53(0.05) 0.78 (0.16)
Xfs 531 () 315 4 19(2) 0.027(0) 4.5 (0.1) 6.09(0.84) 2.74 (0.07) 0.84 (0.06)
f2fs 528 (1) 320 (6) 16(2) 0.033(0) 4.7 (0.2) 4.72(0.53) 2.36(0.07) 0.83 (0.06)
zfs 551 () 304 (1) 8 (0) 0.008 (0) 12.5 (0.1) 1.25(0.01) 3.31(0.37) 0.43 (0.01)
BetrFS v0.4 181 (40) 55 (6) 92(7) 0.269(0) 4.0 (0.1) 2.46(0.15) 51.41(6.96) 0.27 (0.01)
BetrFS v0.6+SFL 462 (0) 222 (1) 96(2) 0.2620) 54 (0.1) 1.44(0.07) 44.71 (4.58) 0.19 (0.00)
+RG 462 (1) 226 (0) 97(1) 0.274(0) 53 (0.1) 1.44(0.06) 5.02(0.31) 0.21(0.01)
+MLC 463 (0) 226 (1) 115(2) 0.352(0) 8.3 (0.1) 1.44(0.02) 4.21(0.13) 0.24 (0.04)
+PGSH 497 (0) 310 (3) 118(1) 0.360(0) 7.7 (0.1) 1.46 (0.06) 3.41(0.10) 0.20 (0.00)
+DC 49 (1) 312 (1) 116(2) 0.358(0) 7.8 (0.1) 1.33(0.02) 2.30(0.10) 0.20 (0.01)
+CL 497 (1) 306 (1) 118(1) 0.364(0) 11.7 (0.2) 1.42(0.08) 2.56 (0.06) 0.22 (0.00)
+QRY 497 (0) 310 (3) 116(2) 0.363(0) 11.8 (0.2) 1.36(0.02) 1.57 (0.04) 0.22 (0.01)

Table 3. Throughput in MB/s (left) and latency in seconds (right) of various file systems on a commodity SSD. Higher throughput and lower
latency is better. Standard deviation is in parentheses. BetrFS v0.4 and BetrFS v0.6 have compression disabled. Each optimization in BetrFS
v0.6 is added with one row with the name of "+" followed by the abbreviation of this optimization in the table. "SFL" is short for Simple File
Layer; "RG" range; "MCL" malloc; "PGSH" page sharing; "DC" dentry cache; "CL" conditional logging; "QRY" query path optimization. All
BetrFS v0.6 optimizations are applied cumulatively. For instance, "+RG" adds the range message optimizations to BetrFS v0.6 with SFL. Any
data points within 15% of the highest throughput or lowest latency are highlighted in green; those that are less than 30% of the best throughput

(or more than 3.33x the best latency) are highlighted in red.

In terms of crash consistency, ext4 is configured with or-
dered mode; XFS and Btrfs have similar semantics. BetrFS
v0.4, BetrFS v0.6, ZFS, and F2FS have semantics comparable
to full data journaling. BetrFS v0.4, BetrFS v0.6, Btrfs, and
ZFS include checksumming to detect on-disk corruptions.

7.1 File System Microbenchmarks

We first conduct a series of file system microbenchmarks
to understand how each optimization contributes to BetrFS
v0.6 performance. In the sequential I/O tests, we used fio
to sequentially write a single 80GiB file, and then re-read it
after clearing the VFS caches, reporting average throughput
and standard deviation. In the random write tests, we wrote
to 256K randomly selected, block-aligned offsets within a
10GiB file, followed by a single f£sync (). The first column
shows the performance of random writes at a 4KiB granu-
larity; the second column shows writes at 4 byte granularity.
The TokuBench [7] benchmark creates three million 200-byte
files in a balanced directory tree with a fanout of 128. We
run TokuBench with 4 threads since our machine has 4 cores.
For rm, we recursively delete a directory with 2 copies of
Linux 3.11.10 source code. For grep, we search for the string
“cpu_to_be64” in the directory of Linux source code. For
find, we search for the files with the name wait.c in the
directory of Linux source code.

Table 3 shows the file system throughput for sequential
reads, sequential writes, random writes, and TokuBench, as
well as latency of grep, recursive deletion, and find on an SSD.
We note that our goal, as stated in §1, is, ideally, to build a
single file system that is within 15% of the top performing
file system for each operation (shaded in green). Cells shaded
in red are more than 70% worse than the best file system.
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Since BetrFS v0.6 augments the BetrFS design with a series
of optimizations, we evaluate BetrFS v0.6 performance with
an increasing number of these optimizations enabled.

