
This paper is included in the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-12-0

Open access to the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST ’20)
is sponsored by

How to Copy Files
Yang Zhan, The University of North Carolina at Chapel Hill and Huawei;

Alexander Conway, Rutgers University; Yizheng Jiao and Nirjhar Mukherjee,
The University of North Carolina at Chapel Hill; Ian Groombridge, Pace University;

Michael A. Bender, Stony Brook University; Martin Farach-Colton, Rutgers University;
William Jannen, Williams College; Rob Johnson, VMWare Research; Donald E. Porter,

The University of North Carolina at Chapel Hill; Jun Yuan, Pace University
https://www.usenix.org/conference/fast20/presentation/zhan

How to Copy Files

Yang Zhan
UNC Chapel Hill and Huawei

Alex Conway
Rutgers Univ.

Yizheng Jiao
UNC Chapel Hill

Nirjhar Mukherjee
UNC Chapel Hill

Ian Groombridge
Pace Univ.

Michael A. Bender
Stony Brook Univ.

Martín Farach-Colton
Rutgers Univ.

William Jannen
Williams College

Rob Johnson
VMware Research

Donald E. Porter
UNC Chapel Hill

Jun Yuan
Pace Univ.

Abstract
Making logical copies, or clones, of files and directories

is critical to many real-world applications and workflows,
including backups, virtual machines, and containers. An ideal
clone implementation meets the following performance goals:
(1) creating the clone has low latency; (2) reads are fast in
all versions (i.e., spatial locality is always maintained, even
after modifications); (3) writes are fast in all versions; (4)
the overall system is space efficient. Implementing a clone
operation that realizes all four properties, which we call a
nimble clone, is a long-standing open problem.

This paper describes nimble clones in BetrFS, an open-
source, full-path-indexed, and write-optimized file system.
The key observation behind our work is that standard copy-
on-write heuristics can be too coarse to be space efficient, or
too fine-grained to preserve locality. On the other hand, a
write-optimized key-value store, as used in BetrFS or an LSM-
tree, can decouple the logical application of updates from the
granularity at which data is physically copied. In our write-
optimized clone implementation, data sharing among clones
is only broken when a clone has changed enough to warrant
making a copy, a policy we call copy-on-abundant-write.

We demonstrate that the algorithmic work needed to batch
and amortize the cost of BetrFS clone operations does not
erode the performance advantages of baseline BetrFS; BetrFS
performance even improves in a few cases. BetrFS cloning
is efficient; for example, when using the clone operation for
container creation, BetrFS outperforms a simple recursive
copy by up to two orders-of-magnitude and outperforms file
systems that have specialized LXC backends by 3–4×.

1 Introduction

Many real-world workflows rely on logically copying files and
directories. Backup and snapshot utilities logically copy the
entire file system on a regular schedule [36]. Virtual-machine
servers create new virtual machine images by copying a pris-
tine disk image. More recently, container infrastructures like

Docker make heavy use of logical copies to package and
deploy applications [34, 35, 37, 44], and new container cre-
ation typically begins by making a logical copy of a reference
directory tree.

Duplicating large objects is so prevalent that many file sys-
tems support logical copies of directory trees without making
full physical copies. Physically copying a large file or direc-
tory is expensive—both in time and space. A classic optimiza-
tion, frequently used for volume snapshots, is to implement
copy-on-write (CoW). Many logical volume managers sup-
port block-level CoW snapshots [24], and some file systems
support CoW file or directory copies [29] via cp --reflink
or other implementation-specific interfaces. Marking a direc-
tory as CoW is quick, especially when the file system can
mark the top-level directory as CoW and lazily propagate the
changes down the directory tree. Initially, this approach is
also space efficient because blocks or files need not be rewrit-
ten until they are modified. However, standard CoW presents
a subtle tradeoff between write amplification and locality.

The main CoW knob to tune is the copy granularity. If
the copy granularity is large, such as in file-level CoW, the
cost of small changes is amplified; the first write to any CoW
unit is high, drastically increasing update latency, and space
is wasted because sharing is broken for all data. If the copy
granularity is small, updates are fast but fragmented; sequen-
tially reading the copy becomes expensive. Locality is crucial:
poor locality can impose a persistent tax on the performance
of all file accesses and directory traversals until the file is
completely rewritten or the system defragmented [8–10].
Nimble clones. An ideal logical copy—or clone—
implementation will have strong performance along
several dimensions. In particular, clones should:
• be fast to create;
• have excellent read locality, so that logically related files

can be read at near disk bandwidth, even after modification;
• have fast writes, both to the original and the clone; and
• conserve space, in that the write amplification and disk

footprint are as small as possible, even after updates to the
original or to the clone.

USENIX Association 18th USENIX Conference on File and Storage Technologies 75

1 5 10 15
0

2

4

6

8

10

12

Clone Number

G
re

p
Ti

m
e

(s
ec

)
Btrfs
Btrfs-svol
XFS
ZFS

Figure 1: Grep Time for a logically copied 256MiB directory,
as a function of the number of prior copies with small edits.
(Lower is better.) Btrfs-svol is a volume snapshot, Btrfs and
XFS use cp --reflink. Full experiment details are in §5.1.

We call a clone with this constellation of features nimble.
Existing CoW clone implementations are not nimble.

Figure 1 illustrates how performance can degrade using
standard CoW techniques in two file systems with copy opti-
mizations. We start by creating a two-level directory hierarchy
with 64 4-MiB files (256MiB total), and the experiment pro-
ceeds for several rounds. Each round does a volume snapshot
or a reflink copy (depending on what the file system supports)
and then performs a small, 16-byte edit to each file. We report
the time to do a recursive, cold-cache grep over the entire
directory at the end of each round. The experiment is detailed
further in §5.1.

After each copy and modification, read performance de-
grades. In the case of XFS and ZFS, we see a factor of 3–4×
after only 16 rounds. Btrfs degrades more gradually, about
50% over the same period. In both cases, however, the degra-
dation appears monotonic.

The critical issue here is the need to decouple the granular-
ity of writes to a clone from the granularity of copies of the
shared data. It makes perfect sense to copy a large file that is
effectively overwritten. But, for very small changes, it is more
IO efficient to keep a “delta” in scratch space until enough
changes accrue to justify the cost of a substantial rewrite. In
other words, the CoW copy size should be tuned to preserve
locality (e.g., set to an efficient transfer size for the device),
not to whatever granularity a single workload happens to use.
Contributions. In this paper, we present a logical copy spec-
ification, which we call a clone, and a set of performance
criteria that a nimble clone must satisfy. We present the de-
sign for a file system and nimble clone implementation that
meets all of these criteria.

One key insight into our solution is that the write-optimized
message-batching model used in systems such as BetrFS is
well suited to decouple writes from copies. There is already
a mechanism in place to buffer and apply small changes,
although implement the semantics of cloning requires sub-

stantial, additional data-structural work.
We extend BetrFS 0.4, an open-source, full-path-indexed,

write-optimized file system. BetrFS performance matches or
exceeds other local Linux file systems on a range of applica-
tions [8, 17, 39, 42], but BetrFS 0.4 does not support cloning.
BetrFS 0.5’s clone implements a policy we call Copy-on-
Abundant-Write, or CAW, by buffering small changes to a
cloned file or directory in messages until enough changes
accrue to warrant the cost of unsharing the cloned data.

This paper also contributes several data-structural tech-
niques to write-optimized dictionaries, in order to implement
nimble clones in BetrFS. First, we enable different traver-
sal paths to re-use the same physical data by transforming
BetrFS’s Bε-tree [3, 6] data structure into a Bε-DAG (di-
rected acyclic graph). Second, in order to realize very fast
logical copies, we develop new techniques that apply write-
optimization, which has previously been used to accelerate
changes to data stored in the key-value store, towards batch-
ing changes to the topology of the data structure itself, i.e.,
its pivots and internal pointers. An essential limitation of the
state of the art, including BetrFS, is that renames, which mod-
ify the tree structure, cannot be batched; rather, renames must
be completed immediately, including applying all pending
changes to the relevant portions of the file system namespace.
We introduce a GOTO message, which can rapidly persist a
logical copy into the message buffer, and is as fast as any
small write. With GOTOs, Bε-DAG-internal housekeeping
work is piggy-backed onto any writes to the logically copied
region. Third, we introduce a translation prefix abstraction
that can—at rest—logically correct stale keys in shared data,
facilitating both deferred copies and correct queries of par-
tially shared data. As a result of these techniques, BetrFS
can rapidly persist large logical copies much faster than the
current state of the art (33%–6.8×), without eroding read,
write, or space efficiency.

