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SYSTEMS

What to Support When You’re Supporting
A Study of Linux API Usage and Compatibility

C H I A - C H E  T S A I ,  B H U S H A N  J A I N ,  N A F E E S  A H M E D  A B D U L ,  
A N D  D O N A L D  E .  P O R T E R

A pplication programming interfaces (APIs) specify how applica-
tion developers interact with systems. As APIs evolve over the life 
of a system, the system developers have little in the way of empiri-

cal techniques to guide decisions such as deprecating an API. We propose 
metrics for evaluating the importance of system APIs, as well as the relative 
maturity of a prototype system that claims partial compatibility with another 
system. Using these metrics, we study Linux APIs—such as system calls, ioctl 
opcodes, pseudo-files, and libc functions—yielding insights for developers and 
researchers.
System developers routinely make design choices based on what they believe to be the com-
mon and uncommon behaviors of a system. Imagine a developer who is building a prototype 
system designed to run Linux applications. This developer will prioritize the implementation 
tasks based on what he or she believes to be important, which may be heavily skewed toward 
the developer’s preferred workloads.

In general, developers struggle to evaluate the impact of adding or removing APIs on back-
ward-compatibility with existing applications, primarily because of a lack of metrics. The 
state-of-the-art is bug-for-bug compatibility, which requires all behaviors (even undefined or 
undocumented behaviors) of a system to be identical to its predecessor. For instance, depre-
cating or retiring an API in Linux requires a lengthy process of repeatedly warning applica-
tion developers to adopt a replacement API and confirming that no applications are broken by 
the change—a process that can take many years.

In evaluating compatibility or completeness of a prototype system, a common metric is a 
simple count of supported system APIs. For instance, the Graphene library OS [1] offers sup-
port for 143 out of 318 Linux x86-64 system calls. Although system call counts are easy to 
measure, this metric fails to capture essential aspects of compatibility, such as the fraction of 
applications or users that could plausibly use the system. In order to indicate general useful-
ness, a good compatibility metric should relate to the application usage patterns of end users, 
factoring in both common and uncommon cases.

At the root of these problems is a lack of data sets and analysis of how system APIs are used in 
practice. System APIs are simply not equally important: some APIs are used by popular librar-
ies and, thus, by essentially every application. Other APIs may be used only by applications that 
are rarely installed. Evaluating compatibility is fundamentally a measurement problem.

This article summarizes a study of Linux APIs; a longer version is published in EuroSys 
2016 [2]. This study contributes a data set and analysis tool that can answer several practi-
cal questions about API usage and compatibility. For instance, if a developer were to add 
one additional API to a given system prototype, which API would most increase the range 
of supported applications? Or if a given system API is optimized, what widely used applica-
tions would likely benefit? Similarly, this data and toolset can help OS maintainers evaluate 
the impact of an API change on applications and can help users evaluate whether a prototype 
system is suitable for their needs.
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Some APIs Are More Equal than Others
We started this study from a research perspective, in search of a 
better way to evaluate the completeness of system prototypes. In 
general, compatibility treated as a binary property (i.e., bug-for-
bug compatibility) loses important information when evaluating 
a prototype that is almost certainly incomplete. Metrics such as 
the count of supported system APIs are noisy at best and give no 
guidance as to which APIs are the most important.

One way to understand the completeness of a system or the 
importance of an API is to measure the impact on end users. 
In other words, if a system supports a set of APIs, how many 
applications chosen by users can run on the system? Or if an API 
were not supported, how many users would notice its absence? 
To answer these questions, we must consider both the difference 
in API usage among applications, and application popularity 
among users. We measure the former by analyzing application 
binaries and determine the latter from the installation statistics 
collected by the Debian and Ubuntu Popularity Contests [3, 4].

We introduce two new metrics: one for each API and one for 
a whole system. For each API, we measure how disruptive its 
absence would be to applications and end users—a metric we call 
API importance. For a system, we compute a weighted percent-
age we call weighted completeness. For simplicity, we define a 
system as a set of implemented or emulated APIs, and assume 
an application will work on a target system if the APIs used by 
the application (or API footprint) is implemented on the sys-
tem (i.e., we assume implemented APIs work as expected). The 
popularity of applications is measured by installations, which 
are collections of applications installed by users on physical 
machines, virtual machines, containers, or partitions in multi-
boot systems.

API Importance
For a given API, the probability that an installation includes 
at least one application requiring the API

API importance indicates how indispensable a given API is to 
at least one application on a randomly selected installation. 
Intuitively, if an API is used by no packages or installations, the 
API importance will be zero and its absence will cause no nega-
tive effects. If an API is only used by packages A, B, and C, the 
API importance will be the probability that either A, B, or C is 
chosen in an installation, which can be determined from pack-
age installation statistics. We consider an API to be important to 
an installation as long as one installed package requires the API. 
For instance, the reboot system call has almost 100% impor-
tance, but on most systems, this API is used only by the /sbin 

/reboot binary.