Simple File Layer (SFL). We find that the impact of
switching the “southbound” file system from ext4 to SFL (§3)
significantly improved sequential read (by 2.5x and within
20% of disk bandwidth) and reduces grep latency by 41%, as
the read-ahead heuristics in the B®-tree were more effective
than the prior read-ahead behavior. Replacing ext4 with SFL.
also removes double journaling and double caching, which
yields significant improvements to several write-intensive
workloads, including sequential write (+2.5x throughput),
TokuBench (+35%), and recursive deletion (—13% latency).

Range (RG) and Query Path (QRY) Optimizations. As
expected, the main beneficiary of the range optimizations is
recursive deletion (§4), which is dominated by range deletion
messages. These optimizations reduce the rm time by an or-
der of magnitude. Reworking the apply-on-query heuristic
(also §4) brings BetrFS v0.6 to be the fastest file system on
this microbenchmark, and marginally reduces grep time and
increases sequential write throughput.

Memory Allocation (MLC). The memory allocation op-
timizations (§5) primarily benefit workloads that issue
many small messages, such as random writes (19% and
28% increased throughput for 4KiB and 4B, respectively),
TokuBench (57%), and recursive deletion (—16% latency). For
these workloads, the overheads of managing large buffers of
small objects become a first-order cost.

Page Sharing (PGSH). Page sharing (§6) primarily im-
proves sequential IO performance, although it helps other
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Figure 2. Application benchmarks. Figures 2c—2h are all throughput, and higher is better.

update intensive workloads. Sequential read improves by over
30 MBps, and sequential write improves by nearly 100 MBps,
making sequential writes competitive with other file systems.
With an 80 GiB sequential write (needed to more than double
DRAM size), the SSD appears bottlenecked on internal op-
erations, well below the advertised peak bandwidth. This is
independent of the file system under test. On shorter writes
(e.g., 10 GiB, omitted for brevity), this optimization more
than doubles the throughput compared to no page sharing.

Directory Cache (DC) and Conditional Logging (CL).
We present the directory cache optimization (§4) for read-
ahead separately; it removes more than an second of exe-
cution time from a recursive deletion. Similarly, the condi-
tional logging optimization (§3.3) increases small file creation
(TokuBench) throughput by 50%.

In total, each of these optimizations is necessary to meet
our performance goal. Most notably, these optimizations fur-
ther improve random write and search performance over both
BetrFS v0.4 and other standard Linux file systems, indicating
that relying solely on faster device-level random write behav-
ior without corresponding data structural changes leaves over
6x the throughput on the table.

7.2 Applications and Benchmarks

We measure the end-to-end performance of BetrFS v0.6 on
a range of applications and FileBench [32] server-side work-
loads, running on an SSD.

Rsync copies the Linux 3.11.10 source tree from a source
to a destination directory within the same partition and file
system. With the —in-place option, rsync writes data directly
to the destination file rather than creating a temporary file
and updating via atomic rename. Tar unpacks a tarball of
Linux 3.11.10 source code and untar creates a tarball out of
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a copy of Linux 3.11.10 source code. Git clone clones the
latest Linux source repository from one directory to another
on the local system. Git diff workload reports the time to diff
between the v4.14 and v4.07 Linux source tags. The Dovecot
mailserver 2.2.13 is run with 8 threads. We initialize the
mailserver with 10 folders, each containing 2,500 messages.
Each of 8 clients performs 10,000 operations with 50% reads
and 50% updates (marks, moves, or deletes).

The results are presented in Figures 2a—2d. In the best
case, the throughput of an in-place rsync is nearly double the
competition, including BetrFS v0.4. Similarly, in Dovecot
mailserver, BetrFS v0.6 is much faster than any other file
system, unlike BetrFS v0.4. Among these workloads, BetrFS
v0.6 is able to roughly match the fastest file system.

Filebench. Figures 2e—2h show the performance for four
FileBench benchmarks: OLTP, WebServer, WebProxy, and
FileServer. Note that BetrFS v0.4 crashes on FileServer.

BetrFS v0.6 performs as well as the best file systems for
Webserver and Webproxy, whereas for OLTP and Fileserver
the performance of BetrFS v0.6 is in the middle. In the case
of OLTP, the primary bottleneck in BetrFS v0.6 is heavy use
of £sync, combined with some code paths for log writing that
are synchronous in BetrFS v0.6 but asynchronous in other file
systems. Profiling indicates that the lost relative performance
on FileServer is a mixture of smaller overheads for sequential
writes (commensurate with Table 3) and smaller, random
reads. We believe these OLTP and Fileserver performance
issues are not fundamental can be improved in future work.