The contributions of this paper are as follows:
• A design and implementation of a Bε-DAG data structure,

which supports nimble CAW clones. The Bε-DAG extends
the Bε-tree buffered-message substrate to store and logi-
cally apply small changes to a clone, until enough changes
accrue to warrant the cost of rewriting a clone.

• A write-optimized clone design, wherein one can persist a
clone by simply writing a message into the root of the DAG.
The work of the clone is batched with other operations and
amortized across other modifications.

• An asymptotic analysis, indicating that adding cloning does
not harm other operations, and that cloning itself has a cost
that is logarithmic in the size of the Bε-DAG.

• A thorough evaluation of BetrFS, which demonstrates that
it meets the nimble performance goals, does not erode the
advantages of baseline BetrFS on unrelated workloads, and
can improve performance of real-world applications. For
instance, we wrote an LXC (Linux Container) backend
that uses cloning to create containers, and BetrFS is 3–4×

76 18th USENIX Conference on File and Storage Technologies USENIX Association

faster than other file systems with cloning support, and up
to 2 orders of magnitude faster than those without.

2 BetrFS Background

This section presents Bε-tree and BetrFS background that is
necessary to understand the cloning implementation presented
in the rest of the paper.

BetrFS [17, 18, 39, 40, 42, 43] is an in-kernel, local file sys-
tem built on a key-value store (KV-store) substrate. A BetrFS
instance keeps two KV-stores. The metadata KV-store maps
full paths (relative to the mountpoint, e.g., /foo/bar/baz)
to struct stat structures, and the data KV-store maps {full
path + block number} keys to 4KiB blocks.
The Bε-tree. BetrFS is named for its KV-store data structure,
the Bε-tree [3, 6]. A Bε-tree is a write-optimized KV-store
in the same family of data structures as an LSM-tree [25] or
COLA [2]. Like B-tree variants, Bε-trees store key-value pairs
in leaves. A key feature of the Bε-tree is that interior nodes
buffer pending mutations to the leaf contents, encoded as
messages. Messages are inserted into the root of the tree, and,
when an interior node’s buffer fills with messages, messages
are flushed in large batches to one or more children’s buffers.
Eventually, messages reach the leaves and the updates are
applied. As a consequence, random updates are inexpensive—
the Bε-tree effectively logs updates at each node. And since
updates move down the tree in batches, the IO savings grow
with the batch size.

A key Bε-tree invariant is that all pending messages for a
given key-value pair are located on the root-to-leaf traversal
path that is defined by its key. So a point query needs to read
and apply all applicable buffered messages on the traversal
path to construct a correct response. Messages have a logical
timestamp, and one can think of the contents of these buffered
messages as a history of mutations since the last time the leaf
was written.
Range operations. BetrFS includes optimizations for con-
tiguous ranges of keys. These are designed to optimize opera-
tions on subtrees of the file system namespace (e.g., mv).

Importantly, because BetrFS uses full-path keys, the con-
tents of a directory are encoded using keys that have a com-
mon prefix and thus are stored nearly contiguously in the
Bε-tree, in roughly depth-first order. One can read a file or
recursively search a directory with a range query over all
keys that start with the common directory or file prefix. As
a result, BetrFS can use a range delete message to delete an
entire file or recursively (and logically) delete a directory tree
with a single message. The range delete is lazily applied to
physically delete and recover the space.
Full-path indexing and renaming. Efficient rename opera-
tions pose a significant challenge for full-path-indexed file
systems. BetrFS has a range rename operation, which can
synchronously change the prefix of a contiguous range of keys

in the Bε-tree [42]. In a nutshell, this approach slices out the
source and destination subtrees, such that there is a single
pointer at the same Bε-tree level to the source and destination
subtrees. The range rename then does a “pointer swing”, and
the tree is “healed” in the background to ensure balance and
that nodes are within the expected branching factor. Some
important performance intuition about this approach is that
the slicing work is logarithmic in the size of the renamed data
(i.e., the slicing work is only needed on the right and left edge
of each subtree).

BetrFS ensures that range rename leaves most of the on-
disk subtree untouched by lifting out common key prefixes.
Consider a subtree T whose range is defined at T ’s parent by
pivots p1 and p2. Then the longest common prefix of p1 and
p2, denoted lcp(p1, p2), must be a prefix of all the keys in
T . A lifted Bε-tree omits lcp(p1, p2) from all keys in T . We
say that lcp(p1, p2) has been lifted out of T , and that lcp-T
is lifted. The lifted Bε-tree maintains the lifting invariant, i.e.
that every subtree is lifted at all times. Maintaining the lifting
invariant does not increase the IO cost of insertions, queries,
flushes, node splits or merges, or any other Bε-tree operations.

With the combination of tree surgery and lifting, BetrFS
renames are competitive with inode-based file systems [42].
Crash consistency. BetrFS’s Bε-tree nodes are copy-on-
write. Nodes are identified using a logical node number, and a
node translation table maps logical node numbers to on-disk
locations. The node translation table also maintains a bitmap
of free and allocated disk space. Node writeback involves
allocating a new physical location on disk and updating the
node translation table. This approach removes the need to
modify a parent when a child is rewritten.

All Bε-tree modifications are logged in a logical redo log.
The Bε-tree is checkpointed to disk every 60 seconds; a check-
point writes all dirty nodes and the node translation table to
disk and then truncates the redo log. After a crash, one need
only replay the redo log since the last checkpoint.

Physical space is reclaimed as part of the checkpointing
process with the invariant that one can only reuse space that
is not reachable from the last stable checkpoint (otherwise,
one might not recover from a crash that happens before the
next checkpoint). As a result, node reclamation is relatively
straightforward: when a node is overwritten, the node transla-
tion table tracks the pending free, and then applies that free
at the next checkpoint. We note that range delete of a subtree
must identify all of the nodes in the subtree and mark them
free as part of flushing the range delete message; the node
translation table does not store the tree structure.

3 Cloning in BetrFS 0.5

This section describes how we augment BetrFS to support
cloning. We begin by defining clone semantics, then describe
how to extend the lifted Bε-tree data structure to a lifted Bε-

USENIX Association 18th USENIX Conference on File and Storage Technologies 77

DAG (directed acyclic graph), and finally describe how to
perform mutations on this new data structure. The section
concludes with a brief asymptotic analysis of the Bε-DAG.

When considering the design, it helps to differentiate the
three layers of the system: the file system directory hierarchy,
the KV-store keyspace, and the internal Bε-tree structure. We
first define the clone operation semantics in terms of their
effect on file system directory tree. However, because all
file system directories and their descendants are mapped onto
contiguous KV-store keys based on their full paths, we then
focus the BetrFS clone discussion on the KV-store keyspace
and the internal Bε-tree structure implementation.
CLONE operation semantics. A CLONE operation takes as
input two paths: (1) a source path—either a file or directory
tree root—and (2) a destination path. The file system directory
tree is changed so that a logically identical copy of the source
object exists at the location specified by the destination path.
If a file or directory was present at the destination before the
clone, that file or directory is unlinked from the directory tree.
The clone operation is atomic.

In the KV-store keyspace, clone(s,d) copies all keys with
prefix s to new keys with prefix s replaced with prefix d. It
also removes any prior key-value pairs with prefix d.

3.1 Lifted Bε-DAGs
Our goal in making a lifted Bε-DAG is to share, along multi-
ple graph traversal paths, a large amount of cloned data, and
to do so without immediately rewriting any child nodes. Intu-
itively, we should be able to immediately add one edge to the
graph, and then tolerate and lazily repair any inconsistencies
that appear in traversals across that newly added edge. As
illustrated in Figure 2, we construct the lifted Bε-DAG by
extending the lifted Bε-tree in three ways.

First, we maintain reference counts for every node so that
nodes can be shared among multiple Bε-DAG search paths.
Reference counts are decoupled from the node itself and
stored in the node translation table. Thus, updating a node’s
reference does not require modifying any node. Whenever
a node’s reference count reaches zero, we decrement all of
its children’s reference counts, and then we reclaim the node.
Section 4 describes node reclamation.