Weighted Completeness
For a target system, the fraction of applications supported, 
weighted by the popularity of these applications

Weighted completeness indicates the fraction of installed 
applications that a prototype system can support on a randomly 
selected installation. Intuitively, a system with bug-for-bug com-
patibility will be able to support all applications and have 100% 
weighted completeness. If a system only supports packages A, B, 
and C, the weighted completeness will be the weighted fraction 
of A, B, and C over the average number of installed packages.

Data Collection
This study focuses on Ubuntu/Debian Linux as a baseline for 
comparison. We use static analysis to identify the API footprint 
of all applications and use installation statistics to evaluate the 
popularity of each application.

The methodology for measuring API importance and weighted 
completeness is summarized as follows:

1. For each available package, collect the API footprint of the 
package by disassembling all the binaries. The API footprint 
includes the APIs called by an executable or called by a library 
through function calls from the executable.

2. Calculate the API importance of each API based on the packag-
es that use the API as well as the popularity of these packages.

3. For a target system, identify a list of supported APIs of the 
target system either from the system’s source or as provided by 
the developers of the system.

4. Based on the API footprint of the packages, list the supported 
and unsupported packages for the target system.

5. Finally, weigh the list of supported packages based on their 
popularity and calculate the weighted completeness of the 
target system.

The Scope of This Study
Types of system APIs: We study various types of APIs defined 
in x86-64 Linux 3.19:

 ◆ 318 defined system call numbers.
 ◆ Opcodes for vectored system calls (635 ioctl opcodes, 18 fcntl 

opcodes, and 44 prctl opcodes).
 ◆ Pseudo-files in proc, dev, and sys file systems. In our applica-

tion sample, we found 5,846 unique, hard-coded paths.
 ◆ 1,274 global functions in GNU libc 2.21 (libc.so only).

Sample of applications: 30,976 packages downloaded through 
APT on Ubuntu Linux 15.04.
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Figure 1 shows the types of applications in these packages. We 
focused primarily on ELF binaries, which account for the largest 
fraction (60%) of Linux applications. For interpreted languages 
such as shell languages (21%) or Python (9%), we assume the API 
footprint of the applications is covered by the API footprint of 
the interpreter.

Package installation statistics: 2,935,744 installations col-
lected in the Ubuntu and Debian Popularity Contests.

API Importance of Linux System Calls
We begin by looking at the API importance of each Linux system 
call, in order to answer the following questions:

 ◆ Which system calls are the most important to support in a new 
system or have highest costs to replace?

 ◆ Which system calls are candidates for deprecation?
 ◆ Which system calls are not supported by the OS but are still 

attempted by applications?
There are 318 system call numbers defined in x86-64 Linux 3.19. 
Figure 2 shows the distribution of system calls by API impor-
tance, ordered from the most important (near 100%) to the least 
important (0%)—similar to an inverted CDF.

Our study shows that over two-thirds (224 of 318) of Linux sys-
tem calls have nearly 100% API importance. These system calls 
are indispensable for users—required by at least one application 
on every installation. Therefore, changing or removing these 
system calls would be highly disruptive.

On the other hand, we found 44 system calls with API importance 
above zero but less than 10%. In some cases, there are more pop-
ular alternatives with overlapping functionality. For instance, 
API importance for the System V message queue system calls 
(e.g., 100% for msgget) is higher than for POSIX message queue 
system calls (e.g., 5% for mq_open), although Linux supports both. 
This is attributable to System V message queues being more por-
table to other UNIX systems. Sometimes comparable function-
ality is provided by pseudo-files. For instance, the information 
returned by the system call query_module is also available by 
reading the pseudo-files /proc/modules and /proc/kallsyms.

We also found five system calls—uselib, nfsservctl, afs_syscall, 
vserver, and security—that are officially retired but still have a 
non-zero API importance. These system calls are used because 
some applications still attempt the old calls for backward-com-
patibility with older kernels and, if these calls are unsupported, 
attempt newer API variants.

In total, 18 of 318 system calls defined in Linux 3.19 are not 
explicitly used by any application we studied. Eleven of these 
system calls are defined but retired and thus do not have an 
entry point in the kernel. Six system calls (rt_tgsigqueueinfo, 
get_robust_list, remap_file_pages, mq_notify, lookup_
dcookie, and move_pages) are available but not used by any 
applications. These system calls are potential candidates for 
deprecation.

From “Hello World” to Every Application
For prototype systems or emulation layers, API importance 
and weighted completeness are useful for determining which 
APIs to implement first and for evaluating the progress of the 
prototypes. Our study shows an optimal path for adding sys-
tem calls to a prototype system using a simple, greedy strategy 
of implementing the most important APIs first, which in turn 
maximizes weighted completeness.

