
A Probabilistic Model and Metrics for Estimating Perceived
Accessibility of Desktop Applications in Keystroke-Based

Non-Visual Interactions
Md Touhidul Islam Donald E Porter Syed Masum Billah

Pennsylvania State University University of North Carolina Pennsylvania State University
University Park, PA, United States Chapel Hill, NC, United States University Park, PA, United States

mqi5127@psu.edu porter@cs.unc.edu sbillah@psu.edu

ABSTRACT
Perceived accessibility of an application is a subjective measure
of how well an individual with a particular disability, skills, and
goals experiences the application via assistive technology. This
paper frst presents a study with 11 blind users to report how they
perceive the accessibility of desktop applications while interacting
via assistive technology such as screen readers and a keyboard.
The study identifes the low navigational complexity of the user
interface (UI) elements as the primary contributor to higher per-
ceived accessibility of diferent applications. Informed by this study,
we develop a probabilistic model that accounts for the number of
user actions needed to navigate between any two arbitrary UI el-
ements within an application. This model contributes to the area
of computational interaction for non-visual interaction. Next, we
derive three metrics from this model: complexity, coverage, and
reachability, which reveal important statistical characteristics of an
application indicative of its perceived accessibility. The proposed
metrics are appropriate for comparing similar applications and can
be fne-tuned for individual users to cater to their skills and goals.
Finally, we present fve use cases, demonstrating how blind users,
application developers, and accessibility practitioners can beneft
from our model and metrics.

CCS CONCEPTS
• Human-centered computing → Accessibility design and
evaluation methods.

KEYWORDS
Perceived accessibility, usability; blind users, screen readers, key-
boards; computational interaction, probabilistic model; desktops.
ACM Reference Format:
Md Touhidul Islam, Donald E Porter, and Syed Masum Billah. 2023. A Proba-
bilistic Model and Metrics for Estimating Perceived Accessibility of Desktop
Applications in Keystroke-Based Non-Visual Interactions. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 20 pages.
https://doi.org/10.1145/3544548.3581400

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3581400

1 INTRODUCTION
Software developers make choices at design time that afect the user
experience of their software for individuals with disabilities. For
instance, individuals with blindness—who must use assistive tech-
nologies (ATs), such as screen readers, to interact with computers—
are disproportionately impacted by how developers organize visual
content. Interleaving ads with text in web content, for example, can
lead to confusion and cognitive load, because visual delimiters, such
as whitespace, do not translate well to audio by the ATs [11, 71].
Specifcally, visual proximity in a graphical user interface (UI) does
not necessarily translate to a simple navigation path via the key-
board and audio; rather, users face an additional cognitive load to
learn and recall a path through a diferent, logical representation
of the UI. As a result, decisions such as how elements are logically
grouped or the selection and placement of keyboard shortcuts are
critical to the experience of blind users.

To measure the user experience of the software, usability and
accessibility are often used in HCI literature. Usability measures to
what extent the software ofers efective, efcient, and satisfying
user experience; and accessibility indicates to what extent the soft-
ware can be used by people with various disabilities via assistive
technologies [77]. Usability does not entail accessibility [47]. For
example, a piece of software (e.g., remote desktop clients) can be
usable to a particular user group (e.g., sighted users) but can be in-
accessible to another (e.g., blind users) [5]. Conversely, a particular
user group (e.g., blind users) can access the software (e.g., Microsoft
Word) via ATs, but their experience can be poor.

Researchers have attempted to integrate both qualities, coining
new terms, such as universal usability, where the underlying theme
is to enable access to technology plus success for all users [62, 63].
We subscribe to this notion that accessibility is an integral part
of usability, and thus, usability principles can be used to measure
accessibility. We recognize that universal usability has remained a
theoretical concept, mainly because the access needs of individuals
with diferent disabilities are understudied [22], and most devel-
opers are unaware of these needs [16]. As such, we believe it is
important to understand how individuals with a particular disability
perceive the usability and accessibility of diferent software. To that
end, we use a term, perceived accessibility, to capture how well an
individual with a disability experiences software while interacting
via their preferred assistive technology.

This work focuses on vision disability, specifcally individuals
with blindness, and their perceived accessibility of desktop applica-
tions with screen readers and a keyboard. It is important because
desktop applications are still the primary ways people use comput-
ers in education and employment.

https://doi.org/10.1145/3544548.3581400
https://doi.org/10.1145/3544548.3581400
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581400&domain=pdf&date_stamp=2023-04-19

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

We frst conducted a study with 11 expert blind participants
to identify what matters the most in their interaction. The study
reveals that perceived accessibility is subjective; it depends on
individuals’ skills and goals in using the software. Additionally,
it is intertwined with usability and other broad concepts, such as
independence; ease, i.e., the ease of understanding, learning, and
describing an application; the reliability and deterministic behavior
of keyboard shortcuts; and the ability to transfer the knowledge of
knowing one application to another.

Our study also revealed that a common desire among blind screen
reader users is to be able to fnd a specifc functionality within three
to four keystrokes (Section 3.4.8). For example, our analysis shows
that without the use of a shortcut in Microsoft Word, the average
task takes 17 keystrokes using a screen reader versus one to two
clicks for a sighted user. The requirements for Microsoft PowerPoint
and Excel are almost 23 keystrokes without using shortcuts. As
a result of such a cumbersome user experience, our participants
mentioned that they often simply forego functionality and limit
themselves to a small fraction of the features of an application.
Continuing the example of Microsoft Word, most participants use
only 10–15% of the functionalities.

Through this study, we also collected coarse data on participants’
perceived accessibility of commonly used desktop applications and
usage frequency of diferent UI elements (e.g., menu, ribbons, and
buttons) within these applications. Based on the fndings and col-
lected data, we propose a probabilistic model and derive three
metrics, namely, complexity, coverage, and reachability, relevant
to the usability of keyboard-based interaction of an application for
blind users. A key to our model is that the number of user actions to
navigate between any two UI elements has a major contribution to
the perceived accessibility of screen reader users. Our proposed met-
rics reveal important statistical characteristics of an application’s
structure (i.e., UI hierarchy, comparable to an HTML DOM tree),
which is the graphical user interface equivalent of the application
for screen reader users.

Our model contributes to the area of computational interaction
for non-visual navigation. We depart from prior work in cognitive
modeling (e.g., KLM models [18]) in a way that prior models esti-
mate task completion time as a proxy for the complexity of a task,
whereas we estimate the overall complexity of an application in
keystrokes, abstracting individual tasks or task-specifc parameters
(e.g., source, target, objective). As a result, our metrics can be mea-
sured without end-user involvement and earlier in the design cycle.
Furthermore, developers can plug these metrics into an optimizer
to receive recommendations for optimal application structure and
optimal UI elements to place keyboard shortcuts. We demonstrate
fve usages (Section 5), including one that suggests the metrics can
align with users’ perceived accessibility of diferent applications.

Three properties of our probabilistic model and metrics are:
• Automatable Measurement: The number of user actions to
navigate between UI elements can be measured solely from
the logical representation of the UI in software and a simple
model of how screen readers traverse this representation.
This can also be measured by end-users without developer
involvement or vice versa.

• Comparable: Users can compare the perceived accessibility
of similar applications of (e.g., text editors, multimedia play-
ers) by these metrics. For instance, the complexity metric
for Notepad and Microsoft Word is 1.63 and 3.51 keystrokes,
respectively. This indicates that Notepad is less complex than
Microsoft Word and is perceived as more accessible by users.
Additionally, blind users can estimate the efciency they
would gain by learning new shortcuts for an application.

• Extensible Model: Our baseline results show that a simple
model can be quite informative about the statistical charac-
teristics of an application, but one can incrementally refne
these models for more accurate results. For instance, our sim-
ple, unweighted model assumes users will navigate from any
element to any other with equal probability. We show how to
refne this model based on simple survey-like questions (e.g.,
“How often do you use the ‘Format’ menu?”) and translate
their responses to a discrete staircase probability distribution
to better capture user behavior. Similarly, by factoring in the
role of keyboard shortcuts, one can incrementally improve
the fdelity of the results.

The contributions of this paper are as follows:
(1) Identifying key aspects in blind users’ perceived accessibility

and connecting those to specifc, measurable software design
choices (Section 3).

(2) Probabilistic interaction models (Section 4.3 and Section 4.4)
and three derived metrics (Section 4.5) that can be measured
without user or developer involvement, giving the developer
and end-user more rapid feedback on the usability of the de-
sign and giving the user better insights into the accessibility
of a software package.

(3) A technique to model user behavior from survey-like ques-
tions and coarse data (Section 4.4).

(4) Five use cases demonstrating how these metrics can be used
(Section 5), including an analysis of 11 applications com-
monly used by blind users (Section 5.1).

2 BACKGROUND AND RELATED WORK
This section presents prior work on perceptions of usability and
accessibility, inaccessibility, and user interaction modeling.

2.1 Accessibility, Usability, and Inclusion
Accessibility, usability, and inclusion are closely related concepts
in creating products (e.g., software, applications, and web pages)
that work for everyone. Traditionally, usability is measured by how
much time an average user takes to complete certain tasks (i.e.,
task completion times), as well as by collecting subjective feedback
(e.g., SUS scores [43] and NASA-TLX scores [44]). Developers are
motivated to increase the usability of their applications to gain a
competitive advantage. Ensuring good usability requires substantial
user testing, which is often laborious and expensive. Accessibility,
in contrast, is commonly reported by how many accessibility guide-
lines an application violates (i.e., conformance test). Developers
are often obligated to check such violations in order to comply
with regulations, such as the U.S. Rehabilitation Act of 1973 and
Americans with Disabilities Act [67]. The most widely used set of
accessibility guidelines is Web Content Accessibility Guidelines

A Probabilistic Model and Metrics for Estimating Perceived Accessibility CHI ’23, April 23–28, 2023, Hamburg, Germany

(WCAG 2.1) [66], which has pushed the use of usability-related
criteria, such as efectiveness, efciency, and satisfaction, in web
accessibility [29, 56, 86]. This push is known as usable accessibil-
ity [35] or second wave inclusion [56]. It strongly corroborates the
theoretical concept of universal usability that accessibility is an
integral part of usability and the importance of making a product
usable to all users, regardless of their abilities, backgrounds, skills,
motivations, personalities, cultures, or ages [62, 63].

Embracing accessibility for a particular user group can improve
the overall usability of a product [55, 75, 84]. However, the key
challenge is to understand the needs of users with diferent disabil-
ities [3, 22, 46, 68, 69]. In this regard, web accessibility is a notable
exception because a large body of work exists to understand the
needs of diferent users in the web [31, 79]. We complement prior
work by understanding the perception of accessibility of desktop
applications for blind users.

Although developers must adhere to the best practices of user
interface design and accessibility guidelines, the efects of these
practices and guidelines are not the same. For example, users per-
ceive a website as more accessible if it adheres to the best prac-
tices of user interface design [87]. In contrast, only adhering to
accessibility guidelines, such as WCAG, has a minor impact on a
website’s perceived usability [76, 78]. Therefore, instead of pushing
a guidelines-based design, prior work recommends combining user-
centered and participatory design approaches with conformance
testing to achieve usability and accessibility in a product [25]. We
follow this recommendation.

2.2 Inaccessibility and Automated Testing
Besides conformance tests, much of the literature on accessibility
measurement and testing has focused, rightly so, on detecting in-
accessibility, i.e., identifying UI components with insufcient or
incorrect accessibility metadata. Common inaccessibility issues in-
clude UI elements (e.g., buttons or images) that are not labeled with
alternate text or are labeled incorrectly; UI elements that are not dis-
coverable (e.g., by setting an ARIA label incorrectly); or by simply
omitting metadata (e.g., remote desktop systems, where the screen
reader sees a blank void [5]). Numerous tools (e.g., [34, 50, 58]) exist
that implement rule-driven conformance testing to fnd inacces-
sible UI elements within an application automatically. Examples
of rule-driven tools include Expresso [33] and Robolectic [58] for
Android, KIF [42] and EarlGrey [34] for iOS, and Inspect [51] and
AccChecker [50] for Windows.

These tools have several limitations [48, 57, 74]. First, the rule-
driven tests cannot capture all accessibility issues [48] and are
usually incomplete [48]. For instance, Vigo et al. [74] show that,
on average, the current popular web accessibility testing frame-
works have around 50% coverage, 14-38% completeness, and 66-71%
correctness. Second, some accessibility guidelines are open to in-
terpretation and thus challenging to translate into rules [12, 13].
This can be further challenged by a lack of easily quantifable met-
rics. Although several metrics exist for the web, these are mostly
based on the number of barriers or passes found through an ac-
cessibility evaluation [48]. Yan and Ramachandran [83] proposed
two additional metrics for inaccessibility: inaccessible element rate
to estimate the percentage of UI elements that are inaccessible;

and accessibility issue rate to calculate the percentage of the actual
number of accessibility issues relative to the maximum number
of accessibility issues. Unfortunately, none of these metrics are a
good match for evaluating user experience above a base level of
functionality. In contrast, our proposed metrics can estimate the
perceived accessibility of desktop applications as a proxy for user
experience, which can be used during automated testing.