A significant challenge for sharing nodes in a Bε-tree or
Bε-DAG is that nodes are large (target node sizes are large
enough to yield efficient transfers with respect to the under-
lying device, typically 2–4MiB) and packed with many key-
value pairs, so a given node may contain key-value pairs that
belong to unrelated logical objects. Thus, sharing a Bε-DAG
node may share more than just the target data.

For example, in Figure 2, the lower node is the common
ancestor of all keys beginning with s, but the subtree rooted
at the node also contains keys from q to v. We would like to
be able to clone, say, s to p by simply inserting a new edge,
with pivots p and pz, pointing to the common ancestor of all

query: pw

buffer

pivots p pz

query: w

s
query: sw

buffer

pivots q s sm sz v

Figure 2: Query processing example in a lifted Bε-DAG. Ini-
tially, the query pw arrives at the parent node. Since the target
child’s pointer is bracketed by pivots that share the common
prefix p (pivots p and pw bracket the pointer to the child), the
lifted Bε-DAG lifts (i.e., removes) the common prefix p from
the query term used for searching in the child, transforming
the query from pw to w. Next, the query w reaches an edge
with translation prefix s. The lifted Bε-DAG prepends the
translation prefix s to the query before continuing to the child.
Thus, the query that finally arrives at the child is sw: the com-
mon prefix p was lifted out, and the translation prefix s was
prepended. The query process proceeds recursively until a
terminal node is reached.

s keys but, as the example illustrates, this could have the side
effect of cloning some additional keys as well.

Thus, our second major change is to alter the behavior of
pivot keys so that they can exclude undesirable keys from
traversals. This filtering lets us tolerate unrelated data in
a subgraph. A baseline Bε-tree has an invariant that two
pivot keys in a parent node must bound all key-value pairs
in their child node (and sub-tree). In the Bε-DAG, we must
relax this invariant to permit node sharing, and we change
the graph traversal behavior to simply ignore any key-value
pair, message, or pivot that lies outside of the parent pivot
keys’ range. This partially addresses the issue of sharing a
subgraph with extraneous data at its fringe.

The third, related change is to augment each edge with an
optional translation prefix that alters the behavior of traver-
sals that cross the edge. When cloning a source range of keys
to a destination, part of the source key may not be lifted. A
translation prefix on an edge specifies any remaining part of
the source prefix that was not lifted at the time of cloning.
As Figure 2 shows, whenever a query crosses an edge with
translation prefix s, we prepend s to the query term before
continuing to the child, so that the appropriate key-value pairs
are found. Once completed, a query removes the transla-
tion prefix from any results, before the lifted destination key

78 18th USENIX Conference on File and Storage Technologies USENIX Association

buffer

pivots a q z

LCA of s

goto
p pz

s

Figure 3: Creating a clone by inserting a GOTO message. Note
that the GOTO message’s bracketing pivots are (p, pz), and its
child pointer contains translation prefix s. The GOTO message
supersedes the node’s other pivots during a traversal.

along the search path is added back. In the common case, the
translation prefix will be NULL.

With these changes—reference counting, filtering pivots,
and translation prefixes—a Bε-DAG can efficiently represent
clones and share cloned data among different search paths.

3.2 Creating clones with GOTO messages

To clone all keys (and associated data) with prefix s to new
keys with prefix p, we first find the lowest-common ancestor
(LCA) of all s keys in the Bε-DAG, as shown in Figure 3.
Intuitively, the LCA is the root of the lowest sub-graph that
includes all source keys. We will call the LCA of all s keys
node Ls. We then flush to Ls any pending messages for s keys,
so that all information about s keys can be found within the
sub-DAG rooted at node Ls. We also insert into the root’s
buffer a GOTO message (described below) for all p keys with
target node Ls. We finally increment the reference count of
Ls. This completes the cloning process.
GOTO messages. A GOTO message behaves like a pair of
bracketing pivots and an associated child pointer. Each GOTO
message specifies a range of keys, (a,b); a target height; and
a node, U . Whenever a query for some key x reaches a node
with a GOTO message, if x falls in the range (a,b), then the
query continues directly to node U ; said differently, a node’s
GOTO message supersedes the node’s other pivots during a
traversal. Like regular pivots, if the two pivots in a GOTO
message share a common prefix, then that prefix is removed
(lifted) from the query before continuing. Furthermore, like
regular child pointers, the pointer in a GOTO message can spec-
ify a translation prefix that gets prepended to queries before
they continue. Figure 3 illustrates a simple GOTO example,
where s is cloned to p. There is a normal child pointer associ-
ated with node pivots that bracket prefix s, as well as a GOTO
message that redirects queries for p to the LCA of s. In this
example, we assume s has not been lifted from the LCA, and,
thus, s is used as a translation prefix on the GOTO message.
Flushing GOTOmessages. Unlike a regular pair of pivots that

bracket a child pointer, a GOTO message can be flushed from
one node to another, just like any other message. Encoding
DAG structure inside a message is an incredibly powerful fea-
ture: we can quickly persist a logical clone and later batch any
post-cloning clean-up work with subsequent writes. When
subsequent traversals process buffered messages in logical
order, a GOTO takes precedence over all older messages per-
taining to the destination keys; in other words, a GOTO implic-
itly deletes all key-value pairs for the destination range, and
redirects subsequent queries to the source sub-graph.

For performance, we ensure that all root-to-leaf Bε-DAG
paths have the same length. Maintaining this invariant is
important because, together with the Bε-DAG’s fanout bounds,
it guarantees that the maximum Bε-DAG path has logarithmic
length, which means that all queries have logarithmic IO
complexity. Thus, we must ensure that paths created by GOTO
messages are not longer than “normal” root-to-leaf paths.

This length invariant constrains the minimum height of
a GOTO message to be one level above the message’s target
node, U . At the time we flush to the LCA and create the
GOTO message, we know the height of U ; as long as the GOTO
message is not flushed to the same level as U (or deeper), the
maximum query path will not be lengthened.

So, for example, if the root node in Figure 3 is at height
7 and the LCA of s is at height 3, then the GOTO message
will get lazily flushed down the tree until it resides in the
buffer of some node at height 4. At that point the GOTO will
be converted to a regular bracketing pair of node pivots and a
child pointer, as shown in Figure 4.

In flushing a GOTO above the target height, the only addi-
tional work is possibly deleting obviated internal nodes. In
the simple case, where a GOTO covers the same key range as
one child, flushing simply moves the message down the DAG
one level, possibly lifting some of the destination key. One
may also delete messages obviated by the GOTO as part of
flushing. The more difficult case is when a GOTO message
covers more than one child pointer in a node. In this case, we
retain only the leftmost and rightmost nodes. We flush the
GOTO to the leftmost child and adjust the pivot keys to include
both the left “fringe” and the GOTO message’s key range. We
similarly adjust the rightmost pivot’s keys to exclude any keys
covered by the GOTO message (logically deleting these keys,
but deferring clean-up). Any additional child pointers and
pivots between the left and rightmost children covered by the
GOTO are removed and the reference counts on those nodes
are reduced by one, effectively deleting those paths.
Converting a GOTO message into node pivots and a child
pointer is conceptually similar to flushing a GOTO. As with
flushing, a GOTO message takes precedence over any older
messages or pre-existing node pivots and child pointers that
it overlaps. This means that any messages for a child that
are obviated by the GOTO may be dropped before the GOTO is
applied.

The simplest case is where a single child is exactly covered

USENIX Association 18th USENIX Conference on File and Storage Technologies 79

buffer

pivots

goto
pab t

pa pz r w

s 2

s4s3

buffer

pivots pa pab t w

as
2

s4

s 1 s 1

Figure 4: Converting a GOTO message (left) into a pair of
bracketing pivots and a child pointer (right). Note that the
GOTO message’s pivots pab and t completely cover the range
specified by the pre-existing node pivots pz and r, so the
GOTO’s pivots replace those pivots in the new node (right).
Additionally, the translation prefix s2 is changed to as2. This
is because, in the original node (left), the prefix p is lifted by
pivots pa and pz, but in the new node (right), new prefix pa
is lifted by pivots pa and pab; a must therefore be prepended
to the translation prefix in order to maintain traversal equiva-
lence. (Not shown: the reference counts of covered children
are dropped.)

by the GOTO; here, we just replace the pointer and decrement
the original child’s reference count. For example, in Figure 4,
the GOTO message’s range (pab, t) completely covers the old
pivot range (pz,r). Thus, when converting the GOTO message
into regular pivots, we drop the node pointer with translation
prefix s3, and we decrement the reference count of the node
to which it pointed.

