
www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 13

SYSTEMS

What to Support When You’re Supporting
A Study of Linux API Usage and Compatibility

C H I A - C H E T S A I , B H U S H A N J A I N , N A F E E S A H M E D A B D U L ,
A N D D O N A L D E . P O R T E R

A pplication programming interfaces (APIs) specify how applica-
tion developers interact with systems. As APIs evolve over the life
of a system, the system developers have little in the way of empiri-

cal techniques to guide decisions such as deprecating an API. We propose
metrics for evaluating the importance of system APIs, as well as the relative
maturity of a prototype system that claims partial compatibility with another
system. Using these metrics, we study Linux APIs—such as system calls, ioctl
opcodes, pseudo-files, and libc functions—yielding insights for developers and
researchers.
System developers routinely make design choices based on what they believe to be the com-
mon and uncommon behaviors of a system. Imagine a developer who is building a prototype
system designed to run Linux applications. This developer will prioritize the implementation
tasks based on what he or she believes to be important, which may be heavily skewed toward
the developer’s preferred workloads.

In general, developers struggle to evaluate the impact of adding or removing APIs on back-
ward-compatibility with existing applications, primarily because of a lack of metrics. The
state-of-the-art is bug-for-bug compatibility, which requires all behaviors (even undefined or
undocumented behaviors) of a system to be identical to its predecessor. For instance, depre-
cating or retiring an API in Linux requires a lengthy process of repeatedly warning applica-
tion developers to adopt a replacement API and confirming that no applications are broken by
the change—a process that can take many years.

In evaluating compatibility or completeness of a prototype system, a common metric is a
simple count of supported system APIs. For instance, the Graphene library OS [1] offers sup-
port for 143 out of 318 Linux x86-64 system calls. Although system call counts are easy to
measure, this metric fails to capture essential aspects of compatibility, such as the fraction of
applications or users that could plausibly use the system. In order to indicate general useful-
ness, a good compatibility metric should relate to the application usage patterns of end users,
factoring in both common and uncommon cases.

At the root of these problems is a lack of data sets and analysis of how system APIs are used in
practice. System APIs are simply not equally important: some APIs are used by popular librar-
ies and, thus, by essentially every application. Other APIs may be used only by applications that
are rarely installed. Evaluating compatibility is fundamentally a measurement problem.

This article summarizes a study of Linux APIs; a longer version is published in EuroSys
2016 [2]. This study contributes a data set and analysis tool that can answer several practi-
cal questions about API usage and compatibility. For instance, if a developer were to add
one additional API to a given system prototype, which API would most increase the range
of supported applications? Or if a given system API is optimized, what widely used applica-
tions would likely benefit? Similarly, this data and toolset can help OS maintainers evaluate
the impact of an API change on applications and can help users evaluate whether a prototype
system is suitable for their needs.

Chia-Che Tsai is a PhD student
at Stony Brook University. His
research involves restructuring
operating system designs for
less vulnerability and higher

performance. He is also the main contributor
to the Graphene library OS.
chitsai@cs.stonybrook.edu

Bhushan Jain is a PhD student
at the University of North
Carolina at Chapel Hill. His
research interests include
virtualization security, memory

isolation, and system security.
bhushan@cs.unc.edu

Nafees Ahmed Abdul is a
Software Engineer at Symbolic
IO. He earned his master’s
degree from Stony Brook
University. He is broadly

interested in file systems and storage
technologies. nabdul@cs.stonybrook.edu

Donald E. Porter is an Assistant
Professor of Computer Science
at the University of North
Carolina at Chapel Hill and,
by courtesy, at Stony Brook

University. His research aims to improve
computer system efficiency and security. In
addition to recent work on write-optimization
in file systems, recent projects have developed
lightweight guest operating systems for virtual
environments, system security abstractions,
and efficient data structures for caching.
porter@cs.unc.edu

14! FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

Some APIs Are More Equal than Others
We started this study from a research perspective, in search of a
better way to evaluate the completeness of system prototypes. In
general, compatibility treated as a binary property (i.e., bug-for-
bug compatibility) loses important information when evaluating
a prototype that is almost certainly incomplete. Metrics such as
the count of supported system APIs are noisy at best and give no
guidance as to which APIs are the most important.