2.3 Cognitive Models in Accessibility
Prior work explored the use of cognitive models [10, 60, 70, 71]
as a means for designers to understand the accessibility of user
interfaces. For example, Biswas and Robinson proposed a model to
simulate how people with low vision and motor impairments inter-
act with graphical user interface [9], which they used to predict task
completion times of individuals with a specifc impairment [10].

GOMS [19] is arguably the most well-known model to estimate
the completion time of a specifc task [70], as well as to analyze the
complexity of UI elements [38, 39]. Tonn-Eichstädt [70] developed
a modifed GOMS model [17] for blind users to perform a compara-
tive evaluation of webpage designs. The users performed simple
but unfamiliar tasks with a screen reader, which formed the basis
of this model. Takagi et al. [64] developed a tool to predict the com-
pletion time of expert screen reader users to navigate to an element
on a webpage. The completion time includes a summation of the
assumed time to speak all page elements that can be traversed en
route to the target element. This accounts for individual expertise
and navigation strategies (e.g., skipping links and headings in web-
pages) but not cognitive decision times or other user operations,
such as verifcation of screen reader output and choices between
alternative navigation strategies. Therefore, this is not a cognitive
model and does not refect a user’s approach to a well-practiced
task.

GOMS also paves the way for using other models such as KLM
(keystroke-Level Model) [18], which estimates the task execution
time for a specifc scenario in a given design [41]. Trewin et al. [71]
investigated how to model keystrokes of skilled screen reader users
using KLM [17]. They concluded that such models could help de-
signers create user interfaces that are well-tuned for screen reader
users, without the need for modeling expertise, but also indicated
the difculty in learning KLM. Other researchers also point out
cognitive models’ steep learning curve, being tedious to use, and
error-prone [37].

Both GOMS and KLM require a high-level task to be broken up
until the point where each sub-task can be accomplished using
one or more predefned operators (either physical or mental). For
keyboard-based navigation, the physical operator is a keystroke.
The required time for each keystroke is then estimated, along with
any delays for the user to think (i.e., mental operator). Diferent
atomic-level tasks and their estimated execution times are available
in Kieras et al.’s work [41].

In sum, predicting task completion time is a key focus of prior
work. It is also an important usability metric for sighted users who
mostly use pointing devices (e.g., mice) to acquire targets and key-
boards for entering text (and executing basic shortcuts), but it is
not a reliable metric for blind screen reader users who exclusively
use keyboards. This is because the task completion time for blind

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

users depends on the several factors [1]: individuals’ expertise with
screen readers, their familiarity with the app, navigation strate-
gies supported by the screen readers (e.g., fat or hierarchical [4]),
and individuals’ the use of shortcuts (e.g., fast versus application-
provided [4]).

Compared to GOMS, our model is not suited for estimating task
completion times since there is no notion of tasks in our modeling.
Instead, we report application-level metrics based on the expected
number of keystrokes required to transition between any two UI
elements within an app with a probability (either from a uniform
or a staircase distribution). We describe the relationship between
ours and GOMS modeling in Section 6.2 with an illustration.

2.4 Computational Interaction Models
Computational interaction is a recent development in HCI that
is concerned with abstracting the interactions via the use of al-
gorithms and theories (e.g., control theory [54]), data, and math-
ematical models (e.g., optimization) [54]. Among these, control
theory [36] is of special interest to HCI researchers as it helps to
model interaction as a continuous event—which is arguably the true
nature of interactions [27]. Information Theory-based classic model,
Fitts’ law [28], is found to be a special use case of control theory.
Prior research in computational interaction has mostly focused on
optimizing the experience for sighted users, who can observe and
interact with the visual cues (e.g., moving target, diferent font faces,
text styles, spacing). However, little to no efort has been given to
understanding and optimizing the interactions of blind users. Our
probability model can serve as a computational interaction model
for non-visual navigation with a keyboard.

3 FORMATIVE STUDY: UNDERSTANDING THE
PERCEPTION OF ACCESSIBILITY

To investigate blind screen reader users’ general perception of
accessibility, as well as variations in their perception across dif-
ferent applications, we carried out an IRB-approved user study.
Specifcally, we conducted semi-structured interviews, following
the recommendations for qualitative interview design [72].

3.1 Research Questions
We structured our questionnaire around 4 predefned research ques-
tions (RQ1 to RQ4) and followed up with secondary questions
adapted to the participants’ expertise, profession, and conversation
fow. We describe these questions below:

RQ1: What are the important qualities of a high-quality, accessible
app? We wanted to know what the participants understood by the
term accessibility or what qualities of an application contribute to or
detract from accessibility. Sample follow-up questions included: (i)
What is accessibility to you? (ii) What do you mean when you say
that an application is accessible? (iii) What is your view on accessi-
bility? and (iv) What are the characteristics of a highly accessible
app?

RQ2: For commonly used desktop apps, how do you perceive the
accessibility of each app? We asked participants to rate around
10 − 15 applications on a scale of 1 to 5, 1 being the least and 5
being the most accessible. We also asked them to rationalize their
ratings with the use of scenarios and anecdotes. We started with

a list of the most commonly used apps in the blind community
(e.g., Microsoft Ofce apps, Calculator, Notepad)—as informed by
our prior experience of working with similar participants. This
list of applications was updated initially but quickly became stable
as the list covered the most frequently used applications of the
participants.

RQ3: What percentage of total functionality on a desktop app
do you think that you typically use? We were purposefully vague
in this question because we aimed to understand the participants’
perception of app usage. Since all participants were experts (self-
reported), their perception of app usage could reveal important
insight. For better understanding, we specifcally asked them about
3 to 4 applications of their choosing; for example: What fraction
of all the features in MS Word do you use? The participants were
asked for a rough estimate, as this would be difcult to quantify
precisely without recording usage data.

RQ4: What is an acceptable number of keystrokes (in a chain)
for you to perform a task? This question aimed to understand the
typical efort (in the number of keystrokes) the participants are
comfortable with while issuing a screen reader command. Note that
this question was not meant for any specifc task (e.g., applying
boldface to a text region, increasing text size) but to understand the
users’ general efort in issuing a command or, inversely, the ease
of issuing a command, at a time. Moreover, all of our participants
were familiar with application shortcuts for faster navigation. We
also asked about their process of learning shortcuts.

3.2 Participants and Recruitment Criteria
We recruited 11 blind participants (8 male, 3 female; details in
Table 1) through mailing lists1. Some participants had light per-
ception; they all used screen readers full-time. Their ages varied
from 33 − 68 with an average of 45.73. The participants work in
varying industries, including Healthcare, Entrepreneurship, IT, and
Assistive Technology Training Centers.

Our inclusion criteria included legally blind adults who are ex-
perts in screen reading technologies, e.g., power users or assistive
technology trainers. We imposed this constraint because research
has shown that usability models constructed with expert user be-
havior can well-approximate outcomes across a range of (visual)
tasks and devices for general users [71]. Therefore, we screened
participants who considered themselves experts (i.e., expertise was
self-reported). The 11 participants in our study had extensive expe-
rience using assistive technologies with various applications, and
had accumulated knowledge over time about what works and what
does not work efectively.

3.3 Interview Method
The interviews were semi-structured and conducted remotely via
teleconference (Zoom or telephone). Two researchers administered
the study: one conversed with the participant while the other took
notes. Each session was audio-video recorded after consent for
post-analysis and follow-up.

After verbal consent, we began by asking participants to intro-
duce themselves and tell us a bit about their history of blindness.

1 freelists.org/list/program-l and nvda.groups.io/g/nvda

freelists.org/list/program-l
nvda.groups.io/g/nvda

A Probabilistic Model and Metrics for Estimating Perceived Accessibility CHI ’23, April 23–28, 2023, Hamburg, Germany

ID
Age/
Sex

Profession Light Perception Screen Reader Used Expertise

P1 36/M Healthcare Yes JAWS, NVDA, VoiceOver Expert
P2 39/M Entrepreneur No NVDA Expert
P3 35/M Graduate Student No JAWS, NVDA Expert
P4 45/M Entrepreneur Yes NVDA, System Access Expert
P5 48/F University Disability Center No JAWS, NVDA, VoiceOver Expert
P6 40/M IT Instructor Yes JAWS, NVDA Expert
P7 33/F Assistive Technology Trainer Yes JAWS, NVDA, VoiceOver Expert
P8 38/F Assistive Technology Trainer Yes JAWS, NVDA, VoiceOver Expert
P9 67/M Engineer No JAWS, NVDA, VoiceOver Expert
P10 68/M Assistive Technology Instructor No JAWS, NVDA Expert
P11 54/M Software Developer (Python) No JAWS, NVDA Expert

Table 1: Participant demographics in the formative study

Next, we proceeded with our research questions, described earlier
in Section 3.1.

Each session lasted an hour, and participants were compensated
with a $30 (USD) Amazon or other form of e-gift card. Each in-
terview culminated with participants providing suggestions and
recommendations.

3.3.1 Collection of Application Usage Data. After asking our pri-
mary research questions (RQ1 to RQ4), we collected data about the
usage of diferent UI elements (e.g., menus, ribbons, buttons) of
applications. More specifcally, we asked participants to rate their
likelihood of using a given UI element (e.g., a menu item) on a
scale of 0 to 4, where 4 is ‘very frequently’, 3 is ‘frequently’, 2 is
‘sometimes’, 1 is ‘rarely’, and 0 is ‘never’ (e.g., ‘never used it’ or ‘not
applicable’).

We collected menu-specifc information (e.g., menus, ribbons,
sub-menus) instead of task-specifc information (e.g., button to
make selected text boldfaced, increase the font size). This is because
users are more likely to be familiar with the name of the menu
hierarchy (e.g., File, View, Format) than an individual item within a
menu.

We started with major menu groups of visually adjacent func-
tionality (e.g., a top-level ribbon tab in Microsoft Ofce), and, for
groups that are used, we move down and ask the same question
about sub-groups or individual elements. This simple, interview-
based approach allowed us to collect coarse usage data without the
disruption of installing a keylogger or other intrusive software on
their personal devices. We used this data in our modeling (described
later in Section 4.4).

3.3.2 Data Analysis. Following the completion of the frst three
interviews, the researchers analyzed the transcripts using an itera-
tive coding process with initial coding and identifed concepts [15],
categorized them, framed new questions for subsequent interviews,
and updated the concept list.

3.4 Findings
We present the fndings of our study in the following discussion.

3.4.1 Important Qalities of Accessible Applications. Participant
P8, who provides Assistive Technology training to other people

stated three important characteristics of accessible applications:
basic, understandable, and explainable. In her words:

“An application should be basic, understandable,
and easy to describe to others. By basic, I mean a
home screen that is not cluttered with unneces-
sary buttons and stuf. If you understand some-
thing, you can learn it easily and if it is easy to
describe, you can pass on what you know easily...”

Participants P9 and P10 shared the same view as P8. Participants
P4, P6, and P11 all stated that they use a screen reader to test the
accessibility of an application.

According to P6:

“I usually rely on JAWS or NVDA to decide it for
me. If JAWS starts saying "blank, blank, blank..."
I know I have an inaccessible app in my hand.”

Ease of navigation among UI items was another aspect that came
repeatedly during the interview. All of our participants P3, P4, P6,
P8-P11 mentioned that they prefer Notepad over Microsoft Word
for text editing purposes only because navigating in the former
application with fewer options feels much easier to them. The
calculator was another application that received multiple mentions
as an app with easier navigation.

3.4.2 Accessibility and Usability. When asked about the relation-
ship between accessibility and usability, three participants (P3, P5,
and P7) mentioned that accessibility does not always guarantee the
usability of an application. Apropos of that, P3 ofered a diferent
angle.

“To me, if the performance diference between
a visual and a non-visual user is negligible in
an application, I would consider it accessible...
Usability is person-specifc. A perfectly usable
interface for someone may not be comfortable for
others.”