Partial overlap with a pivot range is handled by a combi-
nation of adjusting pivots and adding new pointers. In Fig-
ure 4, the GOTO message partially overlaps the old pivot ranges
(pa, pz) and (r,w), and there is live data on the “left” fringe
of this child (keys between pa and pab are not covered by this
GOTO). We modify the original pivot keys so that subsequent
traversals through their child pointers only consider live data,
but we leave the child nodes untouched and defer physically
deleting their data and relifting their keys. Note that in this ex-
ample, the subtree between updated pivots pa and pb should
lift pa instead of just p, so we add a to the translation prefix
until the next time this child is actually flushed and re-lifted.
We finally replace the covered pivots with new pivot keys and
a child pointer for the GOTO’s target (the pointer between pab
and t in the right portion Figure 4). In the case where a GOTO
message overlaps a single child with live data on the left and
right fringe (not illustrated), we would create a third pointer
back to the original child and increment its reference count
accordingly, with appropriate translation prefixes and pivots
to only access the live data on the “right” side.

Finally, as with flushing a GOTO, if a GOTO covers multiple
children, we remove all of the references to the “interior”
children, and replace them with a single child pointer to the
GOTO target. We note that this can temporarily violate our
target fanout; we allow the splitting and merging process,
described next, to restore the target fanout in the background.

3.3 Flushes, splits, and merges

We now explain how node flushes, splits, and merges interact
with reference counting, node sharing, translation prefixes,
and GOTO messages.

At a high level, we break flushing, splitting, and merging
into two steps: (1) convert all involved children into simple
children (defined below), then (2) apply the standard lifted
Bε-tree flushing, splitting, or merging algorithm.

A child is simple if it has reference count 1 and the edge
pointing to the child has no translation prefix. When a child
is simple, the Bε-DAG locally looks like a lifted Bε-tree, so
we can use the lifted Bε-tree flushing, splitting, and merging
algorithms, since they all make only local modifications to
the tree.

The Bε-DAG has an invariant that one may only flush into
a simple child. Thus, one of two conditions that will cause a
node to be made simple is the accumulation of enough mes-
sages in the parent of a node—i.e., a copy-on-abundant-write.
The second condition that can cause a node to become simple
is the need to split or merge the node by the background, heal-
ing thread; this can be triggered by healing a node that has
temporarily violated the target fanout, or any other condition
in the baseline Bε-tree that would cause a split or merge.

We present the process for converting a child into a simple
child as a separate step for clarity only. In our implementation,
the work of making a child simple is integrated with the
flushing, splitting and merging algorithms. Furthermore, all
the transformations described are performed on in-memory
copies of the node, and the nodes are written out to disk only
once the process is completed. Thus simplifying children
does not change the IO costs of flushes, splits, or merges.

The first step in simplifying a child is to make a private
copy of the child, as shown in Figure 5. When we make a
private copy of the child, we have to increment the reference
counts of all of the child’s children.

Once we have a private copy of the child, we can discard
any data in the child that is not live, as shown in the first two
diagrams of Figure 6. For example, if the edge to the child
has translation prefix s1, then all queries that reach the child
will have s1 as a prefix, so we can discard any messages in the
child that don’t have this prefix, because no query can ever
see them. Similarly, we can drop any children of the child
that are outside of the range of s1 keys, and we can update
pivots to be entirely in the range of s1 keys. When we adjust
pivots in the child, we may have to adjust some of the child’s
outgoing translation prefixes, similar to when we converted
GOTO messages to regular pivots.

Finally, we can relift the child to “cancel out” the trans-
lation prefix on the edge pointing to the child and all the s1
prefixes inside the child. Concretely, we can delete the s1
translation prefix on the child’s incoming edge and delete the
s1 prefix on all keys in the child.

A consequence of this restriction is that translation prefixes

80 18th USENIX Conference on File and Storage Technologies USENIX Association

buffer

pivots

refcount: r1

buffer

pivots

refcount: r2

buffer

pivots

refcount: r3
buffer

pivots

refcount: r4

s 1

s 2 s3

buffer

pivots

refcount: r1

buffer

pivots

refcount: r2−1

buffer

pivots

refcount: r3 +1
buffer

pivots

refcount: r4 +1

Before After

buffer

pivots

refcount: 1

s1

s 2 s3 s3
s2

Figure 5: Creating a private copy of a shared child. The original node’s contents are copied, and its reference count is decremented.
Since the private copy points to all of the original node’s children, those children have their reference count increased by one.
(Pivot keys are omitted for clarity; they remain unchanged.)

buffer

pivots

refcount: r1

buffer

pivots

refcount: 1

p p′s1b s1z

insert
s1m · · ·

insert
pc · · ·

s 1

s 2

s3 s4

insert
td · · ·

buffer

pivots

refcount: r1

buffer

pivots

refcount: 1

s1 s1b s1z

insert
s1m · · ·

s 1

s 2s
1

s3

buffer

pivots

refcount: r1

buffer

pivots

refcount: 1

ε b z

insert
m · · ·

s 2s
1

s3

Figure 6: Eliminating a child’s translation prefix. The original child node (left) is a private copy with reference count one. First,
nodes with unreachable keys are deleted and reclaimed (center). Then the translation prefix s1 is removed from the incident edge
and logically applied to all pivot keys and all keys in buffered messages (right).

should always be NULL after a flush. Intuitively, one only
needs a translation prefix to compensate for the effect on
lifting of logically deleted data still in a node; after a flush, this
data is physically deleted and the node is re-lifted, obviating
the need for a translation prefix.

As described, these steps slightly modify the amortized
and background work to “heal” irregularities in the Bε-DAG.
This work is primarily driven by subsequent writes to the
affected range; a shared node that is not modified on any path
can remain shared indefinitely. In our current prototype, we
do track shared nodes with very little live data, and mark
them for flushing either in the background or under space
pressure to reclaim space. The key feature of this design is
the flexibility to rewrite nodes only when it is to the advantage
of the system—either to reclaim space or recover locality for
future queries.

3.4 Putting it all together
The remaining lifted Bε-tree operations are unchanged in a
Bε-DAG. Inserts, deletes, and clones just add messages to the
root node’s buffer. When an internal node’s buffer becomes
full, we flush to one of its children (after making the child
simple, if necessary). When a leaf becomes too large or too
small, we split or merge it (after making the leaf simple).
When an internal node has too many or too few children, we
split or merge it (again after making it simple).

3.5 Asymptotic Analysis
This subsection shows that adding cloning does not affect the
asymptotics of other operations, and that the cost of a clone
is logarithmic in the size of the tree.

Insert, query, and clone complexity all depend on the Bε-
DAG height, which is bounded by the height of a lifted Bε-tree
with the same logical state. To see why, consider the following
straightforward transformation of a Bε-DAG to a Bε-tree: first

USENIX Association 18th USENIX Conference on File and Storage Technologies 81

flush all GOTO messages until they become regular pivots, then
break the CoW sharing of all nodes. Since this conversion
can only increase the height of the data structure, a logically
equivalent lifted Bε-tree is at least as tall as a Bε-DAG.

The height of a Bε-tree is O(logB N), where N is the total
number of items that have been inserted into the tree. Hence
the height of a Bε-DAG is O(logB N), where N is the number
of keys that have been created, either through insertion or
cloning, in the Bε-DAG.
Queries. Since the height of the Bε-DAG is O(logB N), the
IO cost of a query is always O(logB N).
Insertions. The Bε-DAG insertion IO cost is the same as in
a Bε-tree, i.e., O(

logB N
B1−ε). This is because the IO cost of an

insertion is h× c/b, where h is the height of the Bε-DAG, c
is the IO cost of performing a flush, and b is the minimum
number of items moved to child during a flush. Flushes cost
O(1) IOs in a Bε-DAG, just as in a Bε-tree, and flushes move
at least Ω(B/B1−ε) items, since the buffer in each node has
size Ω(B), and the fanout of each node is O(Bε).
Clones. The cost to create a clone can be broken into the
online cost, i.e,. the costs of all tasks that must be completed
before the clone is logically in place, and the offline costs,
i.e., the additional work that is performed in the background
as the GOTO message is flushed down the tree and eventually
converted to regular pivots.

The online cost of cloning s to d is merely the cost to push
all s messages to s’s LCA and insert the GOTO message. The
cost of pushing all the messages to the LCA is O(logB N) IOs.
Inserting the new GOTO message costs less than 1 IO, so the
total cost of creating a clone is O(logB N) IOs.