One way to understand the completeness of a system or the
importance of an API is to measure the impact on end users.
In other words, if a system supports a set of APIs, how many
applications chosen by users can run on the system? Or if an API
were not supported, how many users would notice its absence?
To answer these questions, we must consider both the difference
in API usage among applications, and application popularity
among users. We measure the former by analyzing application
binaries and determine the latter from the installation statistics
collected by the Debian and Ubuntu Popularity Contests [3, 4].

We introduce two new metrics: one for each API and one for
a whole system. For each API, we measure how disruptive its
absence would be to applications and end users—a metric we call
API importance. For a system, we compute a weighted percent-
age we call weighted completeness. For simplicity, we define a
system as a set of implemented or emulated APIs, and assume
an application will work on a target system if the APIs used by
the application (or API footprint) is implemented on the sys-
tem (i.e., we assume implemented APIs work as expected). The
popularity of applications is measured by installations, which
are collections of applications installed by users on physical
machines, virtual machines, containers, or partitions in multi-
boot systems.

API Importance
For a given API, the probability that an installation includes
at least one application requiring the API

API importance indicates how indispensable a given API is to
at least one application on a randomly selected installation.
Intuitively, if an API is used by no packages or installations, the
API importance will be zero and its absence will cause no nega-
tive effects. If an API is only used by packages A, B, and C, the
API importance will be the probability that either A, B, or C is
chosen in an installation, which can be determined from pack-
age installation statistics. We consider an API to be important to
an installation as long as one installed package requires the API.
For instance, the reboot system call has almost 100% impor-
tance, but on most systems, this API is used only by the /sbin

/reboot binary.

Weighted Completeness
For a target system, the fraction of applications supported,
weighted by the popularity of these applications

Weighted completeness indicates the fraction of installed
applications that a prototype system can support on a randomly
selected installation. Intuitively, a system with bug-for-bug com-
patibility will be able to support all applications and have 100%
weighted completeness. If a system only supports packages A, B,
and C, the weighted completeness will be the weighted fraction
of A, B, and C over the average number of installed packages.

Data Collection
This study focuses on Ubuntu/Debian Linux as a baseline for
comparison. We use static analysis to identify the API footprint
of all applications and use installation statistics to evaluate the
popularity of each application.

The methodology for measuring API importance and weighted
completeness is summarized as follows:

1. For each available package, collect the API footprint of the
package by disassembling all the binaries. The API footprint
includes the APIs called by an executable or called by a library
through function calls from the executable.

2. Calculate the API importance of each API based on the packag-
es that use the API as well as the popularity of these packages.

3. For a target system, identify a list of supported APIs of the
target system either from the system’s source or as provided by
the developers of the system.

4. Based on the API footprint of the packages, list the supported
and unsupported packages for the target system.

5. Finally, weigh the list of supported packages based on their
popularity and calculate the weighted completeness of the
target system.

The Scope of This Study
Types of system APIs: We study various types of APIs defined
in x86-64 Linux 3.19:

 ◆ 318 defined system call numbers.
 ◆ Opcodes for vectored system calls (635 ioctl opcodes, 18 fcntl

opcodes, and 44 prctl opcodes).
 ◆ Pseudo-files in proc, dev, and sys file systems. In our applica-

tion sample, we found 5,846 unique, hard-coded paths.
 ◆ 1,274 global functions in GNU libc 2.21 (libc.so only).

Sample of applications: 30,976 packages downloaded through
APT on Ubuntu Linux 15.04.

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 15

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

Figure 1 shows the types of applications in these packages. We
focused primarily on ELF binaries, which account for the largest
fraction (60%) of Linux applications. For interpreted languages
such as shell languages (21%) or Python (9%), we assume the API
footprint of the applications is covered by the API footprint of
the interpreter.

Package installation statistics: 2,935,744 installations col-
lected in the Ubuntu and Debian Popularity Contests.