3.4.3 Accessibility and Independence. Another term that came up
often during our interviews was independence. Participants P3, P6,
P7, P8, P9, P10, and P11 mentioned independence as a concept
closely related to accessibility. In their opinions, key criteria for
evaluation of accessibility are whether users feel comfortable using

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

and learning the software on their own, as well as teaching other
people themselves. In the words of P7:

“...if someone is able to approach, learn, and use
technology with comfort, that is what accessibil-
ity is to me. ... accessibility will lead to indepen-
dence. ”

3.4.4 Accessibility and Reliability. When asked about what makes
an application accessible, P7 stated that reliability, or consistent
behavior, is essential. Software often has context-dependent be-
havior, such as a keyboard shortcut only working properly when
the user is performing a relevant task. Worse, application context
cues may be only visual; in other cases, the application may have
simple bugs or omissions that a sighted user can work around
with a mouse click. For a blind user, however, these shortcuts also
serve a critical role in navigation, and inconsistent or unreliable
behavior disrupts navigation. To P7, the reliability of a shortcut
means that the shortcut always behaves the same way, regardless
of the application state. For instance, P7 mentioned that the desktop
version of Outlook has a shortcut that is reliable, but in the web
version, the behavior depends on the current focus. P7 also echoed
common frustrations related to inaccessibility, such as missing and
wrong labels, and unlabeled pictures, which in turn undermine
independence. According to P7:

“Accessibility also means reliability to me. The
labels, actions, and results of those actions should
be reliable. If I am pressing a shortcut key and
nothing is happening, there is nowhere else to
go.”

3.4.5 Learning a New Application and shortcuts. Commensurate
with the earlier fnding regarding independence, we fnd that inde-
pendent exploration is key to how participants learn new software.
Most of our participants (P3, P4, P5, P7, P9, P11) prefer to start
with keyboard commands, a help menu, or documentation and see
whether the application is useful. If they fnd the software useful
after the initial exploration, they are likely to continue learning
and exploring. In the words of P3:

“If the application is not accessible, I don’t bother.
If it is, I try it by myself at frst. Then, I use the
documentation or do a google search to fnd more
features...”

Some participants also mentioned that they often attempted to
transfer the knowledge of knowing one app to a new app when
learning. For instance, when asked how they would learn new
software, say Microsoft W (a made-up name, we are not afliated
with Microsoft), P7 creatively reacted to this question by describing
her strategy:

“Well, you already gave me a hint. If it is Mi-
crosoft, I can use my awful past knowledge – I’ll
be automatically teaching myself that it def-
nitely has a fle menu, it likely has a [you know]
taskbar, [you know] the ribbons at the top, prob-
ably. It supports Alt and arrow commands.”

All of our participants were familiar with application shortcuts
and the signifcant improvements in user experience that shortcuts

can bring. However, most of our participants were reluctant to
invest the efort for a variety of reasons, including the stress and
time required for memorization. For example, P2 mentioned that
he only memorizes shortcuts for a feature he frequently uses, and
P3 avoids using shortcuts altogether.

A noteworthy exception was P6, who believes memorizing short-
cuts for faster navigation is worthwhile. He reported that he knew
about 50 shortcuts for MS Word alone, and even created tutorial
audio clips to help others memorize shortcuts. Because of his pro-
fession (IT Instructor), he collaborated with many sighted and blind
computer users. Memorizing many shortcuts allowed him to per-
form a task faster to be in sync with his sighted collaborators.

3.4.6 Perception of Application-Specific Accessibility. We asked
each participant to rate the accessibility of commonly used appli-
cations on a scale of 1 to 5, where 1 is the least, and 5 is the most
accessible.

The participants consistently rated Notepad and Calculator as
the most accessible applications. Visual Studio scored the low-
est, and participants shared many accessibility issues with Visual
Studio.

For Microsoft Excel, almost all the participants agreed that
cell-to-cell navigation is simple but tiresome. Nonetheless, they
rated Excel well overall because the rich, comprehensive features
for data manipulation make Excel a useful application.

A color chart of all the applications with their ratings is shown
in Figure 1. A darker tone is used here to indicate larger counts,
while lighter tones indicate smaller counts. Not all applications
have 11 ratings, as we omitted scores from participants that were
not familiar with a given application, or for applications added after
that interview.

We also note that one source of divergent scores among our
participants fell along whether they could perceive light or color.
Some participants with light perception were able to get some visual
cues, improving their overall experience relative to users without
light or color perception. For applications that do not require visual
cues for navigation, such as the calculator or the notepad, there
was little disagreement.

3.4.7 Usage of Application Functionality. In order to understand
whether all application functionality was equally useful, we asked
the participants what percentage of all the features they use in an
application like MS Word. Then, we repeated the same process for a
few other applications, including Notepad and MS Excel. Responses
for Word varied widely, from 10–70%, although most reported 10%,
as shown in Figure 2a. For MS Excel, the number was about the
same. For Notepad, however, the numbers jumped around from
50–90%, given its very limited set of functionalities.

3.4.8 Acceptable Number of Keystrokes to Perform a Task. Most of
our participants report that two or three keystrokes are acceptable
for a given task, as shown in Figure 2b. After fve keystrokes, the
experience becomes cumbersome. In the words of P6:

“... ... 4 is also acceptable. 5, I would say, is pushing
a bit, and any more than that, I might as well
just use the menu. Because, something that can
be done with one click, should not take 5 or more
keystrokes”

I
c
Ill
Cl. :§
t::
~
0
lii

.Q

E
::I z

% of Features Used in MS Word Acceptable Number of Keystrokes

A Probabilistic Model and Metrics for Estimating Perceived Accessibility CHI ’23, April 23–28, 2023, Hamburg, Germany

Application
Participant Rating

1 2 3 4 5
Notepad 0 0 1 0 8

MS Word 0 0 3 4 4

MS Excel 0 1 1 3 6

Calculator 0 0 0 2 5

Acrobat Reader 0 2 5 2 1

Outlook 0 1 1 5 1

Zoom 0 0 3 2 4

VLC Media Player 0 1 0 1 0

Audacity 0 0 1 1 1

MS PowerPoint 0 2 2 4 1

Visual Studio 1 2 1 0 0

Google Meet 0 0 0 1 2

FileZilla 0 0 0 2 0

Figure 1: Accessibility scores of commonly used applications as rated by participants – one being the least and fve being the most accessible.
The shade of a cell indicates the frequency of response, which is also shown numerically within a cell.

0

1

2

3

4

5

10% 20% 30% 50% 70% 90%
0

2

4

6

8

1 2 3 4 5

(a) (b)

Figure 2: Results from the formative study.

One exception was P3, an advanced MS Word user. For P3, fve
keystrokes are comfortable, and he was willing to go as high as
10 − 15 keystrokes if the task at hand was worth it, although this
was beyond his comfort level, and he was quick to note that he
considered himself an outlier among users with blindness.

3.5 Perception of Accessibility and Usability in
Screen Reader-Mediated Interaction

We now discuss our fndings. Our study revealed that the partici-
pants’ perception of accessibility was intertwined with usability,
similar to the concept of universal usability [62, 63]. They also
associated accessibility with other broad concepts, such as indepen-
dence, the reliable and deterministic behavior of keyboard shortcuts,
and knowledge transfer.

The frequent association of “independence” with accessibility is
unsurprising because “independence” is central to blind users [45],
and it is considered the primary goal of any assistive device [80].
Some participants extended the notion of “independence” to “ease”
and “comfort”, such as the ease of understanding an app, the ease
of learning, and the ease of describing an app to others. Ease and
comfort are tenets of usability, and the fact that they asked for these
qualities suggests that AT-mediated interactions lack usability.

Another perception of accessibility is the deterministic appli-
cation behavior and the reliability of keyboard shortcuts. This is
insightful because many user interactions are not deterministic. For
example, re-organizing menu items based on usage is not deter-
ministic; it forces blind users to update their mental map each time.
Sometimes, navigating between two UI elements is not reversible
(e.g., moving from A to B takes 4 left arrows, but moving from B

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

to A takes more or fewer than 4 right arrows). These are bugs that
often remain undetected during system testing.

The ability to transfer the knowledge of knowing one application
to another came up often. This concept is broadly connected with
the uniformity of interaction, a known usability principle. However,
prior work [4] indicates that transferring knowledge is a major
challenge for screen reader users. For example, switching from one
screen reader to another (e.g., from JAWS to NVDA), from one
application to another (e.g., from MS Word to Open Ofce), or from
one platform to another (e.g., from Mac to Windows) is all but
difcult. Therefore, although the underlying usability principle is a
known art, its application for blind users is noisy and unforced.

Further, most participants were aware of the upper limit of ac-
cessibility: when “the performance diference between a visual and
non-visual interaction is negligible in an application” (P3). This is
interesting because most accessibility researchers evaluate the per-
formance of their system or prototype with a set of participants
having the same disability (e.g., blindness) [2]. But our fndings in-
dicate that researchers should compare their system’s performance
to those without disabilities to set the bar for future development.

Understanding these nuanced relationships between accessibility
and usability in AT-mediated interaction is one of the contributions
of this paper.

4 PROBABILISTIC MODELS AND METRICS
ESTIMATING PERCEIVED ACCESSIBILITY

The previous section highlights how blind users organically asso-
ciate usability with accessibility and how their assistive technology
(AT)-mediated interaction lacks well-known usability principles.
Take the inability to transfer knowledge as an example. For sighted
users, transferring knowledge is facilitated by the graphical user
interface, which creates a de facto standard for the application in-
terface that gives sighted users ease of learning, ease of use, and
ease of transfer of knowledge gained from using one application to
another because of a consistent look and feel [73]. Often, this con-
sistency is enforced by the systems (e.g., GUI libraries, frameworks,
or Operating Systems).

However, no such enforcer exists for blind users. Their primary
mode of interaction is keyboard-based shortcuts that vary from
application to application. This is analogous to forcing sighted users
to interact with applications only via command line interfaces,
where the command set for diferent applications difers.

Therefore, the key usability challenge in AT-mediated interaction
is how users navigate and interact with a graphical user interface—
approximated by an AT, using a keyboard. Since visual proximity in
a graphical user interface does not necessarily translate to a simple
navigation path via the keyboard and audio; decisions such as how
elements are logically grouped or the selection and placement of
keyboard shortcuts are critical to the experience of blind AT users.

This section frst explains how we model assistive technology
navigation through a given application UI. Then, we use probabilis-
tic modeling to replicate UI navigation. Finally, we derive three
metrics using this modeling; namely, Complexity, Coverage, and
Reachability, which can reveal important statistical characteristics
of an application relating to its usability for blind AT users.

4.1 Modeling Application Navigation
To build a navigation model for an app, we start by extracting a
logical model of the UI using standard accessibility APIs. Accessi-
bility APIs expose a logical representation of an application’s user
interface as a tree of UI elements, similar to an HTML Document
Object Model (DOM) tree; for brevity, we use the term DOM in this
paper to describe the OS’s logical representation of the UI.

To extract an application’s DOM, we developed a tool in C#,
similar to Accessibility Insights2. Internally, this tool utilizes UI
Automation API [52] to register a hook onto the target application
and extract the metadata associated with each UI element in that
app. Once extracted, our tool exports the constructed DOM as an
XML fle. We then calculate our metrics on this XML fle. The DOM
extraction process is mechanical and requires only a few clicks. We
plan to make our tool open-sourced and release it in the future.

For a graphical user interface, this DOM is ultimately rendered
into a bitmap, whereas for an assistive technology, such as a screen
reader, the DOM is traversed and converted to speech. In the case
of an AT, we need to posit the notion of focus or a cursor, which
identifes the current element the AT is rendering (into speech, for
a screen reader). The AT user must move through the DOM, one
element at a time.

As an example, Figure 3 shows a screen capture of Microsoft
Word, with a few visual elements under the "Home" ribbon high-
lighted and labeled with numbers. Figure 4 shows a simplifed DOM
representation of the labeled elements, where the "Home" ribbon
tab (label 1) is a parent of the other elements, which are siblings
within the hierarchical representation. Note that a "down arrow"
navigation (from 1) always goes to a single element (2), and then
the user must navigate laterally to other siblings. From any of the
elements 2..5, the user can type the "up arrow" to move back to 1,
creating an asymmetric path, indicated by unidirectional arrows in
the fgure. We note that the organization of elements in the DOM
may not match the visual layout.

The user of a screen reader uses a keystroke to navigate from one
node in the navigation model to another. In moving from a DOM
to a navigation model, we remove some hidden elements from the
DOM that would not afect navigation, such as "container" elements
that logically group several UI elements, but do not contain any
information to present or action to take. Screen readers implement
similar heuristics, such as fattening containers that have only other
containers as children.

In practice, keyboard shortcuts can also add edges to the naviga-
tion model. A keyboard shortcut can jump to a given UI element,
reducing the number of keystrokes required to navigate from one
element to another. Shortcuts are also unidirectional; if the user
is on element A and uses a shortcut to jump to B, the application
may not provide a matching shortcut back to A. We add edges
to our navigation model for all keyboard shortcuts. In short, our
navigation model introduces one directed edge per transition of
focus, and a node is a UI element.

2https://accessibilityinsights.io/docs/en/windows/overview/

https://accessibilityinsights.io/docs/en/windows/overview/

0
0

A Probabilistic Model and Metrics for Estimating Perceived Accessibility CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 3: A screenshot of MS Word, with a few clickable elements labeled
with numbers (1 to 6).