The background cost is incurred by the background thread
that converts all edges with a translation prefix into simple
edges. We bound the IO cost of this work as follows. A clone
from s to d can result in edges with translation prefixes only
along four root-to-leaf paths in the Bε-DAG: the left and right
fringes of the sub-dag of all s keys, and the left and right
fringes of the sub-dag of all d keys. Thus the total IO cost of
the background work is O(logB N).

4 Implementation and Optimizations

In this section, we describe two optimizations that reduce the
total cost of clones. Although they do not alter the asymp-
totics, we leverage the file system namespace and BetrFS
design to save both background and foreground IO.
Preferential splitting. Most background cloning work in-
volves removing unrelated keys and unlifted prefix data from
fringe nodes, i.e., nodes that contain both cloned and non-
cloned data. Thus, we could save work by reducing the num-
ber of fringe nodes.

Baseline BetrFS picks the middle key when splits a leaf
node. With preferential splitting, we select the key that max-
imizes the common prefix of the leaf, subject to the constraint

that both new leaves should be at least 1/4 full. Since data in
the same file share the same prefix (as do files in the same di-
rectory), preferential splitting reduces the likelihood of having
fringe nodes in a clone.

A naïve approach would compare the central half of all leaf
keys and pick the two adjacent keys with the shortest common
prefix. However, this scan can be costly. We can implement
preferential splitting and only read two keys: because the
shortest common prefix among adjacent keys is the same as
the common prefix of the smallest and the largest candidate
keys (the keys at 1/4 and 3/4 of the leaf), we can construct a
good parent pivot from these two keys.

Node reclamation. We run a thread in the background that
reclaims any node whose reference count reaches 0. As part
of the node reclamation process, we decrement each child
node’s reference count, including nodes pointed to by GOTO
messages. Node reclamation proceeds recursively on children
whose reference counts reach zero, as well.

This thread also checks any node with a translation prefix.
In an extreme case, a node with no reachable data may have a
positive reference count due to translation prefixes. For ex-
ample, if the only incident edge to a sub-DAG has translation
prefix s, but no key in the entire sub-DAG has s as a prefix,
then all data in the sub-DAG is reclaimable. As part of space
reclamation, BetrFS finds and reclaims nodes with no live
data, or possibly unshares and merges nodes with relatively
little live data.

Concurrency. B-tree concurrency is a classic problem, since
queries and inserts proceed down the tree, but splits and
merges proceed up the tree, making hand-over-hand locking
tricky. Bε-trees have similar issues, since they also perform
node splits and merges, and many of the B-tree-based solu-
tions, such as preemptive splitting and merging [28] or sibling
links [20], apply to Bε-trees, as well.

We note here that our cloning mechanism is entirely top-
down. Messages get pushed down to the LCA, GOTO mes-
sages get flushed down the tree, and non-simple edges get
converted to simple edges in a top-to-bottom manner. Thus
cloning imposes no new concurrency issues within the tree.

Background cleaning. BetrFS includes a background pro-
cess that flushes messages for frequently queried items down
the tree. The intention of this optimization is to improve
range and point query performance on frequently queried
data: once messages are applied to key-value pairs in Bε-tree
leaves, future queries need not reprocess those messages.

We found that, in the presence of clones, this background
task increased BetrFS 0.5’s space consumption because, by
flushing small changes, the cleaner would break Bε-DAG
nodes’ copy-on-write sharing.

Thus we modified the cleaner to never flush messages into
any node with a reference count greater than 1; such messages
instead wait to be flushed in normal write-optimized batches
once enough work has accrued to warrant rewriting the node.

82 18th USENIX Conference on File and Storage Technologies USENIX Association

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Clone Number

L
at

en
cy

(s
ec

)

Btrfs Btrfs-svol
XFS ZFS
BetrFS 0.5 BetrFS 0.5 (no cleaning)

(a) Time to clone a directory.

2 4 6 8
0

0.5

1

1.5

Clone Number

W
ri

te
Ti

m
e

(s
ec

)

(b) Small write latency.

2 4 6 8
0

2

4

6

8

Clone Number

G
re

p
Ti

m
e

(s
ec

)

(c) Grep Time.

Figure 7: Latency to clone, write, and read as a function of the number of times a directory tree has been cloned. Lower is better
for all measures.

5 Evaluation

This section evaluates BetrFS 0.5 performance. The evalua-
tion centers around the following questions:
• Do BetrFS 0.5 clones meet the performance goals of si-

multaneously achieving (1) low latency clone creation, (2)
reads with good spatial locality, even after modifications,
(3) fast writes, and (4) space efficiency? (§5.1)
• Does the introduction of cloning harm the performance of

unrelated operations? (§5.2)
• How can cloning improve the performance of a real-world

application? (§5.3)
All experimental results were collected on a Dell Optiplex

790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4GiB RAM,
and a 500GB, 7200 RPM SATA disk, with a 4096-byte block
size. We boot from a USB stick with the root file system,
isolating the file system under test to only the workload. The
system runs 64-bit Ubuntu 14.04.5.

We compare BetrFS 0.5 to baseline BetrFS, ext4, Btrfs,
XFS, ZFS, and NILFS2. We used BetrFS version 0.4
from github.com/oscarlab/betrfs, ZFS 0.6.5.11 from
zfsonlinux.org and kernel default versions of the other file
systems. Unless noted, each experiment was run a minimum
of 5 times. We present the mean and display bars that indicate
the minimum and maximum times over all runs. Similarly, ±
terms bound the minimum and maximum values over all runs.
Unless noted, all benchmarks are cold-cache tests.

BetrFS only works on a modified 3.11.10 kernel, so we run
BetrFS on that kernel; all other file systems run on 4.9.142.
We note that we ran experiments on both kernel versions, and
performance was generally better on the newer kernel; we
present the numbers for the newer kernel.

5.1 Cloning Performance

To evaluate the performance of cloning (and similar copy-
on-write optimizations in other file systems), we wrote a
microbenchmark that begins by creating a directory hierarchy
with eight directories, each containing eight 4MiB-files. The

microbenchmark then proceeds in rounds. In each round, we
create a new clone of the original directory hierarchy and
measure the clone operation’s latency (Figure 7a). We next
write 16 bytes to a 4KiB-aligned offset in each newly cloned
file—followed by a sync—in order to measure the impact of
copy-on-write (Figure 7b) on writes. We then clear the file
system caches and grep the newly copied directory to measure
cloning’s impact on read time (Figure 7c). Finally, we record
the change in space consumption for the whole file system at
each step (Table 1). We call this workload Dookubench.

We compare directory-level clone in BetrFS 0.5 to 3 Linux
file systems that either support volume snapshots (Btrfs and
ZFS) or reflink copies of files (Btrfs and XFS). We compare
in both modes; the label Btrfs-svol is in volume-snapshot
mode. For the file systems that support only file-level clones
(XFS and Btrfs without svol), the benchmark makes a copy
of the directory structure and clones the files.

For BetrFS 0.5, we present data in two modes. In “no
cleaner” mode, we disable the background process in BetrFS
0.5 that flushes data down the tree (Section 4). We found that
this background work created a lot of noise in our space exper-
iments, so we disabled it to get more precise measurements.
We also run the benchmark in BetrFS 0.5’s default mode
(with the cleaner enabled). As reported below, the cleaner
made essentially no difference on any benchmark, except to
increase the noise in the space measurements.

Figure 7a shows that BetrFS 0.5’s cloning time is around
60ms, which is 33% faster than the closest data point from
another file system (the first clone on XFS), 58% faster than a
volume clone on Btrfs, and an order of magnitude faster than
the worst case for the competition. Furthermore, BetrFS 0.5’s
clone performance is essentially flat throughout the experi-
ment. Thus we have achieved our objective of cheap clones.
Btrfs and ZFS also have flat volume-cloning performance,
but worse than in BetrFS 0.5. Both Btrfs and XFS file-level
clone latencies, on the other hand, degrade as a function of
the number of prior clones; after 8 iterations, clone latency is
roughly doubled.