8 Related Work

File Systems for SSDs. The flash era has intensified inter-
est in log-structured file systems [29], largely due to flash’s
faster random reads and the observation that flash translation
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layers perform best with sequential writes. SFS [22] is a log-
structured file system based on NILFS2 (a log-structured file
system tuned for HDDs). SFS co-locates data blocks with
similar update likelihoods to minimize segment cleaning over-
heads. FlashLight [12] is a log-structured file system that in-
troduces a hybrid indexing scheme, intra-inode index logging,
and a GC scheme that adopts fine-grained data separation.
These techniques reduce indexing overheads. F2FS [16] uses
a flash-friendly on-disk layout, cost-effective indexing struc-
tures, and both multi-head and adaptive logging to optimize
log-structured file system performance for modern SSDs.

Orthogonal to this work, some file systems exploit internal
SSD parallelism. For instance, ParaFS [42] proposes 2-D data
allocation as a way to maintain hot/cold data separation while
exploiting channel-level parallelism.

More recently, there has been considerable interest in
tiered storage architectures, often using byte-addressable non-
volatile memory to first ingest data that is later migrated to
capacity-optimized SSDs (or HDDs). NVMFS [25] is one
such experimental file system that assumes two distinct types
of storage media: NVRAM and NAND flash SSD. The fast
NVRAM is used to store hot data and metadata, and writes
to the SSD are sequential, as in a log-structured file system.
Strata [14] is a multi-tiered user-space file system that exploits
NVMM as the high-performance tier, and SSDs/HDDs as the
lower tiers. Nova [38] is a file system designed for hybrid
memory systems, using log-structured file system techniques
to exploit the fast random access that NVMs provide.

Anvil [37] exposes fine-grained control over storage ad-
dress remapping within an SSD, facilitating efficient snap-
shots, deduplication, and single-write journaling. Transac-
tional Flash [24] extends SSDs with a transactional API, sup-
porting transactional operations in file and database systems.

BlueStore [1] replaces local file systems as the Ceph stor-
age backend and addresses similar metadata performance
issues caused by stacking file systems.

Optimizing WODs for Flash Storage. LSM-trees are a
popular write-optimized dictionary (WOD), used in popular
key-value stores, including RocksDB. RocksDB [20] recently
implemented a range delete operation that is similar to the op-
eration optimized in this paper. Several projects have looked at
optimizations for running an LSM-tree on flash. bLSM [30], a
general-purpose log-structured merge tree for both HDDs and
SSDs, introduced a new merge scheduler to minimize write
latency and maintain write throughput; it also uses Bloom
filters [4] to improve performance. VI-Trees [31] use indi-
rection to avoid unnecessarily rewriting already-sorted data
during compaction. LOCS [36] exposes internal flash chan-
nels to the LSM-tree key-value store so that compactions
can exploit the abundant parallelism. Wisckey [19] separates
keys from values in a persistent LSM-tree-based KV-store
to minimize I/O amplification for SSD-conscious storage.
PebblesDB [26] fragments interior levels of the LSM tree
in order to reduce the overheads of compaction. SILK [2] is
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a key-value store, based on RocksDB, that incorporates the
notion of an I/O scheduler to reduce interference and thus
prevent latency spikes. KVell [18] presents a novel persistent
key-value design for modern block-addressable NVMe SSDs;
it adopts a shared-nothing philosophy to avoid synchroniza-
tion overheads, batches device accesses, and maintains an
inexpensive partial sort in memory. All of these techniques
are complementary to the techniques described in this paper.
VFS Directory Cache Optimization. Tsai et al. [34] pro-
pose caching the result of a readdir, which Linux does not
do by default. Our readdir optimization is complementary:
it does not reduce the number of readdir calls, but uses these
results to reduce subsequent child lookup costs.
Write-Optimized File Systems. TableFS [27] and In-
dexFS [28] store file system metadata in an LSM-tree with
a column-style schema to speed up insertion throughput.
TableFS and IndexFS demonstrate that write-optimized dic-
tionaries can accelerate file system metadata operations for
HDDs while BetrFS demonstrates write-optimized dictio-
naries can be a useful tool for building general-purpose file
systems for both HDDs and SSDs. TokuFS [7] is a FUSE-
based file system, also built using B®-trees. TokuFS showed
that a write-optimized file system can support efficient write-
intensive and scan-intensive workloads. KVFS [31] uses VT-
trees. It is also FUSE-based, supports transactions, and has
comparable performance to the in-kernel ext4 file system.
Different from both KVFS and TokuFS, BetrFS integrates
write-optimized dictionaries into the Linux kernel’s storage
stack, which elides performance issues imposed by FUSE.