1

2 3 . . .

1 2

1

1

Figure 5: The cost model for nodes 1, 2, 3 from Figure 4 (top-right). Nodes
are the same UI elements as in the DOM, but the edges represent the
smallest cost to move between a pair of elements. In practice, the graph
is fully connected (and simplifed for clarity).

4.2 Cost Model
The next step is to build a cost model for each potential transition.
Cost is simply the shortest path between two nodes in the naviga-
tion graph, represented in the number of keystrokes. This includes
up/down moves, sibling/level moves, and also shortcut moves if
applicable.

For example, let us consider that our source is node 1 and our
destination is node 5 in Figure 4. The journey from node 1 to node
5 would have the path 1 →− 2 →− 3 →− 4 →− 5. Here, the move 1 →− 2
is a down move and the rest are sibling/level moves. One down
move and three sibling moves make the total cost of this journey
1 + 3 = 4. In the case of keyboard shortcuts, we model a move as
the total number of keystrokes needed for that (e.g., 2 for "Alt+H").

Figure 5 shows the cost model with nodes 1, 2, 3 from Figure 4.
The model is represented using a fully connected, weighted graph,
where each edge’s weight is the minimal cost to travel between two
nodes (i.e., UI items.)

4.3 Transition Model 1: Uniform Transition
Probability

We model UI navigation as a random process in which a user navi-
gates from one UI element to another at discrete time steps. If an
application has � interactable UI elements, at each time, the AT’s
cursor or focus can be on one of these � elements and can transition
to any of the other � −1 elements. To represent the transition model,
we build a fully-connected, weighted, directed graph (�) having �
nodes and � ∗ (� − 1) edges. The weight of each edge in this model
is the probability of that transition taking place, as explained below.

As a simple baseline, we start with a model where each transition
is equally likely. In other words, the probability of an edge, � being
followed is:

1

32 4 5 6

Figure 4: A simplifed DOM representation of the labeled UI
elements in Figure 3 (left). The Home ribbon tab is a parent of
the other elements, which are siblings in the hierarchy.

1

2 3 . . .

1
6

1
6

1
6

Figure 6: The frst transition model for nodes 1, 2, 3 from Figure 4.
The edges represent the uniform transition probability (1/6) to
move between a pair of elements. For simplicity, we only show
3 nodes with 3 directional edges (i.e., 6 unidirectional edges).
In practice, the graph is fully connected containing a total of
6 nodes and 36 unidirectional edges, with an equal transition
probability of 1/36 for each edge.

1
�� = (1)

� ∗ (� − 1)

Continuing the Microsoft Word example, Figure 6 presents a
transition model for nodes 1, 2, 3 from Figure 4. With � = 3, we get
�� = 1 = 6

1 . In other words, the probability of each transition is 3∗2
1
6 , as shown in Figure 6.

4.4 Transition Model 2: Modeling Probabilities
from User Interviews

Recall that during our interview, we collected coarse data about
the participants’ usage of diferent features in an application (Sec-
tion 3.3.1). We can use this data to build a user-specifc transition
model, where each edge (i.e., transition) in the fully-connected
graph may have diferent weights (i.e., probabilities).

During data collection, recall that the participants rated their
likelihood of using diferent UI elements (e.g., menus) in an applica-
tion on a scale of 0 to 4 (4 is "very frequently", 3 is "frequently", 2 is
"sometimes", 1 is "rarely", and 0 is "never"). With this interview data,
we can then place every UI element in one of fve buckets, corre-
sponding to the average usage frequency reported by participants.
We model a fve-node “graph of graphs”, where the fve buckets
are each a node in a fully-connected transition graph (Figure 7),
but each bucket also contains a transition graph of all the nodes
within the bucket (Figure 8). Note that if there are � nodes in the
transition graph and 5 buckets in total, and a bucket �� containsÍ�=5�� nodes, then � = �=0 �� .

For each transition, then, one must consider whether it is an
intra-bucket or inter-bucket transition. As a simplifcation, we treat
all items within a bucket (e.g., all the edges in Figure 8) as hav-
ing equal probability. Since transitioning to a node in the never

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

�0

�1 �2

�3 �4

Figure 7: A complete graph-of-graph with 5 pref-
erence buckets (�0 to �4). Each bucket contains
all the nodes with identical personalized proba-

1

2 3

4

Figure 8: A complete graph
showing the intra-bucket
transitions for bucket �� . For
an illustration, we assume

B0 B1 B2 B3 B4
Buckets

Pr
ob

ab
ili
ty

0.1

0.2

0.3

0.4

0.5

0

bility values (e.g., 0.1 for all nodes in �1). Only
inter-bucket transitions are shown. Intra-bucket

this bucket contains four
nodes: 1, 2, 3, and 4. Figure 9: A staircase probability distribution for 5 pref-

transitions are shown in Figure 8. erence buckets (�0 to �4). Nodes or UI items in bucket
�4 are most likely to be visited from a random node.

bucket (�0) is extremely unlikely (i.e., ‘never’), we consider the tran- 4.5.1 Complexity. We defne complexity as the expected number
sition probability to a node in this bucket, � (�0) is infnitesimally of keystrokes required to navigate from one node to another in an
small, i.e., � (�0) ≈ 0. Hence, we ignore bucket �0 from the further application. We calculate this by the simple formula of mathematical
calculation. expectation:

Next, we model the probabilities for the other four buckets (�1 −
� �=� ∑ �4) as � (��) = 10 , modeling it after a discrete staircase probability

���������� = �� ∗ �� (3)distribution [23], with hyperparameters � = 1, � = 4, and � = 4.
This is shown in Figure 9. The hyperparameter � represents the �=1

number of buckets, which is 4 in our formulation (e.g., �1 to �4). The where � = � ∗ (� − 1) represents the total number of edges

values � = 1 and � = 4 indicate that the likelihood of transitioning or possible transitions, {�1,�2,�3,,�� } represents the costs
for all � edges (comes from the cost model), and the probabilities to a node in the highly-frequently bucket (�4) is 4 times than

that of a node in the rarely bucket (�1). Derivation of � (��) is {�1, �2, �3,, �� } (comes from the transition model) represent
the likelihood of a transition. shown in Appendix A. Now, we can calculate the probability of an

Complexity captures the difculty perceived by a user whileedge, � (which is from bucket ��) using the following formula:
navigating an application. The higher the expected number of
keystrokes for a transition in the application, the more tedious

� (��)
= (2) the user experience. �� Í�=4,�≠�
�� ∗ (�� − 1) + �� ∗ �� �=1 4.5.2 m-keystroke Coverage. We defne m-keystroke coverage

Here bucket �� contains the destination node of the edge � , as the percent of possible transitions that can be completed in �
and the denominator is the total number of edges incoming to or fewer keystrokes. For example, our fndings show that users
nodes in �� . Here, �� ∗ (�� − 1) is for the intra-bucket edges and consider three to four keystrokes are an acceptable target, although
�� ∗

Í
�
�
=
=
1
4,�≠�

�� for the inter-bucket edges. We show the results of two to three keystrokes are desirable (see Section 3.4.8). As such,
this user-specifc usage model in the preliminary feedback section the 3-keystroke coverage would indicate what fraction of the edges
(Section 5.1.4). in the transition graph have a cost (i.e., weight) of three or less.

We selected the staircase probability distribution because it is a Higher m-keystroke coverage is better for the end user. We also
simple and sufcient match for a discrete preferences questionnaire. use the term coverage more generically.
This approach also leverages the intuition that fner gradations 4.5.3 x%-reachability. We defne x%-reachability as the value of
of user probability are unlikely to afect the overall result. This

� for m-keystroke coverage that would cover �% of the possible
approach to interviewing participants also matches the logical or- transitions in the application. The primary goal of this metric is to
ganization of a given piece of software, quickly dismissing swaths understand how many keystrokes the users may need when they
of functions that users ignore, without losing outliers. want to use a certain percentage of all the features in an application.

As reported in §3.4, users only use a very small portion of the
4.5 The Metrics available application options, shown in Figure 2(a). Thus, it would
We propose three new metrics that we calculate using our cost make sense to investigate how many keystrokes it would take if we
and transition models. This subsection presents these metrics for were to cover 10%, 20%, or 50% of all the nodes. The lower the value
estimating blind users’ perceived accessibility, along with their of x% Reachability, the better the overall navigation complexity for
signifcance, mathematical formulae, and statistical meanings. the user. We also use the term reachability more generically.

A Probabilistic Model and Metrics for Estimating Perceived Accessibility CHI ’23, April 23–28, 2023, Hamburg, Germany

Capturing the Value of Learning Shortcuts. Some of the
nodes in an application DOM have shortcuts. When these nodes are
the destinations of a transition, the cost is 1 − 3 depending on the
number of keystrokes associated with the shortcut. Shortcuts have
a steep learning curve, and generally require the user to memorize
them. If the user is not aware of an existing shortcut, they must
traverse the application UI in the traditional way using up, down,
and sibling moves.

In order to capture the potential gains from learning these short-
cuts, we calculate and compare the complexity, coverage, and reach-
ability of an application with and without shortcuts. Of course,
the measurements without shortcuts are expected to be worse. For
example, it would take nine keystrokes to apply boldface to a piece
of text in MS Word (Figure 3). With shortcut (���� + �), however, it
would take just two keystrokes.

However, a signifcant diference between a measure with and
without shortcuts indicates that the user can improve their experi-
ence by learning these shortcuts. This metric is most relevant when
the scores without shortcuts are poor; adding shortcuts to an appli-
cation with already good metric values will only see diminishing
returns.

5 USE CASES OF THE PROPOSED METRICS
In this section, we demonstrate how screen reader users, application
developers, and accessibility practitioners can use our metrics.

5.1 Use Case 1: Benchmarking Commonly Used
Applications

This section presents the benchmarking results (in terms of the
proposed metrics) for 11 applications, followed by validation via
a follow-up discussion with study participants. We selected the
applications based on the process described in Section 3.1 (RQ2).

5.1.1 Complexity of Commonly Used Application. Complexity mea-
sures the expected number of keystrokes to move from one UI ele-
ment to another in a given application (§4.5.1). Figure 10 presents
complexity metrics for 11 diferent applications. For each appli-
cation, we report data with and without shortcuts (the diference
indicates how much the user experience depends on learning the
shortcuts). One can think of the two bars as bounding the range
of accessible user experience—ranging from no knowledge of any
shortcut to perfect mastery of all shortcuts. The reality is likely in
between for most users.

Among the lowest complexity applications, when factoring in
shortcuts, are Calculator, Notepad, VLC Media Player, and MS Word;
among the highest are Adobe Acrobat Reader, Audacity, and MS
PowerPoint. MS Excel is a special case, in that most of the complex-
ity comes from traversing 250 diferent cells in our sample input
spreadsheet, for which arrow keys are commonly used.

In terms of gains from shortcuts, we fnd applications that placed
shortcuts near difcult-to-reach UI elements fared best, such as MS
Word, Notepad, Outlook, and Visual Studio.

5.1.2 3-Keystroke Coverage of Commonly Used Application. 3-keystroke
coverage is the percent of total transitions a user can complete in
up to 3 keystrokes. We selected 3 as a target based on input from
the user study (Figure 2b). The results are presented in Figure 11.

These results indicate that most applications have extremely
limited functionality within users’ comfort level, without the aid
of shortcuts. In most cases, shortcuts make more than half of an
application’s content reachable within the three-keystroke thresh-
old. For MS Word, the coverage of 82.52% is well above the 10–20%
estimate of functionality from our study participants. The same is
true for Notepad as well. Both Excel and Acrobat Reader failed to
meet this target, but as previously mentioned, Excel is a special
case.

5.1.3 20%-Reachability of Commonly Used Application. 20% reach-
ability indicates the number of keystrokes it would take to cover
20% of all possible transitions in an application. We selected 20% as
a reasonable bound based on current usage by our sample group as
seen in Figure 2a, where the average usage is 21%.

Figure 12 presents reachability metrics for our 11 test applica-
tions. Among the 11 applications, 10 of them realize 20% reachability
within three keystrokes using shortcuts—a threshold most partici-
pants considered acceptable. However, we hasten to note that all of
these depend on shortcuts; only the calculator app meets this goal
with no shortcuts.

5.1.4 Preliminary User Feedback on Metric Values. To under-
stand whether the values of our metrics for diferent applications
make sense, we conducted a brief follow-up interview with the
same set of participants (demographics in Table 1) remotely over
Zoom and phone calls.