In terms of write costs, the cost to write to a cloned file or

USENIX Association 18th USENIX Conference on File and Storage Technologies 83

github.com/oscarlab/betrfs
zfsonlinux.org

FS ∆ KiB/round σ

Btrfs 176 ±112 56.7
Btrfs-svol 32 ± 0 0
XFS 32.6 ± 95.4 50.9
ZFS 250 ±750 462.9
BetrFS 0.5 (no cleaning) 31.3 ± 29.8 19.9
BetrFS 0.5 16.3 ±950.8 460.8

Table 1: Average change in space usage after each
Dookubench round (a directory clone followed by small,
4KiB-aligned modifications to each newly cloned file).

volume is flat for all file systems, although BetrFS 0.5 can
ingest writes 8–10× faster. Thus we have not sacrificed the
excellent small-write performance of BetrFS.

Figure 7c shows that scans in BetrFS 0.5 are competitive
with the best grep times from other file systems in our bench-
marks. Furthermore, grep times in BetrFS 0.5 do not degrade
during the experiment. XFS and ZFS degrade severely—after
six clones, the grep time is nearly doubled. For XFS, there ap-
pears to be some work that temporarily improves locality, but
the degradation trend resumes after more iterations. Btrfs de-
grades by about 20% for file-level clones and 10% for volume
level clones after eight clones. This trend continues: after 17
iterations (not presented for brevity), Btrfs read performance
degrades by 50% with no indication of leveling off.

Table 1 shows the change in file system space usage after
each microbenchmark round. BetrFS 0.5 uses an average of
16KiB per round, which is half the space of the next best file
system, Btrfs in volume mode. BetrFS 0.5’s space usage is
very noisy due to its cleaner—unsurprisingly, space usage is
less after some microbenchmark rounds complete, decreasing
by up to 693KiB. When the cleaner is completely disabled,
space usage is very consistent around 32KiB. Thus enabling
the cleaner reduces average space consumption but introduces
substantial variation. Overall, these results show that BetrFS
0.5 supports space-efficient clones.

In total, these results indicate that BetrFS 0.5 supports a
seemingly paradoxical combination of performance features:
clones are fast and space-efficient, and random writes are
fast, yet preserve good locality for sequential reads. No other
file system in our benchmarks demonstrated this combination
of performance strengths, and some also showed significant
performance declines with each additional clone.

5.2 General Filesystem Performance

This section evaluates whether adding cloning erodes the
performance advantages of write-optimization in BetrFS. Our
overarching goal is to build a file system that performs well
on all operations, not just clones; thus, we measure a wide
range of of microbenchmarks and application benchmarks.
Sequential IO. We measure the time to sequentially write a

read write

60

80

100

120

140

ex
t4

ex
t4B

tr
fs

B
tr

fsX
FS

X
FS

Z
FS

Z
FSN

IL
FS

2

N
IL

FS
2

B
et

rF
S

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5

B
an

dw
id

th
(M

B
/s

ec
)

Figure 8: Bandwidth to sequentially read and write a 10 GiB
file (higher is better).

0 1M 2M 3M

10k

20k

30k

40k

50k

Files created

T
hr

ou
gh

pu
t(

fil
es

/s
ec

)

ext4 NILFS2
Btrfs BetrFS
XFS BetrFS 0.5
ZFS

Figure 9: Cumulative file creation throughput during the
Tokubench benchmark (higher is better).

10GiB file to disk (the benchmarking machine has only 4GiB
of RAM, so this is more than double the available RAM),
and then sequentially re-read the data from disk. Figure 8
shows the throughput of both operations. All the filesystems
perform sequential IO relatively well. BetrFS 0.5 performs
sequential reads at comparable throughput to BetrFS, ZFS,
and NILFS2, which is only about 19% less than ext4, Btrfs
and XFS. Sequential writes in BetrFS 0.5 are within 6% to
the fastest file system (Btrfs). We attribute this improvement
to preferential splitting, which creates a pivot matching the
maximum file data key at the beginning of the workload,
avoiding expensive leaf relifting in subsequent node splits.
Random IO. We measure random write performance with a
microbenchmark that issues 256K 4-byte overwrites at ran-
dom offsets within a 10GiB file, followed by an fsync. This
number of overwrites was chosen to run for at least several
seconds on the fastest filesystem. Similarly, we measure
random read performance by issuing 256K 4-byte reads at
random offsets within an existing 10GiB file.

Table 2 shows the execution time of the random write and
random read microbenchmarks. BetrFS 0.5 performs these
random writes 39–67× faster than conventional filesystems
and 8.5% slower than BetrFS. BetrFS 0.5 performs random
reads 12% slower than the fastest file system.
Tokubench. We evaluate file creation using the Tokubench
benchmark [13]. Tokubench creates three million 200-byte
files in a balanced directory tree (no directory is allowed to

84 18th USENIX Conference on File and Storage Technologies USENIX Association

FS random write (s) random read (s)
ext4 2770.6 ± 21.3 1947.9 ± 5.9
Btrfs 2069.1 ± 14.6 1907.5 ± 6.4
XFS 2863.4 ± 14.1 2023.3 ± 27.8
ZFS 3410.6 ±937.4 2163.9 ±112.2
NILFS2 2022.0 ± 4.8 1931.1 ± 26.6
BetrFS 4.7 ± 0.2 2201.1 ± 2.9
BetrFS 0.5 5.5 ± 0.1 2129.8 ± 6.8

Table 2: Time to perform 256K 4-byte random writes/reads
(1 MiB total IO, lower is better).

FS find (s) grep (s) delete (s)
ext4 2.22 ± 0.0 37.71 ± 7.1 3.38 ± 2.2
Btrfs 1.03 ± 0.0 8.88 ± 0.3 2.88 ± 0.0
XFS 6.81 ± 0.2 57.79 ±10.4 10.33 ± 1.4
ZFS 10.50 ± 0.2 38.64 ± 0.4 9.18 ± 0.1
NILFS2 6.72 ± 0.1 8.75 ± 0.2 9.41 ± 0.4
BetrFS 0.23 ± 0.0 3.71 ± 0.1 3.22 ± 0.4
BetrFS 0.5 0.21 ± 0.0 3.87 ± 0.0 3.37 ± 0.1

Table 3: Time to perform recursive grep, find and delete of
the Linux 3.11.10 source tree (lower is better)

Back-end FS lxc-clone (s)

Dir

ext4 19.514 ± 1.214
Btrfs 14.822 ± 0.076
ZFS 16.194 ± 0.538
XFS 55.104 ± 1.033
NILFS2 26.622 ± 0.396
BetrFS 0.5 8.818 ± 1.073

ZFS ZFS 0.478 ± 0.019
Btrfs Btrfs 0.396 ± 0.036
BetrFS 0.5 BetrFS 0.5-clone 0.118 ± 0.010

Table 4: Latency of cloning a container.

have more than 128 children). BetrFS 0.5 matches BetrFS
throughput, which is strictly higher than any other file system,
(except for one point at the end where NILFS2 is 8.7% higher),
and as much as 95× higher throughput than ext4.
Directory Operations. Table 3 lists the execution time of
three common directory operations—grep, find or delete—on
the Linux 3.11.10 kernel source tree.

BetrFS 0.5 is comparable to the baseline BetrFS on all
of these operations, with some marginal (4–5%) overhead
on grep and delete from adding cloning. We also note that
we observed a degradation for BetrFS on larger directory
deletions; the degradation is unrelated to cloning and we
leave investigation of this for future work. Overall, BetrFS
0.5 maintains the order-of-magnitude improvement over the
other file systems on find and grep.
Application Benchmarks. Figure 10 reports performance
of the following application benchmarks. We measure two
BetrFS 0.5 variants: one with no clones in the file system
(labeled BetrFS 0.5), and one executing in a cloned Linux-
3.11.10 source directory (labeled BetrFS 0.5-clone).

The git clone workload reports the time to clone a
local Linux source code repository, which is cloned from
github.com/torvalds/linux, and git diff reports the
time to diff between the v4.14 and v4.7 tags. The tar work-
load measures the time to tar or un-tar the Linux-3.11.10
source. The rsync workload copies the Linux-3.11.10 source
tree from a source to a destination directory within the same
partition and file system. With the -in-place option, rsync
writes data directly to the destination file rather than creating
a temporary file and updating via atomic rename. The IMAP

server workload initializes a Dovecot 2.2.13 mailserver with
10 folders, each containing 2500 messages, then measures
throughput of 4 threads, each performing 1000 operations
with 50% reads and 50% updates (marks, moves, or deletes).