API Importance of Linux System Calls
We begin by looking at the API importance of each Linux system
call, in order to answer the following questions:

 ◆ Which system calls are the most important to support in a new
system or have highest costs to replace?

 ◆ Which system calls are candidates for deprecation?
 ◆ Which system calls are not supported by the OS but are still

attempted by applications?
There are 318 system call numbers defined in x86-64 Linux 3.19.
Figure 2 shows the distribution of system calls by API impor-
tance, ordered from the most important (near 100%) to the least
important (0%)—similar to an inverted CDF.

Our study shows that over two-thirds (224 of 318) of Linux sys-
tem calls have nearly 100% API importance. These system calls
are indispensable for users—required by at least one application
on every installation. Therefore, changing or removing these
system calls would be highly disruptive.

On the other hand, we found 44 system calls with API importance
above zero but less than 10%. In some cases, there are more pop-
ular alternatives with overlapping functionality. For instance,
API importance for the System V message queue system calls
(e.g., 100% for msgget) is higher than for POSIX message queue
system calls (e.g., 5% for mq_open), although Linux supports both.
This is attributable to System V message queues being more por-
table to other UNIX systems. Sometimes comparable function-
ality is provided by pseudo-files. For instance, the information
returned by the system call query_module is also available by
reading the pseudo-files /proc/modules and /proc/kallsyms.

We also found five system calls—uselib, nfsservctl, afs_syscall,
vserver, and security—that are officially retired but still have a
non-zero API importance. These system calls are used because
some applications still attempt the old calls for backward-com-
patibility with older kernels and, if these calls are unsupported,
attempt newer API variants.

In total, 18 of 318 system calls defined in Linux 3.19 are not
explicitly used by any application we studied. Eleven of these
system calls are defined but retired and thus do not have an
entry point in the kernel. Six system calls (rt_tgsigqueueinfo,
get_robust_list, remap_file_pages, mq_notify, lookup_
dcookie, and move_pages) are available but not used by any
applications. These system calls are potential candidates for
deprecation.

From “Hello World” to Every Application
For prototype systems or emulation layers, API importance
and weighted completeness are useful for determining which
APIs to implement first and for evaluating the progress of the
prototypes. Our study shows an optimal path for adding sys-
tem calls to a prototype system using a simple, greedy strategy
of implementing the most important APIs first, which in turn
maximizes weighted completeness.

Table 1 and Figure 3 demonstrate the optimal path of imple-
menting Linux system calls, split into five stages, and the
upper bound of weighted completeness that can be achieved.
Essentially, one cannot run even the most simple application in
Ubuntu/Debian Linux without at least 40 system calls. After
this, the number of additional applications one can support by
adding another system call increases steadily up to an inflection
point at 125 system calls, or supporting extended attributes on
files, where weighted completeness jumps to 25%. To support
roughly half of Ubuntu/Debian Linux applications, one must
have 145 system calls, and the curve plateaus around 202 system

Figure 1: Types of applications and ELF binaries studied

Figure 2: API importance of 318 Linux system calls in x86-64 Linux 3.19,
ordered from the most to the least important

16! FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

calls. We do not provide a complete ordered list here in the interest
of brevity, but this list is available as part of our released data set.

One of the uses of weighted completeness is to help guide the
process of developing new prototype systems. Because 224 out
of 318 system calls on Ubuntu/Debian Linux have 100% API
importance, if one of these 224 calls is missing, at least one
application on a typical system will not work. Weighted com-
pleteness, however, is more forgiving, as it tries to capture the
fraction of a typical installation that could work. Only 40
 system calls are needed to support at least one application and
have weighted completeness of more than 1%.

For simplicity, the optimal path we recommend only includes
system calls, but one can construct a similar path including
other types of APIs, such as vectored system calls, pseudo-files,
and library functions.