In each session, we frst reviewed the accessibility ratings (on
a scale of 1 to 5) they provided earlier for diferent applications
(Section 3.4.6) and asked whether they wished to adjust any rat-
ings upon further consideration. We then presented our analysis of
diferent applications with our metrics (described in earlier subsec-
tions) and explained how to interpret our metrics for an app. We
asked participants whether the values of these metrics aligned with
their experience.

More specially, we asked two main questions in the follow-up:

• On average, a task in application X takes k1 and k2 keystrokes
respectively without and with shortcuts. Do these numbers
match up with your experience? (Complexity)

• Without using any shortcut on application Y, you would need
k1 keystrokes to perform a task. With shortcuts, the number
is k2. Does this change your view on learning shortcuts in
application Y? [In most cases, k2 was signifcantly lower
than k1 as shown in Figure 10] (Incentives for learning
shortcuts)

Feedback on Complexity Analysis. Most participants agreed that
the complexity metric captured each application’s usability and
accessibility, and tracked their overall experience. For most appli-
cations, including Notepad, PowerPoint, and Outlook, all of our
participants agreed that the numbers were representative and made
sense.

In the case of Word, Participants P1, P3, P4, P5, P6, P7, and P8
agreed with our fndings. To enhance usability, P8 recommended
limiting the usage of shortcuts to only necessary cases and utilizing
helpful mnemonics. Overusing shortcuts can make them difcult to
remember, as suggested by P8. P3 said of Microsoft Word’s scores:

~ ;
a.
E
0

(.)

l
GI
Cl
I!
!e
0

(.)

j

!
c:,

t
:a
Ill
.c u
Ill

&
all
0
N ...
.E
j

!

■ With Shortcut ■ Without Shortcut

■ With Shortcut ■ Without Shortcut

■ With Shortcut ■ Without Shortcut

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

16.29

12.13
10.46

8.93 7.81 7.14

3.97 3.51 2.58 1.63 1.33

22.85

14.67

20.7
22.86

18.56 17.82 16.96 17.65

12
9.94

3.47

0

10

20

30

Exc
el

Ac.
Rea

der

Audac
ity

Powerp
oint

Notep
ad

++

Vis.
 Studio

Outlo
ok

 W
ord VLC

Notep
ad

Calc
ulat

or

Figure 10: Complexity of Diferent Applications With and Without Shortcuts (the lower, the better).

21.13
10.87

49.39

69.65

51.08
58.95

80.83 82.52 82.51

94.53 96.12

2.62 4.95 0.97 1.27 2.24 2.03 2.10 1.22 4.83 7.36

69.31

0

25

50

75

100

Exc
el

Ac.
Rea

der

Audac
ity

Powerp
oint

Notep
ad

++

Vis.
 Studio

Outlo
ok

 W
ord VLC

Notep
ad

Calc
ulat

or

Figure 11: 3-Keystroke Coverage of Diferent Applications With and Without Shortcuts (the higher, the better).

3

5

1
2

1 1
2 2

1 1 1

11

8

12 12

10 10 10
11

7
6

1

0

5

10

15

Exc
el

Ac.
Rea

der

Audac
ity

Powerp
oint

Notep
ad

++

Vis.
 Studio

Outlo
ok

Word VLC

Notep
ad

Calc
ulat

or

Figure 12: Required Keystrokes for 20%-Reachability of Diferent Applications With and Without Shortcuts (the lower, the better).

A Probabilistic Model and Metrics for Estimating Perceived Accessibility CHI ’23, April 23–28, 2023, Hamburg, Germany

“...for Word? Makes absolute sense, both numbers.
They have huge objective insights and are very
believable.”

Microsoft Excel is an unusual case, and our scores received more
nuanced feedback. Our test scenario involved a spreadsheet with
250 cells, which did not have shortcuts for navigation. Participants
P1, P3, P6, and P7 felt Excel’s complexity scores were representative,
whereas P5 and P8 found the complexity score with shortcuts too
high. In P7’s words:

“...22 and 16 keystrokes, yeah; that is accurate,
sounds like Excel.”

Feedback on Learning Shortcuts. Next, we revealed complexity
data in Figure 10. Given that applications, such as Microsoft Word,
have a large diference in complexity with and without shortcuts, we
asked whether this information increased their interest in learning
more shortcuts. Participants P3-P8 all expressed increased motiva-
tion to learn new shortcuts in their commonly used applications.
One exception was P2, who still believes that memorizing shortcuts
is more trouble than it is worth; he would prefer applications to
reduce navigation complexity by personalizing menus based on
a given user’s usage patterns, similar to what Gazos et al. did in
Supple [88].

Modelling Probabilities from User’s Preferences. One partic-
ipant (P4) believed the scores of 3.5 and 17.65 for MS Word were
higher than his expectation. To investigate the scenario, we asked
him how he uses MS Word and found that he rarely visited UI
elements that were costly to reach in terms of required keystrokes.
Recall from Section 4.4 that we can incorporate user preference-
specifc usage in our transition model. As such, we completed the
questions discussed in Section 4.4 and built a more personalized
transition probability model for the participant. As a result, the
complexity scores for Word dropped to 1.95 and 16.17 with and
without shortcuts for him, respectively. This explains why he was
expecting a number lower than 3.5—his usage of MS Word does not
involve visiting too many costly-to-reach nodes. This also indicates
our model’s ability to incorporate individual usage patterns and
preferences.

Summary. This follow-up study indicates that the complexity
metric accurately quantifes aspects of the AT user experience that
could previously only be described qualitatively. The analysis of
these metrics, as well as reachability and coverage, can give further
insights to the developer about how to improve the usability of an
application. The study demonstrates both that these metrics are
grounded in feedback from study participants, and how one can
incrementally refne the model of user behavior to capture unusual
cases and improve the accuracy of the results. Feedback from the
follow-up interview suggests that such metrics can benchmark
diferent apps; and, if validated with more users, could be a valuable
community resource for blind users.

5.2 Use Case 2: Optimizing UI Hierarchy for
Screen Reader-Mediated Interaction

How UI elements are organized in the DOM tree can infuence
navigational complexity. Developers can use one or more of our

metrics (§4.5) as optimization functions to compare diferent UI
layouts [88]. Further constraints, such as the number of newly
allowed shortcuts or the number of structural changes, can also
be placed. The following examples demonstrate how UI hierarchy
optimization can be performed using our metrics.

Goal Constraints

i) Number of changes, N <= 2
Minimize Complexity ii) No new shortcut allowed

Table 2: (Example-1) Goal and constraints for Figure 13

R

P1 P2

P3A

B C D

E P4

F

(a) Original
Confguration

(complexity = 3.37)

R

P1

P3A

B C D

E

F

(b) Optimized
Confguration

(complexity = 2.23)

Figure 13: (Example 1) UI hierarchy optimization obliging the con-
straints in Table 2. The letter R stands for the root of the hierarchy.
P1-P4 stand for the intermediate non-leaf nodes that we ignore in
our computation. A yellow shade inside a node indicates that its
position in the UI hierarchy has been changed.

Edge Original

Cost

Optimal

Cost

Edge Original

Cost

Optimal

Cost

<A,B> 2 2 <D,A> 2 2
<A,C> 3 3 <D,B> 2 2
<A,D> 4 4 <D,C> 1 1
<A,E> 3 2 <D,E> 4 2
<A,F> 4 5 <D,F> 5 1
<B,A> 2 2 <E,A> 3 2
<B,C> 1 1 <E,B> 4 2
<B,D> 2 2 <E,C> 5 3
<B,E> 4 2 <E,D> 6 4
<B,F> 5 3 <E,F> 2 5
<C,A> 2 2 <F,A> 4 2
<C,B> 1 1 <F,B> 5 2
<C,D> 1 1 <F,C> 6 2
<C,E> 4 2 <F,D> 7 1
<C,F> 5 2 <F,E> 2 2

Table 3: (Example-1) Summary of costs for all transitions in
Figure 13

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

Example 1. Here, the original hierarchy is shown in Figure 13a.
The goal of the optimization task is to minimize the navigation
complexity of the hierarchy with no more than 2 structural changes
(e.g., changing the parent of a leaf node) without introducing any
new shortcuts. The goal and the imposed constraints are present
in Table 2. We consider only the leaf nodes (marked in a circle
in Figure 13) as valid sources and destinations for navigation, as
mentioned in our model description. As such, the root node R and
the intermediate parent nodes P1-P4 are not in our consideration.
When the above optimization function (goal) and constraints are put
in an LP (Linear Programming) Solver, we get the optimized output
as shown in Figure 13b. The cost of all possible valid transitions
before and after optimization in Figure 13 is shown in Table 3.

Goal Constraints

Maximize 3-Keystroke Coverage
i) Number of changes, N <= 1
ii) 1 new shortcut allowed

Table 4: (Example-2) Goal and constraints for Figure 14

R

P1 P2

P3A

B C D

E P4

F

(a) Original Confguration
(3-keystroke coverage =

50%)

R

P1 P2

P3A

B C D

E

F

(b) Optimized
Confguration

(3-keystroke coverage
= 87%)

Figure 14: (Example 2) UI hierarchy optimization obliging the con-
straints in Table 4. Node C is marked in green, meaning that it has a
direct shortcut available for it. A yellow shade inside a node indicates
that its position in the UI hierarchy has been changed.

Example 2. Suppose the original application DOM is similar
to before (Figure 14a), but our goal is to maximize the number of
transitions we can make within 3 keystrokes, with no more than one
structural change and only one new shortcut to any node (Table 4).
The output of an LP optimized is shown in Figure 14b. The cost
of all possible valid transitions before and after optimization in
Figure 14 is shown in Table 5.

Adding a shortcut to node C (marked in green) results in the
maximum 3-keystroke coverage. Adding a new shortcut to node C
allows it to act as another entry point in the hierarchy. For example,
if one needs to go to node D, they can just use the shortcut to get
to C and then use a right arrow (→−) key to move to D.

Edge Original

Cost

Optimal

Cost

Edge Original

Cost

Optimal

Cost

<A,B> 2 2 <D,A> 2 2
<A,C> 3 1 <D,B> 2 2
<A,D> 4 2 <D,C> 1 1
<A,E> 3 3 <D,E> 4 4
<A,F> 4 3 <D,F> 5 1
<B,A> 2 2 <E,A> 3 3
<B,C> 1 1 <E,B> 4 2
<B,D> 2 2 <E,C> 5 1
<B,E> 4 4 <E,D> 6 2
<B,F> 5 3 <E,F> 2 3
<C,A> 2 2 <F,A> 4 2
<C,B> 1 1 <F,B> 5 2
<C,D> 1 1 <F,C> 6 1
<C,E> 4 4 <F,D> 7 1
<C,F> 5 2 <F,E> 2 4

Table 5: (Example 2) Summary of costs for all transitions in
Figure 14

Summary. In this possible use case, we showed how the pro-
posed metrics can be used as cost functions when optimizing UI
hierarchies for screen reader users. In the frst example (Figure 13),
the optimizer i) got rid of intermediate non-leaf nodes P2 and P4
and ii) moved the nodes E and F to diferent parents to minimize
the complexity (i.e., cost function) of the hierarchy. In the second
example (Figure 14), the optimizer i) got rid of intermediate non-
leaf node P4, ii) changed the parent of node F, and iii) assigned
a shortcut to node C to maximize the 3-keystroke coverage. The
aforementioned changes are made to the DOM structure of the
app, which is oblivious to sighted users. As such, sighted users can
continue to use the unmodifed application hierarchy. The devel-
oper could ofer the modifcations as an accessibility enhancement,
making them exclusively available to screen reader users.

5.3 Use Case 3: Finding Hard-to-reach UI
Objects and Ofering Workarounds

Let us defne hard-to-reach UI objects as nodes that require over 20
keystrokes to reach. This is a case when a UI object has too many
siblings because the users have to go over these siblings to reach
terminal nodes. Two such examples (e.g., Notepad++ and Audacity)
are shown in Figure 15 to demonstrate this case. Our method of
analyzing applications based on their DOM trees can reveal the
existence of such nodes and help the developers make better design
choices.

Workaround: Adding Shortcuts For Hard-to-reach Nodes.
Recall that any node with a shortcut can be reached using one (or
a set) of keystrokes. As such, one idea would be to add shortcuts
for all the hard-to-reach nodes. However, from the examples in
Figure 15, it is clear that there can be too many such nodes in some
cases. For situations like these, developers can create multiple entry
points into long list-like menus. For example, if a list-like menu
has more than � (developer can pick the value of �) elements, the
developer might create a shortcut for the �

2 -th item in the list. In

[J' newl-Notepad••

File Edit Search V.ew Encoding language Setting• Tool, Mac,o Run Plugin, Window ?

o ~ ~Cl o Alway,conTop

'§:i"5'1 Toggle Full Scrffn Mode

Post-It

OistractionFrffMode

V.ewCurrent Filtin

Show Symbol

Move/C1oneCurrent0ocumenl

T,b

Wordwrap

Fold AH

UnfoldAII

Collap..,Current l f'nl

Uncolla~Currtnt l l!Vel

Collap.., t ONel

UncollapY"Ll!Vel

Summary ...