In most of these application benchmarks, BetrFS 0.5 is the
highest performing file system, and generally matches the
other file systems in the worst cases. In a few cases, where
the application is write-intensive, such as git clone and rsync,
BetrFS 0.5-clone degrades relative to BetrFS 0.5, attributable
to the extra work of unsharing nodes, but the performance is
still competitive with, or better than, the baseline file systems.
These application benchmarks demonstrate that extending
write-optimization to include clones does not harm—and can
improve—application-level performance.

5.3 Cloning Containers

Linux Containers (LXC) is one of several popular container
infrastructures that has adopted a number of storage back-
ends in order to optimize container creation. The default
backend (dir) does a rsync of the component directories into
a single, chroot-style working directory. The ZFS and Btrfs
back-ends use subvolumes and clones to optimize this process.
We wrote a BetrFS 0.5 backend using directory cloning.

Table 4 shows the latency of cloning a default Ubuntu 14.04
container using each backend. Interestingly, BetrFS 0.5 using
clones is 3–4× faster than the other cloning backends, and up
to two orders of magnitude faster than the others.

6 Related work

File systems with snapshots. Many file systems implement
a snapshot mechanism to make logical copies at whole-
file-system-granularity [27]. Tree-based file systems, like
WAFL [15], ZFS [41], and Btrfs [29], implement fast snap-
shots by copying the root. WAFL FlexVols [12] add a level
of indirection between the file system and disks, supporting
writable snapshots and multiple active file system instances.

FFS [21] implements read-only file system views by cre-
ating snapshot inode with a pointer to each disk block; the
first time a block is modified, FFS copies the block to a new
address and updates the block pointer in the snapshot inode.

USENIX Association 18th USENIX Conference on File and Storage Technologies 85

github.com/torvalds/linux

clone diff

0

50

100

ex
t4

ex
t4

B
tr

fs

B
tr

fs

X
FS

X
FS

Z
FS

Z
FS

N
IL

FS
2

N
IL

FS
2

B
et

rF
S

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5

B
et

rF
S

0.
5-

cl
on

e

B
et

rF
S

0.
5-

cl
on

e

Ti
m

e
(s

ec
)

(a) Git latency.
Lower is better.

tar untar

0

20

40

60

80

ex
t4

ex
t4

B
tr

fs

B
tr

fs

X
FS

X
FSZ
FS

Z
FS

N
IL

FS
2

N
IL

FS
2

B
et

rF
S

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5

B
et

rF
S

0.
5-

cl
on

e

B
et

rF
S

0.
5-

cl
on

e

Ti
m

e
(s

ec
)

(b) Tar latency.
Lower is better.

-in-place rename

0

20

40

60

ex
t4

ex
t4

B
tr

fs

B
tr

fs

X
FS

X
FS

Z
FS

Z
FS

N
IL

FS
2

N
IL

FS
2

B
et

rF
S

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5

B
et

rF
S

0.
5-

cl
on

e

B
et

rF
S

0.
5-

cl
on

e

B
an

dw
id

th
(M

B
/s

ec
)

(c) Rsync throughput.
Higher is better.

0

50

100

150

200

ex
t4

B
tr

fs

X
FS

Z
FS

N
IL

FS
2

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5-

cl
on

e

T
hr

ou
gh

pu
t(

op
/s

)

(d) IMAP server throughput.
Higher is better.

Figure 10: Application benchmarks.

NILFS [19] is a log-structured file system that writes B-
tree checkpoints as part of each logical segment. NILFS can
create a snapshot by making a checkpoint block permanent.

GCTree [11] implements snapshots on top of ext4 by cre-
ating chains of metadata block versions. Each pointer in
the metadata block has a “borrowed bit” to indicate whether
the target block was inherited from the previous version.
Ext3cow [26] snapshots are defined by an epoch. Ext3cow
can render any epoch’s file-system view by fetching entries
alive at that epoch. NOVA-Fortis [38] supports snapshots by
adding private logs to each inode.
File or directory clones. AFS [16] introduced the idea of
volumes as a granularity for cloning and backup in a large, dis-
tributed file system; volumes isolate performance disruption
from cloning one user’s data from other users. Episode [7]
can create immutable fileset clones by copying all the fileset’s
anodes (inodes) and marking all block pointers copy-on-write.
Btrfs [29] can create file clones by sharing a file’s extents.
Windows R© 2000 Single Instance Storage (SIS) [5] uses dedu-
plication techniques to implement a new type of link that has
copy semantics. Creating the first SIS link requires a complete
data copy to a shared store. Writes are implemented copy-
on-close: once all open references to an SIS link are closed,
sharing is broken at whole-file granularity. Copy-on-close
optimizes for the case of complete overwrites.
Versioning file systems. Versioning files is an old idea, dating
back to at least TENEX system [4]. Versioning file systems
have appeared in a number of OSes [1, 22, 31], but often with
limitations such as a fixed number of versions per file and
no directory versioning. The Elephant File System [30] auto-
matically versions all files and directories, creating/finalizing
a new file version when the file is opened/closed. Each file
has an inode log that tracks all versions. CVFS [32] suggests
journal-based metadata and multi-version B-trees as two ways
to save space in versioning file systems. Versionfs [23] is a
stackable versioning file system where all file versions are
maintained as different files in the underlying file system.

Exo-clones [33] were recently proposed as a file format for
efficiently serializing, deserializing, and transporting volume

clones over a network. Exo-clones build upon an underly-
ing file system’s mechanism for implementing snapshots or
versions. Nimble clones in BetrFS 0.5 have the potential
to make exo-clones faster and smaller than on a traditional
copy-on-write snapshotting system.
Database indexes for dynamic hierarchical data. The clos-
est work to ours in databases is the BO-tree [14], a B-tree
indexing scheme for hierarchical keys that supports mov-
ing key subtrees from one place to another in the hierarchy.
They even support moving internal nodes of the key hierarchy,
which we do not. However, they do not support clones—only
moves—and their indexes are not write optimized.

7 Conclusion

This paper demonstrates how to use write-optimization to
decouple writes from copies, rendering a cloning implementa-
tion with the nimble performance properties: efficient clones,
efficient reads, efficient writes, and space efficiency. This tech-
nique does not harm performance of unrelated operations, and
can unlock improvements for real applications. For instance,
we demonstrate from 3–4× improvement in LXC container
cloning time compared to optimized back-ends. The tech-
nique of applying batched updates to the data structure itself
likely generalize. Moreover, our cloning implementation in
the Bε-DAG could be applied to any application built on a
key-value store, not just a file system.

Acknowledgments

We thank the anonymous reviewers and our shepherd Chang-
woo Min for their insightful comments on earlier drafts of
the work. This research was supported in part by NSF grants
CCF-1715777, CCF-1724745, CCF-1725543, CSR-1763680,
CCF-1716252, CCF-1617618, CCF-1712716, CNS-1938709,
and CNS-1938180. The work was also supported by VMware,
by EMC, and by NetApp Faculty Fellowships.

86 18th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Vax/VMS System Software Handbook, 1985.

[2] Michael A. Bender, Martin Farach-Colton, Jeremy T.
Fineman, Yonatan R. Fogel, Bradley C. Kuszmaul, and
Jelani Nelson. Cache-oblivious streaming B-trees. In
Proc. 19th Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 81–92, 2007.

[3] Michael A. Bender, Martin Farach-Colton, William
Jannen, Rob Johnson, Bradley C. Kuszmaul, Donald E.
Porter, Jun Yuan, and Yang Zhan. An introduction
to Bε-trees and write-optimization. :login; Magazine,
40(5):22–28, Oct 2015.

[4] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Mur-
phy, and Raymond S. Tomlinson. Tenex, a paged
time sharing system for the pdp - 10. Commun. ACM,
15(3):135–143, March 1972.

[5] Bill Bolosky, Scott Corbin, David Goebel, and John (JD)
Douceur. Single instance storage in windows 2000. In
Proceedings of 4th USENIX Windows Systems Sympo-
sium. USENIX, January 2000.

[6] Gerth Stolting Brodal and Rolf Fagerberg. Lower
bounds for external memory dictionaries. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 546–554, 2003.

[7] Sailesh Chutani, Owen T Anderson, Michael L Kazar,
Bruce W Leverett, W Anthony Mason, Robert N Side-
botham, et al. The episode file system. In Proceedings
of the USENIX Winter 1992 Technical Conference, pages
43–60, 1992.