9 Conclusion

Although trade-offs are often considered fundamental in file
system design, this paper demonstrates that one can build a
compleat file system for commodity SSDs. Further, this paper
demonstrates that the choice of persistent indexing data struc-
ture has a first-order impact on performance, even on faster
flash devices—legacy data structures forego up to 6x the
random write throughput that one can realize with a B®-tree
on the same hardware. This is built on the basic technique of
batching smaller I/Os into larger ones, but requires consider-
able infrastructure improvements and other optimizations to
meet the computational budget required by flash storage.
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BetrFS: A Compleat File System for Commaodity SSDs

A Artifact Appendix
A.1 Abstract

This artifact contains a set of scripts that reproduce the exper-
iments in the EuroSys 2022 paper “A Compleat File System
for Commodity SSDs”, which introduces BetrFS version 0.6.
BetrFS is an in-kernel Linux file system that uses a B%-tree
to index on-disk data and BetrFS v0.6 performs consistently
well on an SSD across different workloads.

A.2 Description & Requirements

A.2.1 How to access. The artifact consists of two pub-
lic GitHub repositories. The first repository, https://github.
com/oscarlab/betrfs (hereinafter betrfs), contains all pub-
lic releases of the BetrFS source code; this is the
repository where future bugfixes and maintenance up-
dates will be posted. BetrFS version 0.6, which is the
version of BetrFS where all of the paper’s optimiza-
tions applied, is denoted by the tag v0.6. Versions of
BetrFS with the paper’s optimizations cumulatively ap-
plied can be found in this repository’s eurosys22/sfl-kernel-
4.19.99, eurosys22/range-kernel-4.19.99, eurosys22/malloc-
opts-kernel-4.19.99, eurosys22/page-sharing, eurosys22/dc-
kernel-4.19.99, eurosys22/cond-log-opt, and eurosys22/query-
path-opt branches.

The second repository, https://github.com/oscarlab/betrfs-
eurosys22-artifact [10] (hereinafter betrfs-eurosys22-artifact),
contains scripts that automate the process of downloading,
compiling, and installing dependencies; switching Linux ker-
nels; running experiments; and aggregating experiment re-
sults. The README . md file in this repository contains detailed
instructions, including Unix commands, that run the scripts
provided to complete these tasks.

A.2.2 Hardware dependencies. Since the paper compares
Linux file system performance on commodity SATA SSDs,
the testing environment should have an independent SATA
SSD that is sufficiently large, i.e., with least 250GiB of usable
capacity, as well as a root file system partition with at least
250GiB of space.

A.2.3 Software dependencies. The artifact is known to
work on the stock version of Ubuntu 18.04.6.

BetrFS v0.4, BetrFS v0.6, and the set of comparison file
systems use different kernels. In particular,

e BetrFS v0.4: stock Linux v4.19.99

e BetrFS v0.6: patched Linux v4.19.99

o All other file systems: stock Linux v5.9.15 (the newest
Linux kernel version at the time of development).

The artifact provides scripts to build and switch among the
required kernels. The artifact also provides scripts to install
required dependencies from Ubuntu repositories or public
web sources, including git, bison, flex, gcc-7, g++7, valgrind,
zlib, f2fs-tools, ZFS, the Dovecot mailserver, and Filebench.

626

EuroSys 22, April 5-8, 2022, Rennes, France

A.2.4 Benchmarks. The Filebench benchmarking tool is
used in this evaluation. The betrfs repository contains all
required Filebench workload personalities used in the experi-
ments.

A.3 Set-up

To prepare the environment, the user should run the
install-deps.sh script in the betrfs-eurosys22-artifact
repository.

In addition, the wuser should confirm that the
install-deps.sh script set meaningful values for
the configuration variables in the betrfs repository’s
benchmarks/fs-info.sh file. More importantly, the user
should set sb_dev in benchmarks/fs-info. sh to the devfs
path of the SSD on which experiments will be run.