ProjfflPanels

FolderasWorlupace

Document Map

Document list

Synchronize Vertical Scrolling

SynchroniieHoriiontal Scrolling

Text Direction Rn.

TextOirKtionLTR.

Monitoring(t.iil•f}

F'1

Alt•O

Alt•Shift•O

Ctrl•Alt•F

Ctrl•Alt•Shift•F

Ctrl•Alt•R

Ctrl•Alt•l

~ Aud.city

File Edit Seim V.ew Tran,port Tracie. Gff!eute Effm Analyze Tool, Help

II ► ■ I◄ ► l • Add / RNnovePlug-ins ...

v ... Microphone Arr~ (Intel• S, Amplify ...

Bass arid Treble ...

ChangePrtch .. .

ChangeSpttd .. .

Change Tempo .. .

Click Removal...

Compressor ...

omortion ...

Ecl>o ...

Fadeln

Fade Out

FilterCurveEQ ..

Graphic(Q ...

Rtpa1r

Repeat...

Rr1erb ...

Sliding Stretch ...

Adjustable Fade ...

C1,pFU ...

CrossfmCl,ps

CrossfadeT,acla.. ..

High-Pass Filter ...

NotchF,lter ...

SpmralOdete

Spectralfflrtmult,tool

Spectr1lfflitp111metric(Q ..

Sgmralfflitshffln ...

lremolo ...

Sp<

A Probabilistic Model and Metrics for Estimating Perceived Accessibility CHI ’23, April 23–28, 2023, Hamburg, Germany

(a) Notepad++

(b) Audacity

Figure 15: Applications with too many hard-to-reach UI objects. Example nodes are marked in red.

such a scenario, if the target is closer to the middle of the list, the
user can navigate directly to the �

2 -th item frst. Again, dividing the
list into two halves is just an example. The developer can pick any
number of divisions they deem appropriate. The metrics proposed
in this paper would enable the comparisons of diferent design
decisions made by the developer.

We note that designing an efective UI hierarchy is challenging,
but existing design frameworks, such as the Information Architec-
ture Principles [14], can provide guidance. For example, keeping
a short list of frequently used items at the top level can simplify
navigation. For a long list, Hick’s law recommends to organize
items alphabetically [85].

5.4 Use Case 4: Recommending Guidelines for
Application Design/Usage

The hard-to-reach node problem in Section 5.3 can also be ad-
dressed by promoting specifc app design/usage guidelines, such as
circular navigation. Most applications we tested support circular
navigation, i.e., pressing the up arrow on the frst item in the menu
shifts the focus to the last item in the menu. However, none of our
participants were familiar with this feature and hence, never used it.
Using this feature could result in large decreases in the number of
keystrokes required to reach a node at times. For example, consider

the Function List option in the Notepad++ application in Figure 15a.
If traditional linear navigation is used, the average complexity to
reach this option is 31. However, with circular navigation, the com-
plexity comes down to 18. In the case of the Studio Fade Out option
in the Audacity application in Figure 15b, the average complexity
is 56 with linear navigation and 16 with circular navigation. For
application developers, this metric can facilitate evaluating difer-
ent UI designs (e.g., circular vs. linear) and their relative difculties.
For users, the benefts of new navigation models require additional
training; this metric quantifes the gains in user experience one can
expect from such training.

5.5 Use Case 5: Comparing Similar Applications
and Estimating the Efect of Learning
Shortcuts

Participant P8, who is an Assistive Technology Trainer, believes our
metrics could be helpful to end-users as part of a rating system for
software accessibility. As refected in our user study, users currently
rely on trial-and-error or advice from others (if available) to decide
whether to invest the efort in learning a piece of software.

In the words of P8:
“I wish I could tell the people I teach about these
numbers. These will help them with the decision

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

of choosing, using, and in-depth learning an ap-
plication.”

Figures 10-12 show wide variance in the difculties of learning
and using diferent applications. Using these, blind screen reader
users can choose which application to learn in a given category
(for example, text editors). Throughout our interviews, we encoun-
tered participants saying that app X is easier to use than app Y.
For example, our participants consistently mentioned that they
preferred Notepad over Word for basic text editing. This is refected
by our metrics and Figures 10, 11, and 12. The complexity for MS
Word is 3.51 and 17.65 with and without shortcuts, respectively. The
scores are 1.63 and 9.94 for Notepad. We can also compare the 20%
reachability (2 for Word, 1 for Notepad, with lower being better) or
3-keystroke coverage (82.52% for Word, 94.35% for Notepad) for the
two applications to come to the same conclusion. Thus, our met-
rics can help screen reader users, and accessibility trainers choose
which applications to learn in a given category.

Figures 10-12 also display the drastic diference in the proposed
metric values with or without shortcuts. In the future, these metric
values can also be generated for a specifc number of shortcuts (e.g.,
10, 20, 30), as opposed to 0 (without shortcut) or all (with shortcut)
as shown in Figures 10-12. With these additional benchmarks, blind
users could estimate their current complexity (say, with 10 short-
cuts) and predict how much efciency they can gain by learning 10
(or, 20) more shortcuts.

6 DISCUSSION

6.1 A Complement to User Testing
HCI community has developed analytical approaches to interface
design and evaluation (e.g., GOMS models [18, 19, 40]) that work
in tandem with empirical techniques in the iterative design loop
and provide satisfactory results when empirical testing is not prac-
tical [32, 60, 70]. As software development practices have moved
toward the “move fast and break things” mantra, this community
needs better "guardrails" against breaking accessibility, which can
keep pace with rapid development. Thus, a key beneft of our model
is that it can be automated and is task-independent. In contrast,
other techniques are task-dependent (e.g., GOMS modeling) or
slower and more systematic (e.g., user testing). To be clear, all serve
essential, complementary roles.

6.2 Relationships with GOMS-Based Models
We provide insights into how our approach compares to prior ana-
lytical frameworks, especially the GOMS models. The most notable
diference is that our approach is application-specifc, whereas
GOMS models are task-dependent. Put diferently, our metrics re-
port applications’ structural properties without assuming a particular
task at hand. With user-specifc usage data, our metrics can be fne-
tuned. In contrast, GOMS models assume there is a task at hand
and report its estimated completion time by breaking the task into
atomic micro tasks whose completion times are known empirically.
Therefore, our approach and GOMS models have diferent focuses,
although both are related to usability.

We emphasize this diference with an illustration of GOMS mod-
eling. Suppose the task at hand is to estimate the time to navigate
from ‘Home’ ribbon pane to the ‘Right Align’ button in MS

Word (in Figure 3) for a screen reader user. Adopting a reference
implementation of the GOMS model for screen reader-mediated
interaction [70], we can break the task into program-like steps
(shown in Table 6) along with their operators (mental, key press,
homing, and system response/wait). The last column of Table 6
describes how a step is abstracted in our approach.

Since our metrics are task-agnostic, our transition models (Sec-
tion 4.3 and Section 4.4) abstract the notion of a micro-task as the
probability of navigating from one UI to another within an app.
Introducing probability enables our transition models to account
for uncertainty in user interaction, which traditional GOMS-based
models do not consider. This would allow us to model errors during
navigation in the future. Our cost model (Section 4.2) abstracts
the total number of steps (rows) as the number of intermediaries
between the source and the target. Finally, although we ignore the
mental, homing, and response/wait operators, these are easy to
incorporate into our approach like GOMS models.

6.3 Potential Implications
Informing potential users about the accessible usability of difer-
ent applications is only one usage scenario of our metrics. Other
widespread usages may include the following:

• Assistive Technology (AT) trainers can use these metrics to
explain the value of learning more shortcuts. Although users
are not required to memorize shortcuts, they should expect
to issue more keystrokes per action.

• Novice blind users can mine the model for particularly valu-
able shortcuts to learn in a given application, letting them
prioritize learning efort. After learning a small number of
shortcuts (say fve to ten), they can observe how much their
experience improves and decide whether to learn more.

• Expert blind users can use proposed metrics to evaluate their
AT mastery. With a lower bound on the average keystrokes
per action, they know when further improvement is impos-
sible, or how much more efcient they could become with
more efort.

• Application developers can use these metrics in an optimizer
to get recommendations for optimal UI hierarchy or place-
ment of shortcuts (Section 5.2). They can also integrate these
metrics into automated testing frameworks, such as con-
tinuous integration (CI/CD) [30], with constraints like the
expected number of keystrokes of an application should be
fewer than fve (i.e., ���������� < 5). Plugin developers can
use these metrics to identify where to insert necessary short-
cuts for screen readers to make app navigation easier [8].

• Employers and policy makers can use the metrics values for
work software to accommodate blind employees in the work-
place. For example, suppose the overall complexity of a piece
of software is high but fewer than 4 keystrokes (on average)
for frequently used features. In that case, blind employees
can easily use the software and be productive.

6.4 Challenges in Extracting UI hierarchy for
Large Applications

Extracting the internal structure (i.e., DOM) of a piece of software
has been a known art in software engineering [24, 26, 49, 81]. Key

A Probabilistic Model and Metrics for Estimating Perceived Accessibility CHI ’23, April 23–28, 2023, Hamburg, Germany

Steps (GOMS) Operator (GOMS) Our Model
1 Initiate the navigation from the Home Mental Ignored
2 Press the next navigation key Keystroke Abstracted by the the cost model
3 Wait for screen reader to narrate the focused item Wait Ignored
4 Screen reader narrates the item name Wait Ignored

5 Verify if the name is Right Align button (If not, go to 2) Mental The correct intermediate nodes are already
abstracted by the cost model

6 Stop the navigation Mental Ignored

Table 6: A simplifed illustration of GOMS modeling for a task that estimates the time to navigate from Home ribbon pane to the
Right Align button in MS Word (Figure 3) with a screen reader. The steps and operator columns are related to GOMS modeling,
and the last column describes how these are abstracted in our approach.

challenges in such extraction are mostly associated with how the
software was designed in the frst place [24]. For instance, apps
that lack proper accessibility metadata are hard to mine using ac-
cessibility APIs. Techniques such as “GUI Ripping” [49] reconstruct
an application’s hierarchy by extensively visiting all the UI options.
Our application DOM extraction tool (Section 4.1) uses a similar
notion. For very large software, the DOM has to be built incremen-
tally as the extractor moves through hundreds of menu options.
Incremental DOM building often brings about inconsistencies and
repetitions in detection. The more prominent problem is that large
applications often use two or more modal windows and pop-ups.
In such cases, our tool expands the DOM as new content is seen on
the screen (e.g., menus and pop-ups opened). Then, we calculate
metrics separately for modal windows, as screen readers cannot
access the parent window until a modal is dismissed. We plan to
explore combining metrics for related windows in the future.

6.5 Adaptation for Touchscreen Devices and
Other Media

Although we have demonstrated the proposed metrics for desktop
applications, these metrics are generic and can be calculated for
any graphical UI system that supports the notion of a DOM-like
structure for UI elements. For example, smartphone applications
running on touch screen devices are accessible to blind users via
screen reader-provided touch gestures (e.g., 1-fnger swipe left/right
in TalkBack [65] to navigate individual UI elements). Similar to
desktop screen readers, smartphone screen readers also construct
a DOM-like structure for an app [82]. The DOM tree can be built
using a similar method to us with accessibility APIs or by using a
computer-vision-based UI interpretation approach [49, 81]. Thus,
we can easily calculate the proposed metrics for smartphone apps
by substituting keyboard shortcuts with touch gestures in the cost
model (Section 4.2). In the future, we will explore how to adapt
our model to measure the hard-to-type words on a gesture-based
touchscreen keyboard [7] and hard-to-navigate printed forms with
a wearable device [6].

6.6 Limitations
Our work has several limitations. First, the proposed model and
metrics are mathematical constructs that are based on an applica-
tion’s UI hierarchy and the probability of transitioning from one
UI to another UI. Therefore, how these metric values correlate to

blind users’ true experience with an application needs further in-
vestigation. Second, the interpretability of new metrics like ours is
necessary for wide adoption. Although our preliminary user feed-
back (Section 5.1.4) is encouraging, a large-scale study in the wild is
warranted to establish the interpretability of the proposed metrics.
This study can be conducted online with participants from diverse
backgrounds and skills interacting with diferent desktop applica-
tions using diferent screen readers. Third, not all participants in
our study were familiar with all 11 of the selected applications. As
such, the number of reviews for some applications like VLC and
Audacity was low (Section 3.4.6), and additional data may raise
confdence in these ratings. Finally, our study covers only 11 appli-
cations. For this study, our goals were to cover a wide variety of
use cases and to select applications with a signifcant population
of knowledgeable blind users. These results can be strengthened
with additional applications, although it may be more difcult to
get ground truth usability data without experienced blind users.
Nevertheless, with additional usability data from users, collecting
and comparing our metrics for new applications is straightforward.