Weighted Completeness of Linux Systems
We evaluate the weighted completeness of four systems or emu-
lation layers: User-Mode-Linux [5], L4Linux [6], the FreeBSD’s
Linux emulation layer [7], and the Graphene library OS [1]. For
each system, we identify the supported system calls by examin-
ing the defined system call tables in the source code. Figure 4
shows the weighted completeness of these systems based on the
supported system calls. User-Mode-Linux (UML) and L4Linux
both have over 90% weighted completeness, with more than 280
system calls implemented. FreeBSD’s weighted completeness
is 62.3% due to missing some less important system calls (e.g.,
inotify_init). Graphene’s weighted completeness is only 0.42%
due to missing scheduling control, but this is improved to 21.1%
by adding two scheduling system calls.

For prototype developers, the proposed optimal path can maxi-
mize weighted completeness on a limited development budget,

especially for systems that implement a smaller fraction of
APIs, such as Graphene or FreeBSD’s Linux emulation layer.
For existing prototypes, our study can identify the most impor-
tant APIs that are missing, but can boost the weighted complete-
ness most, witness the dramatic improvement (0.42% to 21.1%)
on Graphene.

Vectored System Call Opcodes
Some system calls, such as ioctl, fcntl, and prctl, essentially
export a secondary system call table using the first argument
as an operation code (Opcode). These vectored system calls
significantly expand the system API, which we also consider in
evaluating compatibility.

Among all the vectored system calls, ioctl represents the larg-
est expansion of the Linux system APIs. There are 635 ioctl
opcodes defined in the Linux 3.19 kernel source alone, and other
kernel modules and drivers developed by third parties can define
additional opcodes. Figure 5 shows the API importance of ioctl
system call opcodes defined in Linux 3.19, ordered from the most
important to the least important.

Stage System call examples No. of system
calls to support

Weighted
completeness

I mmap, vfork , exit, read,
fcntl , kill , dup2 40 1.12%

II mremap, ioctl , access,
socket, poll , recvmsg +41 (81) 10.68%

III shutdown, symlink , alarm,
listen, shmget, pread64 +64 (145) 50.09%

IV
flock , semget, ppoll ,
mount, brk , pause,
clock_gettime

+57 (202) 90.61%

V All remaining +70 (272) 100%

Table 1: The optimal path of adding system calls in prototype systems,
based on the order of API importance, to optimize the accumulated
weighted completeness

Figure 3: Accumulated weighted completeness when N-most important
system calls are supported in the prototype system

Figure 4: Weighted completeness of four systems or emulation layers
with partial compatibility to Linux

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 17

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

We observe a different trend for the API importance of ioctl
opcodes from the system calls. Among the 635 ioctl opcodes
defined in the Linux kernel source, fewer than one-tenth (52
opcodes) are indispensable on every installation, whereas more
than two-thirds (447 opcodes) are never used by any applica-
tion in Ubuntu/Debian Linux. In other words, when system
developers implement ioctl opcodes in their prototype systems,
it is more productive to focus on the opcodes that have higher
API importance and implement the rest as needed for specific
applications.

For the opcodes of other two vectored system calls, fcntl and
prctl, we observe that the fraction of their opcodes being indis-
pensable on every installations is higher than the ioctl opcodes.
In Linux 3.19, 18 fcntl opcodes and 44 prctl opcodes are defined.
Among them, 11 fcntl opcodes and nine prctl opcodes have 100%
API importance.

Pseudo-Files and Devices
In addition to the main system call table, Linux exports many
additional APIs through pseudo-file systems, often mounted
at /proc, /dev, and /sys. These are called pseudo-files because
they are not backed by any physical storage but instead export
the contents of kernel data structures to applications or admin-
istrators. Although many of these pseudo-files are used on the
command line or in scripts input by an administrator, there is
also routine use of pseudo-files in applications.

We use static analysis to find hard-coded pseudo-file paths in
application binaries. Our approach does not capture the cases
where paths of pseudo-files are passed in as input to the applica-
tions, such as dd if=/dev/zero. However, we observe that when
pseudo-files are widely used as alternative system APIs, their
paths tend to be hard-coded in the binary as a string or string
pattern, such as /proc/%d/cmdline, where %d can be any process
ID. Our analysis captures hard-coded paths and string patterns.