[8] Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan,
Michael A. Bender, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan,
and Martin Farach-Colton. File systems fated for senes-
cence? nonsense, says science! In Proceedings of the
15th Usenix Conference on File and Storage Technolo-
gies, pages 45–58, 2017.

[9] Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan,
Michael A. Bender, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan,
and Martin Farach-Colton. How to fragment your file
system. :login; Magazine, 42(2):22–28, Summer 2017.

[10] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A.
Bender, William Jannen, Rob Johnson, Donald Porter,
and Martin Farach-Colton. Filesystem aging: It’s more
usage than fullness. In 11th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 19),
Renton, WA, July 2019. USENIX Association.

[11] Chris Dragga and Douglas J. Santry. Gctrees: Garbage
collecting snapshots. ACM Transactions on Storage,
12(1):4:1–4:32, 2016.

[12] John K. Edwards, Daniel Ellard, Craig Everhart, Robert
Fair, Eric Hamilton, Andy Kahn, Arkady Kanevsky,
James Lentini, Ashish Prakash, Keith A. Smith, and
Edward Zayas. Flexvol: Flexible, efficient file vol-
ume virtualization in wafl. In Proceedings of the 2008
USENIX Annual Technical Conference, pages 129–142,
2008.

[13] John Esmet, Michael A Bender, Martin Farach-Colton,
and Bradley C Kuszmaul. The tokufs streaming file
system. In Proceedings of the 4th USENIX Workshop
on Hot Topics in Storage and File Systems, 2012.

[14] Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neu-
mann, Norman May, and Franz Faerber. Indexing highly
dynamic hierarchical data. In VLDB, 2015.

[15] Dave Hitz, James Lau, and Michael Malcolm. File sys-
tem design for an nfs file server appliance. In Proceed-
ings of the USENIX Winter 1994 Technical Conference,
pages 19–19, 1994.

[16] John H. Howard, Michael L. Kazar, Sherri G. Me-
nees, David A. Nichols, M. Satyanarayanan, Robert N.
Sidebotham, and Michael J. West. Scale and perfor-
mance in a distributed file system. ACM Transactions
on Computer Systems, 6(1):51–81, 1988.

[17] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: A right-
optimized write-optimized file system. In Proceedings
of the 13th USENIX Conference on File and Storage
Technologies, pages 301–315, 2015.

[18] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael A.
Bender, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: Write-
optimization in a kernel file system. ACM Transactions
on Storage, 11(4):18:1–18:29, 2015.

[19] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi
Hifumi, Seiji Kihara, and Satoshi Moriai. The linux
implementation of a log-structured file system. SIGOPS
Operating Systems Review, 40(3):102–107, 2006.

[20] Philip L. Lehman and s. Bing Yao. Efficient locking for
concurrent operations on b-trees. ACM Transactions on
Database Systems, 6(4), December 1981.

USENIX Association 18th USENIX Conference on File and Storage Technologies 87

[21] Marshall Kirk McKusick and Gregory R. Ganger. Soft
updates: A technique for eliminating most synchronous
writes in the fast filesystem. In Proceedings of the
1999 USENIX Annual Technical Conference, pages 1–
17, 1999.

[22] Lisa Moses. TOPS-20 User’s manual.

[23] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright,
Andrew Himmer, and Erez Zadok. A versatile and
user-oriented versioning file system. In Proceedings
of the 3rd USENIX Conference on File and Storage
Technologies, pages 115–128, 2004.

[24] Prashanth Nayak and Robert Ricci. Detailed study on
linux logical volume manager. Flux Research Group
University of Utah, 2013.

[25] Patrick O’Neil, Edward Cheng, Dieter Gawlic, and Eliz-
abeth O’Neil. The log-structured merge-tree (LSM-
tree). Acta Informatica, 33(4):351–385, 1996.

[26] Zachary Peterson and Randal Burns. Ext3cow: A time-
shifting file system for regulatory compliance. ACM
Transactions on Storage, 1(2):190–212, 2005.

[27] Rob Pike, Dave Presotto, Ken Thompson, and Howard
Trickey. Plan 9 from Bell Labs. In In Proceedings
of the Summer 1990 UKUUG Conference, pages 1–9,
1990.

[28] Ohad Rodeh. B-trees, shadowing, and clones. ACM
Transactions on Storage, 3(4):2:1–2:27, 2008.

[29] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage,
9(3):9:1–9:32, 2013.

[30] Douglas S. Santry, Michael J. Feeley, Norman C.
Hutchinson, Alistair C. Veitch, Ross W. Carton, and
Jacob Ofir. Deciding when to forget in the elephant file
system. In Proceedings of the Seventeenth ACM Sympo-
sium on Operating Systems Principles, pages 110–123,
1999.

[31] Mike Schroeder, David K. Gifford, and Roger M. Need-
ham. A caching file system for a programmer’s work-
station. In Proceedings of the 10th ACM Symposium on
Opeating Systems Principles. Association for Comput-
ing Machinery, Inc., November 1985.

[32] Craig A. N. Soules, Garth R. Goodson, John D. Strunk,
and Gregory R. Ganger. Metadata efficiency in version-
ing file systems. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, pages
43–58, 2003.

[33] Richard P. Spillane, Wenguang Wang, Luke Lu,
Maxime Austruy, Rawlinson Rivera, and Christos Kara-
manolis. Exo-clones: Better container runtime im-
age management across the clouds. In 8th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), Denver, CO, June 2016. USENIX
Association.

[34] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Wenji Li, Raju Rangaswami, and Ming Zhao. Eval-
uating docker storage performance: from workloads to
graph drivers. Cluster Computing, pages 1–14, 2019.

[35] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Amit Warke, Dean Hildebrand, Mohamed Mohamed,
Nagapramod Mandagere, Wenji Li, Raju Rangaswami,
and Ming Zhao. In search of the ideal storage con-
figuration for docker containers. In 2017 IEEE 2nd
International Workshops on Foundations and Applica-
tions of Self* Systems (FAS* W), pages 199–206. IEEE,
2017.

[36] Veritas. Veritas system recovery. https://www.
veritas.com/product/backup-and-recovery/
system-recovery, 2019.

[37] Xingbo Wu, Wenguang Wang, and Song Jiang. To-
talcow: Unleash the power of copy-on-write for thin-
provisioned containers. In Proceedings of the 6th Asia-
Pacific Workshop on Systems, page 15. ACM, 2015.

[38] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. Nova-fortis: A
fault-tolerant non-volatile main memory file system. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pages 478–496, 2017.

[39] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Optimizing every operation in a
write-optimized file system. In Proceedings of the 14th
Usenix Conference on File and Storage Technologies,
pages 1–14, 2016.

[40] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Writes wrought right, and other
adventures in file system optimization. ACM Transac-
tions on Storage, 13(1):3:1–3:26, 2017.

[41] ZFS. http://zfsonlinux.org/. Accessed: 2018-07-
05.

88 18th USENIX Conference on File and Storage Technologies USENIX Association

https://www.veritas.com/product/backup-and-recovery/system-recovery
https://www.veritas.com/product/backup-and-recovery/system-recovery
https://www.veritas.com/product/backup-and-recovery/system-recovery
http://zfsonlinux.org/

[42] Yang Zhan, Alex Conway, Yizheng Jiao, Eric Knorr,
Michael A. Bender, Martin Farach-Colton, William
Jannen, Rob Johnson, Donald E. Porter, and Jun Yuan.
The full path to full-path indexing. In Proceedings
of the 16th USENIX Conference on File and Storage
Technologies, pages 123–138, 2018.

[43] Yang Zhan, Yizheng Jiao, Donald E. Porter, Alex Con-
way, Eric Knorr, Martin Farach-Colton, Michael A. Ben-

der, Jun Yuan, William Jannen, and Rob Johnson. Effi-
cient directory mutations in a full-path-indexed file sys-
tem. ACM Transactions on Storage, 14(3):22:1–22:27,
2018.

[44] Frank Zhao, Kevin Xu, and Randy Shain. Improving
copy-on-write performance in container storage drivers.

Storage Developer’s Conference, 2016.

USENIX Association 18th USENIX Conference on File and Storage Technologies 89

	Introduction
	BetrFS Background
	Cloning in BetrFS 0.5
	Lifted B-DAGs
	Creating clones with GOTO messages
	Flushes, splits, and merges
	Putting it all together
	Asymptotic Analysis

	Implementation and Optimizations
	Evaluation
	Cloning Performance
	General Filesystem Performance
	Cloning Containers

	Related work
	Conclusion