7 CONCLUSION
This paper frst presents a study with 11 expert blind users to
understand their perceived usability and accessibility of desktop
applications. Our study reveals that their perceptions of usability
and accessibility are nuanced, incorporating various factors beyond
the traditional defnitions. These factors include independence, ease
of learning an application, ability to describe it to others, reliability
and deterministic behavior of keyboard shortcuts, and transferabil-
ity of knowledge to others. Informed by this study, we aimed to
capture this notion of perceived accessibility by proposing a proba-
bilistic user interaction model. Based on this model, we compute
three statistical properties of desktop applications that indicate
the complexity of the keyboard navigation of an application, the
primary mode of interaction for screen reader users. Our study
participants corroborate our fndings. We present fve diferent util-
ities of our metrics to beneft end users, application developers, and
accessibility practitioners.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their insightful feedback. This
work was supported in part by NIH subaward 87527/2/1159967.

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

The content is solely the responsibility of the authors and does not
necessarily represent the ofcial views of the NIH.

REFERENCES
[1] Amaia Aizpurua, Myriam Arrue, Simon Harper, and Markel Vigo. 2014. Are

users the gold standard for accessibility evaluation?. In Proceedings of the 11th
Web for All Conference. 1–4.

[2] Cynthia L Bennett and Daniela K Rosner. 2019. The Promise of Empathy: Design,
Disability, and Knowing the" Other". In Proceedings of the 2019 CHI conference on
human factors in computing systems. 1–13.

[3] Jefrey P. Bigham, Irene Lin, and Saiph Savage. 2017. The Efects of "Not Knowing
What You Don’t Know" on Web Accessibility for Blind Web Users. In Proceedings
of the 19th International ACM SIGACCESS Conference on Computers and Accessi-
bility (Baltimore, Maryland, USA) (ASSETS ’17). Association for Computing Ma-
chinery, New York, NY, USA, 101–109. https://doi.org/10.1145/3132525.3132533

[4] Syed Masum Billah, Vikas Ashok, Donald E. Porter, and I.V. Ramakrishnan. 2017.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
ACM, 5862–5868. https://doi.org/10.1145/3025453.3025731

[5] Syed Masum Billah, Donald E. Porter, and I. V. Ramakrishnan. 2016. Sinter:
low-bandwidth remote access for the visually-impaired. In Proceedings of the
Eleventh European Conference on Computer Systems. ACM, 2901335, 1–16. https:
//doi.org/10.1145/2901318.2901335

[6] Shirin Feiz, Syed Masum Billah, Vikas Ashok, Roy Shilkrot, and I. V. Ramakrish-
nan. 2019. Towards Enabling Blind People to Independently Write on Printed
Forms. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. ACM, 1–12. https://doi.org/10.1145/3290605.3300530

[7] Syed Masum Billah, Yu-Jung Ko, Vikas Ashok, Xiaojun Bi, and I. V. Ramakrishnan.
2019. Accessible Gesture Typing for Non-Visual Text Entry on Smartphones. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, 1–10. https://doi.org/10.1145/3290605.3300606

[8] Farhani Momotaz, Md Touhidul Islam, Md Ehtesham-Ul-Haque, and Syed Masum
Billah. 2021. Understanding Screen Readers’ Plugins. In The 23rd International
ACM SIGACCESS Conference on Computers and Accessibility. ACM, 1–10. https:
//doi.org/10.1145/3441852.3471205

[9] Pradipta Biswas and Peter Robinson. 2008. Automatic Evaluation of Assistive
Interfaces. In Proceedings of the 13th International Conference on Intelligent User
Interfaces (Gran Canaria, Spain) (IUI ’08). Association for Computing Machinery,
New York, NY, USA, 247–256. https://doi.org/10.1145/1378773.1378806

[10] Pradipta Biswas and Peter Robinson. 2010. Evaluating the design of inclusive
interfaces by simulation. In Proceedings of the 15th international conference on
intelligent user interfaces. 277–280.

[11] Yevgen Borodin, Jefrey P. Bigham, Glenn Dausch, and I. V. Ramakrishnan. 2010.
More than meets the eye: a survey of screen-reader browsing strategies. In
Proceedings of the 2010 International Cross Disciplinary Conference on Web Acces-
sibility (W4A). ACM, 1806005, 1–10. https://doi.org/10.1145/1805986.1806005

[12] Giorgio Brajnik. 2008. Beyond conformance: the role of accessibility evaluation
methods. In International Conference on Web Information Systems Engineering.
Springer, 63–80.

[13] Giorgio Brajnik. 2008. A comparative test of web accessibility evaluation methods.
In Proceedings of the 10th international ACM SIGACCESS Conference on Computers
and Accessibility. 113–120.

[14] Dan Brown. 2010. Eight principles of information architecture. Bulletin of the
American Society for Information Science and Technology 36, 6 (2010), 30–34.

[15] A. Bryman and R.G. Burgess. 1994. Analyzing Qualitative Data. Routledge.
https://books.google.com/books?id=KQkotSd9YWkC

[16] Shiya Cao and Eleanor Loiacono. 2019. The state of the awareness of web
accessibility guidelines of student website and app developers. In International
Conference on Human-Computer Interaction. Springer, 32–42.

[17] SK Card, TP Moran, and A Newell. 1983. The Psychology of Human Computer
Interaction Lawrence Erlbaum. Associates, NJ (1983).

[18] Stuart K Card, Thomas P Moran, and Allen Newell. 1980. The keystroke-level
model for user performance time with interactive systems. Commun. ACM 23, 7
(1980), 396–410.

[19] Stuart K Card, Thomas P Moran, and Allen Newell. 1983. The psychology of
human-computer interaction. Crc Press.

[20] Lucas Pedroso Carvalho, Bruno Piovesan Melchiori Peruzza, Flávia Santos, Lu-
cas Pereira Ferreira, and André Pimenta Freire. 2016. Accessible smart cities?
Inspecting the accessibility of Brazilian municipalities’ mobile applications. In
Proceedings of the 15th Brazilian Symposium on Human Factors in Computing
Systems. 1–10.

[21] Raphael Clegg-Vinell, Christopher Bailey, and Voula Gkatzidou. 2014. Investigat-
ing the appropriateness and relevance of mobile web accessibility guidelines. In
Proceedings of the 11th Web for All Conference. 1–4.

[22] Mark Colley, Taras Kränzle, and Enrico Rukzio. 2022. Accessibility-Related
Publication Distribution in HCI Based on a Meta-Analysis. In CHI Conference on

Human Factors in Computing Systems Extended Abstracts. 1–28.
[23] Giliam de Carpentier. 2012. Discrete staircase probability distribution. https:

//www.decarpentier.nl/staircase-distribution
[24] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction Mining

Mobile Apps. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (Tokyo, Japan) (UIST ’16). ACM, New York, NY, USA,
767–776. https://doi.org/10.1145/2984511.2984581

[25] Catherine D’Ignazio, Alexis Hope, Becky Michelson, Robyn Churchill, and Ethan
Zuckerman. 2016. A Feminist HCI Approach to Designing Postpartum Tech-
nologies: " When I frst saw a breast pump I was wondering if it was a joke". In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
2612–2622.

[26] Morgan Dixon and James Fogarty. 2010. Prefab: Implementing Advanced
Behaviors Using Pixel-based Reverse Engineering of Interface Structure. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems (Atlanta, Georgia, USA) (CHI ’10). ACM, New York, NY, USA, 1525–1534.
https://doi.org/10.1145/1753326.1753554

[27] Gavin Doherty and Mieke Massink. 1999. Continuous interaction and human
control. In Proceedings of the XVIII European annual conference on human decision
making and manual control. 80–96.

[28] Paul M Fitts. 1954. The information capacity of the human motor system in
controlling the amplitude of movement. Journal of experimental psychology 47, 6
(1954), 381.

[29] International Organization for Standardization. 2010. Ergonomics of Human-
system Interaction: Part 210: Human-centred Design for Interactive Systems. ISO.

[30] Martin Fowler and Matthew Foemmel. 2006. Continuous integration.
[31] SBL Ferreira, RC dos Santos, and DS Silveira. 2007. Panorama of Brazilian web

accessibility, Proceedings of the XXXI ANPAD Meeting-EnANPAD, page 17p
[32] Richard Gong and David Kieras. 1994. A validation of the GOMS model method-

ology in the development of a specialized, commercial software application. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
351–357.

[33] Google. 2021. Expresso | Use Espresso to write concise, beautiful, and reliable An-
droid UI tests. https://developer.android.com/training/testing/espresso. Online;
accessed 23 January 2023.

[34] Google. 2021. iOS UI Automation Test Framework. https://github.com/google/
EarlGrey. Online; accessed 23 January 2023.

[35] Web Accessibility Initiative. 2017. Accessibility, usability, and inclusion: related
aspects of a web for all.

[36] Richard J Jagacinski and John M Flach. 2018. Control theory for humans: Quanti-
tative approaches to modeling performance. CRC press.

[37] Bonnie E John. 1994. Toward a deeper comparison of methods: A reaction to
Nielsen & Phillips and new data. In Conference Companion on Human Factors in
Computing Systems. 285–286.

[38] Bonnie E John and David E Kieras. 1996. The GOMS family of user interface
analysis techniques: Comparison and contrast. ACM Transactions on Computer-
Human Interaction (TOCHI) 3, 4 (1996), 320–351.

[39] Bonnie E John and David E Kieras. 1996. Using GOMS for user interface de-
sign and evaluation: Which technique? ACM Transactions on Computer-Human
Interaction (TOCHI) 3, 4 (1996), 287–319.

[40] David Kieras. 1997. A guide to GOMS model usability evaluation using NGOMSL.
In Handbook of human-computer interaction. Elsevier, 733–766.

[41] David Kieras et al. 2001. Using the keystroke-level model to estimate execution
times. University of Michigan 555 (2001).

[42] KIF. 2021. KIF iOS Integration Testing Framework. https://github.com/kif-
framework/KIF. Online; accessed 23 January 2023.

[43] John Brooke. 1996. SUS-A quick and dirty usability scale. Usability evaluation in
industry 189, (1996), 194, 194.

[44] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Elsevier, 52, 139–183.

[45] Sooyeon Lee, Madison Reddie, and John M Carroll. 2021. Designing for In-
dependence for People with Visual Impairments. Proceedings of the ACM on
Human-Computer Interaction 5, CSCW1 (2021), 1–19.

[46] Barbara Leporini and Fabio Paternò. 2004. Increasing usability when interacting
through screen readers. Universal access in the information society 3, 1 (2004),
57–70.

[47] Jennifer Mankof, Gillian R Hayes, and Devva Kasnitz. 2010. Disability studies as
a source of critical inquiry for the feld of assistive technology. In Proceedings of
the 12th international ACM SIGACCESS conference on Computers and accessibility.
3–10.

[48] Beatriz Martins and Carlos Duarte. 2022. Large-scale study of web accessibility
metrics. Universal Access in the Information Society (2022), 1–24.

[49] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI ripping: Reverse
engineering of graphical user interfaces for testing. In 10th Working Conference
on Reverse Engineering, 2003. WCRE 2003. Proceedings. IEEE, 260–269.

[50] Microsoft. 2021. Accessibility tools - AccChecker (UI Accessibility Checker).
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-accessibility-

https://doi.org/10.1145/3132525.3132533
https://doi.org/10.1145/3025453.3025731
https://doi.org/10.1145/2901318.2901335
https://doi.org/10.1145/2901318.2901335
https://doi.org/10.1145/3290605.3300530
https://doi.org/10.1145/3290605.3300606
https://doi.org/10.1145/3441852.3471205
https://doi.org/10.1145/3441852.3471205
https://doi.org/10.1145/1378773.1378806
https://doi.org/10.1145/1805986.1806005
https://books.google.com/books?id=KQkotSd9YWkC
https://www.decarpentier.nl/staircase-distribution
https://www.decarpentier.nl/staircase-distribution
https://doi.org/10.1145/2984511.2984581
https://doi.org/10.1145/1753326.1753554
https://developer.android.com/training/testing/espresso
https://github.com/google/EarlGrey
https://github.com/google/EarlGrey
https://github.com/kif-framework/KIF
https://github.com/kif-framework/KIF
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-accessibility-checker
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-accessibility-checker

A Probabilistic Model and Metrics for Estimating Perceived Accessibility CHI ’23, April 23–28, 2023, Hamburg, Germany

checker. Online; accessed 23 January 2023.
[51] Microsoft. 2021. Accessibility tools - Inspect. https://learn.microsoft.com/en-

us/windows/win32/winauto/inspect-objects. Online; accessed 23 January 2023.
[52] Microsoft Inc. 2020. UI Automation Overview. http://msdn.microsoft.com/en-

us/library/ms747327.aspx
[53] Lauren R Milne, Cynthia L Bennett, and Richard E Ladner. 2014. The accessibility

of mobile health sensors for blind users. In International Technology and Persons
with Disabilities Conference Scientifc/Research Proceedings (CSUN 2014). 166–175.