Easy extensibility is an appeal of using pseudo-files as system
APIs; as a result, their count can be an order-of-magnitude larger

than the number of system calls or opcodes. We found 12,039
binaries that access pseudo-files and devices. Of these, 5846
unique paths were found hard-coded in these binaries. Figure 6
shows the API importance of several common paths for pseudo-
files and devices.

We find that several files, such as /dev/null, are widely used
through hard-coded paths in applications, even though there
might be simpler alternatives. For instance, among 12,039 bina-
ries that use a hard-coded path, 3324 are hard-coded to access
/dev/null. Although /dev/null is convenient for use on the com-
mand line and in scripts, it is surprising that such a significant
number of applications write to this pseudo-file rather than elid-
ing the write system call.

Because many pseudo-files are accessed from the command line,
it is hard to conclude that any should be deprecated. Nonethe-
less, these files represent large and complex APIs that create an
important attack surface to defend. As noted in other studies, the
permissions on pseudo-files and devices tend to be set liberally
enough to leak a significant amount of information [8]. For files
used by a single application, an abstraction like a fine-grained
capability [9] might better capture the security requirement.

Standard System Library Functions
Functions defined in standard system libraries, such as libc, are
also system APIs. It is a common practice that developers tend to
use library functions as more portable, user-friendly wrappers
of the kernel APIs instead of directly calling these kernel APIs.
For instance, GNU libc [10] exports functions for using locks and
condition variables, which internally use the more subtle futex
system call.

We study 1274 global function symbols exported by GNU libc
2.21 (libc.so only; other libraries, such as libm.so and libp-

thread.so are not included). Among these functions, 42.8% have
an API importance of 100%, 50.6% have a API importance of
less than 50%, and 39.7% have an API importance of less than
1%, including ones that are never used. This result implies that

Figure 5: API importance of 635 ioctl opcodes defined in Linux 3.19
source, ordered from the most to the least important

Figure 6: API importance of selected pseudo-files and devices under
/proc and /dev

18! FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

processes load a significant amount of unnecessary code into
their address space. By splitting libc into sub-libraries based on
API importance and common linking patterns, systems could
realize a non-trivial space savings and reduce the attack surface
for code reuse attacks.

We analyzed the space savings of a GNU libc 2.21 which
removed any APIs with API importance lower than 90%. In
total, libc would retain 889 APIs and the size would be reduced
to 63% of its original size. The probability that an application
would need a missing function and load it from another library
is less than 9.3% (equivalent to 90.7% weighted completeness for
the stripped libc). Further decomposition is also possible, such as
placing APIs that are commonly accessed by the same applica-
tion into the same sub-library.

Unweighted API Usage in Applications
Weighing metrics based on installations is important for under-
standing the impact of API changes on end users. By removing
this weight, however, we can also observe trends in how APIs are
used by application developers.

Unweighted API Importance
For a given API, the probability an application (package) uses
that API, regardless of its installation probability

Unweighted API importance shows the preference of application
developers for an API over its variants and the effort to com-
municate with all relevant application developers if an API is
changed.

One common reason for system developers to design API vari-
ants is to replace APIs that are prone to security problems. For
instance, many of the set*id system calls (e.g., setuid) have
subtle semantic differences across UNIX platforms. Chen et al.
[11] conclude that setresuid is the most secure choice for having
the clearest semantics across all UNIX flavors. Another example
is that file-accessing system calls (e.g., access) can be exploited
through time-of-check-to-time-of-use (TOCTTOU) attacks,
and their variants (e.g., faccessat) can be used to resist these
attacks.

Table 2 shows the difference in unweighted API importance
among the secure and insecure API variants. In some cases, like
set*id system calls, the secure API variants (e.g., setresuid)
are well-adopted and have higher unweighted API importance
than the insecure ones. However, in more cases, like get*id and
access, the insecure API variants are more commonly used by
application developers.