A.4 Evaluation workflow

To compare performance of the different file systems and op-
timizations across workloads, the experiments should be run
in an appropriate environment for each file system. There are
scripts in the betrfs-eurosys22-artifact repository to complete
these general steps:

e install and reboot into the appropriate kernel

e run the comprehensive evaluation script

The pre-*. sh scripts install the required kernel and any
other dependencies, after which the machine must be re-
booted.

The eval-*.sh scripts run the actual benchmarks. Results
of the experiments are placed into CSV files in a directory
named results/.

If desired, the betrfs-eurosys22-artifact repository also in-
cludes instructions for running individual tests from among
the set of tests that are part of the comprehensive evaluation
script.

A.4.1 Major Claims.

e (CI): On commodity SATA SSDs, BetrFS v0.6 per-
forms consistently well across a range of workloads
that test file system performance. This is demonstrated
by microbenchmarks in experiment set (E1).

e (C2): BetrFS v0.6’s consistently strong performance
on common file system tasks corresponds to good per-
formance on applications. This is demonstrated by the
experiments (E2) through (E6).

A.4.2 Experiments.

o Experiment (E1): [FS microbenchmarks]: file system
microbenchmarks correspond to Table 3. Microbench-
marks include sequentially reading and writing large
files, random writes, creating many small files in a bal-
anced directory tree (Tokubench), recursive directory
traversal (find, grep), and recursive directory deletion
(rm).
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o Experiment (E2): [tar/untar]: the time to create and
expand tar archives of the Linux 3.11.10 source code,
corresponding to Figure 2(a).

o Experiment (E3): [git]: Git latency, corresponding to
Figure 2(b). Git clone reports the time to clone the latest
Linux source repository from one directory to another
on the local system, and Git diff reports the time to diff
between the v4.14 and v4.07 Linux source tags.

o Experiment (E4): [rsync]: rsync throughput, corre-
sponding to Figure 2(c). Rsync copies the Linux
3.11.10 source tree from a source to a destination di-
rectory within the same partition and file system. With
the —in-place option, rsync writes data directly to the
destination file rather than creating a temporary file and
updating via atomic rename.

e Experiment (ES): [Dovecot mailserver]: mailserver
throughput, corresponding to Figure 2(d). The Dovecot
mailserver 2.2.13 is run with 8 threads. The mailserver
is initialized with 10 folders, each containing 2,500
messages. Each of 8 clients performs 10,000 operations
with 50% reads and 50% updates (marks, moves, or
deletes).

o Experiment (E6): [Filebench]: Filebench performance
on a set of different simulated workloads, correspond-
ing to Figures 2(e) through 2(h). The workloads include
scaled versions of the OLTP, Fileserver, Webserver, and
Webproxy workload personalities.
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[Preparation] Before running any experiment, execute the
betrfs-eurosys22-artifact repository’s pre-betrfs-v0.4.sh
script to prepare the environment for BetrFS v0.4,
pre-betrfs-v0.6.sh script for BetrFS v0.6, and
pre-other.sh for Btrfs, ext4, XFS, ZFS, and F2FS.
[Execution] To run all experiments for a given en-
vironment, execute  the  betrfs-eurosys22-artifact
repository’s eval-betrfs-v0.4.sh for BetrFS v0.4,
eval-betrfs-v0.6.sh for BetrFS 0.6, and eval-other.sh
for btrfs, ext4, xfs, zfs, and f2fs.

[Results] All results are placed in CSV files in the results/
directory.

[Run-time] Although there is variation among the individual
file systems, executing all experiments on a single file system
takes approximately eight hours on the hardware described
in the paper. This run-time estimate includes multiple
experiment runs as executed by the scripts.

A.5 General Notes

The betrfs repository branches described above correspond
to the cumulative application of the paper’s optimizations.
BetrFS v0.6 is the version of the file system that includes
all optimizations; BetrFS v0.6 should be considered the final
product of this study.


https://github.com/oscarlab/betrfs-eurosys22-artifact
https://github.com/oscarlab/betrfs-eurosys22-artifact
https://github.com/oscarlab/betrfs

	Abstract
	1 Introduction
	2 Background
	2.1 B-tree Overview
	2.2 BetrFS Architecture
	2.3 Performance Problems of Existing File Systems (on SSDs)

	3 Consolidating Storage Layers
	3.1 The Simple File Layer
	3.2 Read-ahead
	3.3 Existence Checks and File Creation

	4 Range Message Optimizations
	5 Cooperative Memory Management
	6 Sharing Pages between the VFS and B-tree
	7 Evaluation
	7.1 File System Microbenchmarks
	7.2 Applications and Benchmarks

	8 Related Work
	9 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 General Notes