[54] Antti Oulasvirta, Per Ola Kristensson, Xiaojun Bi, and Andrew Howes. 2018.
Computational interaction. Oxford University Press.

[55] Helen Petrie and Omar Kheir. 2007. The Relationship between Accessibility
and Usability of Websites. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (San Jose, California, USA) (CHI ’07). Association
for Computing Machinery, New York, NY, USA, 397–406. https://doi.org/10.
1145/1240624.1240688

[56] Christopher Power, Paul Cairns, and Mark Barlet. 2018. Inclusion in the third
wave: access to experience. In New Directions in Third Wave Human-Computer
Interaction: Volume 1-Technologies. Springer, 163–181.

[57] Dudekula Mohammad Raf, Katam Reddy Kiran Moses, Kai Petersen, and Mika V
Mäntylä. 2012. Benefts and limitations of automated software testing: Systematic
literature review and practitioner survey. In 2012 7th International Workshop on
Automation of Software Test (AST). IEEE, 36–42.

[58] Robolectric. 2021. Robolectric is the industry-standard unit testing framework
for Android. http://robolectric.org/getting-started/. Online; accessed 23 January
2023.

[59] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O. Wobbrock. 2017.
Epidemiology As a Framework for Large-Scale Mobile Application Accessibility
Assessment. In Proceedings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility (Baltimore, Maryland, USA) (ASSETS ’17). ACM,
New York, NY, USA, 2–11. https://doi.org/10.1145/3132525.3132547

[60] Martin Schrepp. 2010. GOMS analysis as a tool to investigate the usability of web
units for disabled users. Universal Access in the Information Society 9, 1 (2010),
77–86.

[61] Leandro Coelho Serra, Lucas Pedroso Carvalho, Lucas Pereira Ferreira, Jorge
Belimar Silva Vaz, and André Pimenta Freire. 2015. Accessibility evaluation of
e-government mobile applications in Brazil. Procedia Computer Science 67 (2015),
348–357.

[62] Ben Shneiderman. 2000. Universal usability. Commun. ACM 43, 5 (2000), 84–91.
[63] Ben Shneiderman. 2002. Promoting universal usability with multi-layer interface

design. ACM SIGCAPH Computers and the Physically Handicapped 73-74 (2002),
1–8.

[64] Hironobu Takagi, Chieko Asakawa, Kentarou Fukuda, and Junji Maeda. 2003.
Accessibility designer: visualizing usability for the blind. ACM SIGACCESS
accessibility and computing 77-78 (2003), 177–184.

[65] TalkBack. [n. d.]. TalkBack: An Open Source Screenreader For Android. https:
//support.google.com/accessibility/android/answer/6283677

[66] The World Wide Web Consortium (W3C). 2018. Web Content Accessibility
Guidelines (WCAG) 2.1. https://www.w3.org/TR/WCAG21/

[67] Section 508 of the Rehabilitation Act. 2019. https://www.fcc.gov/general/section-
508-rehabilitation-act

[68] Mary Frances Theofanos and Janice Redish. 2003. Bridging the gap: between
accessibility and usability. interactions 10, 6 (2003), 36–51.

[69] Shannon M. Tomlinson. 2016. Perceptions of Accessibility and Usability by Blind
or Visually Impaired Persons: A Pilot Study. In Proceedings of the 79th ASIST
Annual Meeting: Creating Knowledge, Enhancing Lives through Information & Tech-
nology (Copenhagen, Denmark) (ASIST ’16). American Society for Information
Science, USA, Article 120, 4 pages.

[70] Henrik Tonn-Eichstädt. 2006. Measuring website usability for visually impaired
people-a modifed GOMS analysis. In Proceedings of the 8th international ACM
SIGACCESS conference on Computers and accessibility. 55–62.

[71] Shari Trewin, Bonnie E. John, John Richards, Cal Swart, Jonathan Brezin, Rachel
Bellamy, and John Thomas. 2010. Towards a Tool for Keystroke Level Modeling of
Skilled Screen Reading. In Proceedings of the 12th International ACM SIGACCESS
Conference on Computers and Accessibility (Orlando, Florida, USA) (ASSETS ’10).
Association for Computing Machinery, New York, NY, USA, 27–34. https://doi.
org/10.1145/1878803.1878811

[72] Daniel W Turner III and Nicole Hagstrom-Schmidt. 2022. Qualitative interview
design. Howdy or Hello? Technical and Professional Communication (2022).

[73] Andries Van Dam. 1997. Post-WIMP user interfaces. Commun. ACM 40, 2 (1997),
63–67.

[74] Markel Vigo, Justin Brown, and Vivienne Conway. 2013. Benchmarking web
accessibility evaluation tools: measuring the harm of sole reliance on automated
tests. In Proceedings of the 10th International Cross-Disciplinary Conference on
Web Accessibility. 1–10.

[75] Beat Vollenwyder, Glena H Iten, Florian Brühlmann, Klaus Opwis, and Elisa D
Mekler. 2019. Salient beliefs infuencing the intention to consider Web Accessi-
bility. Computers in Human Behavior 92 (2019), 352–360.

[76] Beat Vollenwyder, Serge Petralito, Glena H. Iten, Florian Brühlmann, Klaus Opwis,
and Elisa D. Mekler. 2023. How compliance with web accessibility standards
shapes the experiences of users with and without disabilities. International
Journal of Human-Computer Studies 170 (2023), 102956. https://doi.org/10.1016/
j.ijhcs.2022.102956

[77] W3C Web Accessibility Initiative (WAI). 2016. Accessibility, Usability, and Inclu-
sion. https://www.w3.org/WAI/fundamentals/accessibility-usability-inclusion/

[78] Cynthia Waddell, Bob Regan, Shawn Lawton Henry, Michael R Burks, Jim
Thatcher, Mark D Urban, and Paul Bohman. 2003. Constructing accessible web
sites. Apress.

[79] Jonathan Lazar, Alfreda Dudley-Sponaugle, and Kisha-Dawn Greenidge. 2004.
Improving web accessibility: a study of webmaster perceptions. Computers in
human behavior, 20, 2, 269–288 Elsevier

[80] Jacob O Wobbrock, Shaun K Kane, Krzysztof Z Gajos, Susumu Harada, and Jon
Froehlich. 2011. Ability-based design: Concept, principles and examples. ACM
Transactions on Accessible Computing (TACCESS) 3, 3 (2011), 1–27.

[81] Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang Chen.
2020. UIED: a hybrid tool for GUI element detection. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1655–1659.

[82] Jian Xu, Syed Masum Billah, Roy Shilkrot, and Aruna Balasubramanian. 2019.
DarkReader: Bridging the Gap Between Perception and Reality of Power Con-
sumption in Smartphones for Blind Users. In The 21st International ACM SIGAC-
CESS Conference on Computers and Accessibility (Pittsburgh, PA, USA) (AS-
SETS ’19). Association for Computing Machinery, New York, NY, USA, 96–104.
https://doi.org/10.1145/3308561.3353806

[83] Shunguo Yan and P. G. Ramachandran. 2019. The Current Status of Accessibility
in Mobile Apps. ACM Trans. Access. Comput. 12, 1, Article 3 (Feb. 2019), 31 pages.
https://doi.org/10.1145/3300176

[84] Yeliz Yesilada, Giorgio Brajnik, Markel Vigo, and Simon Harper. 2012. Under-
standing web accessibility and its drivers. In Proceedings of the international
cross-disciplinary conference on web accessibility. 1–9.

[85] William E Hick. 1952. On the rate of gain of information. Quarterly Journal of
experimental psychology, Taylor & Francis, 4, 1, 11–26.

[86] Yeliz Yesilada, Giorgio Brajnik, Markel Vigo, and Simon Harper. 2015. Exploring
perceptions of web accessibility: a survey approach. Behaviour & Information
Technology 34, 2 (2015), 119–134.

[87] Amaia Aizpurua, Simon Harper, and Markel Vigo. 2016. Exploring the relationship
between web accessibility and user experience International Journal of Human-
Computer Studies, Elsevier, Vol. 91, 13–23 pages.

[88] Krzysztof Z. Gajos, Daniel Weld, and Jacob Wobbrock. 2010. Automatically
generating personalized user interfaces with SUPPLE. Vol. 174. 910–950 pages.
https://doi.org/10.1016/j.artint.2010.05.005

https://docs.microsoft.com/en-us/windows/win32/winauto/ui-accessibility-checker
https://learn.microsoft.com/en-us/windows/win32/winauto/inspect-objects
https://learn.microsoft.com/en-us/windows/win32/winauto/inspect-objects
http://msdn.microsoft.com/en-us/library/ms747327.aspx
http://msdn.microsoft.com/en-us/library/ms747327.aspx
https://doi.org/10.1145/1240624.1240688
https://doi.org/10.1145/1240624.1240688
http://robolectric.org/getting-started/
https://doi.org/10.1145/3132525.3132547
https://support.google.com/accessibility/android/answer/6283677
https://support.google.com/accessibility/android/answer/6283677
https://www.w3.org/TR/WCAG21/
https://www.fcc.gov/general/section-508-rehabilitation-act
https://www.fcc.gov/general/section-508-rehabilitation-act
https://doi.org/10.1145/1878803.1878811
https://doi.org/10.1145/1878803.1878811
https://doi.org/10.1016/j.ijhcs.2022.102956
https://doi.org/10.1016/j.ijhcs.2022.102956
https://www.w3.org/WAI/fundamentals/accessibility-usability-inclusion/
https://doi.org/10.1145/3308561.3353806
https://doi.org/10.1145/3300176
https://doi.org/10.1016/j.artint.2010.05.005

CHI ’23, April 23–28, 2023, Hamburg, Germany Md Touhidul Islam, Donald E Porter, and Syed Masum Billah

A APPENDIX
One can calculate � (��) using the following equation:

1 (� − �)
� (��) = ∗ (� + (� − 1) ∗)

2 ∗ (� + �) 3

Proof:

(4)

Equation 5 tells us that the summation of all the transition prob-
abilities is 1. This proves that Equation 4 is correct.

�=4∑ 1 0 ∗ (� − �)
� (��) = ∗ [4� + +

2 ∗ (� + �) 3
�=1

1 ∗ (� − �) 2 ∗ (� − �)
3

+
3

+

3 ∗ (� − �)]
3

1 (� − �)
= ∗ [4� + (1 + 2 + 3)]

2 ∗ (� + �) 3
1 (� − �)

= ∗ [4� + (6)]
2 ∗ (� + �) 3

1
= ∗ [4� + 2 ∗ (� − �)]

2 ∗ (� + �)
1

= [4� + 2� − 2�]
2 ∗ (� + �)

1
= [2� + 2�]

2 ∗ (� + �)
1

= [2 ∗ (� + �)]
2 ∗ (� + �)

= 1

(5)

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Accessibility, Usability, and Inclusion
	2.2 Inaccessibility and Automated Testing
	2.3 Cognitive Models in Accessibility
	2.4 Computational Interaction Models

	3 Formative Study: Understanding the Perception of Accessibility
	3.1 Research Questions
	3.2 Participants and Recruitment Criteria
	3.3 Interview Method
	3.4 Findings
	3.5 Perception of Accessibility and Usability in Screen Reader-Mediated Interaction

	4 Probabilistic Models and Metrics Estimating Perceived Accessibility
	4.1 Modeling Application Navigation
	4.2 Cost Model
	4.3 Transition Model 1: Uniform Transition Probability
	4.4 Transition Model 2: Modeling Probabilities from User Interviews
	4.5 The Metrics

	5 Use Cases of the Proposed Metrics
	5.1 Use Case 1: Benchmarking Commonly Used Applications
	5.2 Use Case 2: Optimizing UI Hierarchy for Screen Reader-Mediated Interaction
	5.3 Use Case 3: Finding Hard-to-reach UI Objects and Offering Workarounds
	5.4 Use Case 4: Recommending Guidelines for Application Design/Usage
	5.5 Use Case 5: Comparing Similar Applications and Estimating the Effect of Learning Shortcuts

	6 Discussion
	6.1 A Complement to User Testing
	6.2 Relationships with GOMS-Based Models
	6.3 Potential Implications
	6.4 Challenges in Extracting UI hierarchy for Large Applications
	6.5 Adaptation for Touchscreen Devices and Other Media
	6.6 Limitations

	7 Conclusion
	Acknowledgments
	References
	A Appendix