Besides security-related reasons, system developers may create
API variants by retaining old APIs for backward-compatibility.
For instance, the wait4 system call is considered obsolete and

will soon be replaced by waitid [12], but wait4 still remains
available in Linux. In some other cases, multiple API variants
are retained because one variant is specific to a particular OS
like Linux, and the other is more generic and portable. Table
3 shows the difference in unweighted API importance among
these variants. In general, API variants designed to be portable
(e.g., writev) are more commonly used by the application devel-
opers than Linux-specific ones (e.g., pwritev). However, older
APIs (e.g., wait4) may still be widely used in applications, even
though the new APIs are introduced to improve the application
portability.

Insecure API Usage Secure API Usage

setuid 15.67%
setresuid 99.68%

setreuid 1.88%

getuid 99.81%
getresuid 36.19%

geteuid 55.15%

access 74.24% faccessat 0.63%

rename 43.18% renameat 0.30%

chmod 39.80% fchmodat 0.13%

Table 2: Usage (unweighted API importance) of secure and insecure API
variants in applications

Old (Obsolete) APIs vs. New APIs

Old API Usage New API Usage

getdents 99.80% getdents64  0.08%

tkill  0.51% tgkill 99.80%

wait4 60.56% waitid  0.24%

Linux-Specific APIs vs. Portable APIs

Linux-specific API Usage Portable API Usage

preadv 0.15% readv 62.23%

pwritev 0.16% writev 99.80%

accept4 0.93% accept 29.35%

recvmmsg 0.11% recvmsg 68.82%
sendmmsg 5.17% sendmsg 42.49%

Table 3: Usage (unweighted API importance) of similar API variants in
applications

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 19

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

Conclusion
In this study, we define new metrics for evaluating API usage
and compatibility, and, based on these results, we draw several
conclusions about the nature of Linux APIs. First, for any OS
installation in our data set, the required API size is several
times larger than the all-system calls defined in Linux, once
one considers vectored system call opcodes and pseudo-files.
We also show that a substantial range of system calls and other
APIs are rarely used. Finally, we provide a method to evaluate
partial support of APIs in prototype systems, and plot an optimal
path for adding system calls. We expect that the data set will be
of use to researchers and developers for further study, and the
methodology can be applied to future releases and other operat-
ing systems.

The data set and analysis tool are available at:
http://oscar.cs.stonybrook.edu/api-compat-study.

Acknowledgments
We thank Bianca Schroeder and William Jannen for their
insightful comments on this work. This research was sup-
ported in part by NSF grants CNS-1149229, CNS-1161541,
CNS-1228839, CNS-1405641, CNS-1408695, CNS-1526707, and
VMware. Bhushan Jain is supported by an IBM PhD Fellowship.

References
[1] C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John,
H. A. Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter,
“Cooperation and Security Isolation of Library OSes for
Multi-Process Applications,” in Proceedings of the ACM Euro-
pean Conference on Computer Systems (EuroSys), 2014.

[2] C. Tsai, B. Jain, N. Ahmed Abdul, and D. E. Porter, “A Study
of Modern Linux API Usage and Compatibility: What to
Support When You’re Supporting,” in Proceedings of the ACM
European Conference on Computer Systems (EuroSys), 2016.

[3] Ubuntu popularity contest: http://popcon.ubuntu.com.

[4] Debian popularity contest: http://popcon.debian.org.

[5] J. Dike, User Mode Linux (Prentice Hall, 2006).

[6] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and S. Schon-
berg, “The Performance of μ-Kernel-Based Systems,” SIGOPS
Operating System Review, vol. 31, no. 5 (Dec. 1997), pp. 66–77.

[7] R. Divacky, “Linux Emulation in FreeBSD,” master’s thesis:
http://www.freebsd.org/doc/en/articles/linux-emulation.

[8] S. Jana and V. Shmatikov, “Memento: Learning Secrets
from Process Footprints,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy, 2012.

[9] J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: A Fast
Capability System,” in Proceedings of the ACM SIGOPS Sym-
posium on Operating Systems Principles (SOSP), 1999.

[10] The GNU C library: http://www.gnu.org/software/libc.

[11] H. Chen, D. Wagner, and D. Dean, “Setuid Demystified,” in
Proceedings of the 11th USENIX Security Symposium, 2002.

[12] wait4(2) Linux man page: http://linux.die.net/man/2/wait4.