Table 1 and Figure 3 demonstrate the optimal path of imple-
menting Linux system calls, split into five stages, and the 
upper bound of weighted completeness that can be achieved. 
Essentially, one cannot run even the most simple application in 
Ubuntu/Debian Linux without at least 40 system calls. After 
this, the number of additional applications one can support by 
adding another system call increases steadily up to an inflection 
point at 125 system calls, or supporting extended attributes on 
files, where weighted completeness jumps to 25%. To support 
roughly half of Ubuntu/Debian Linux applications, one must 
have 145 system calls, and the curve plateaus around 202 system 

Figure 1: Types of applications and ELF binaries studied

Figure 2: API importance of 318 Linux system calls in x86-64 Linux 3.19, 
ordered from the most to the least important
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calls. We do not provide a complete ordered list here in the interest 
of brevity, but this list is available as part of our released data set.

One of the uses of weighted completeness is to help guide the 
process of developing new prototype systems. Because 224 out 
of 318 system calls on Ubuntu/Debian Linux have 100% API 
importance, if one of these 224 calls is missing, at least one 
application on a typical system will not work. Weighted com-
pleteness, however, is more forgiving, as it tries to capture the 
fraction of a typical installation that could work. Only 40 
 system calls are needed to support at least one application and 
have weighted completeness of more than 1%.

For simplicity, the optimal path we recommend only includes 
system calls, but one can construct a similar path including 
other types of APIs, such as vectored system calls, pseudo-files, 
and library functions.

Weighted Completeness of Linux Systems
We evaluate the weighted completeness of four systems or emu-
lation layers: User-Mode-Linux [5], L4Linux [6], the FreeBSD’s 
Linux emulation layer [7], and the Graphene library OS [1]. For 
each system, we identify the supported system calls by examin-
ing the defined system call tables in the source code. Figure 4 
shows the weighted completeness of these systems based on the 
supported system calls. User-Mode-Linux (UML) and L4Linux 
both have over 90% weighted completeness, with more than 280 
system calls implemented. FreeBSD’s weighted completeness 
is 62.3% due to missing some less important system calls (e.g., 
inotify_init). Graphene’s weighted completeness is only 0.42% 
due to missing scheduling control,  but this is improved to 21.1% 
by adding two scheduling system calls.

For prototype developers, the proposed optimal path can maxi-
mize weighted completeness on a limited development budget, 

especially for systems that implement a smaller fraction of 
APIs, such as Graphene or FreeBSD’s Linux emulation layer. 
For existing prototypes, our study can identify the most impor-
tant APIs that are missing, but can boost the weighted complete-
ness most, witness the dramatic improvement (0.42% to 21.1%) 
on Graphene.

Vectored System Call Opcodes
Some system calls, such as ioctl, fcntl, and prctl, essentially 
export a secondary system call table using the first argument 
as an operation code (Opcode). These vectored system calls 
significantly expand the system API, which we also consider in 
evaluating compatibility.

Among all the vectored system calls, ioctl represents the larg-
est expansion of the Linux system APIs. There are 635 ioctl 
opcodes defined in the Linux 3.19 kernel source alone, and other 
kernel modules and drivers developed by third parties can define 
additional opcodes. Figure 5 shows the API importance of ioctl 
system call opcodes defined in Linux 3.19, ordered from the most 
important to the least important.

Stage System call examples No. of system 
calls to support 

Weighted 
completeness

I mmap, vfork , exit, read, 
fcntl , kill , dup2 40 1.12%

II mremap, ioctl , access, 
socket, poll , recvmsg  +41  (81) 10.68%

III shutdown, symlink , alarm, 
listen, shmget, pread64 +64 (145) 50.09%

IV
flock , semget, ppoll , 
mount, brk , pause, 
clock_gettime

+57 (202) 90.61%

V All remaining  +70 (272) 100%

Table 1: The optimal path of adding system calls in prototype systems, 
based on the order of API importance, to optimize the accumulated 
weighted  completeness

Figure 3: Accumulated weighted completeness when N-most important 
system calls are supported in the prototype system

Figure 4: Weighted completeness of four systems or emulation layers 
with partial compatibility to Linux
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We observe a different trend for the API importance of ioctl 
opcodes from the system calls. Among the 635 ioctl opcodes 
defined in the Linux kernel source, fewer than one-tenth (52 
opcodes) are indispensable on every installation, whereas more 
than two-thirds (447 opcodes) are never used by any applica-
tion in Ubuntu/Debian Linux. In other words, when system 
developers implement ioctl opcodes in their prototype systems, 
it is more productive to focus on the opcodes that have higher 
API importance and implement the rest as needed for specific 
applications.

For the opcodes of other two vectored system calls, fcntl and 
prctl, we observe that the fraction of their opcodes being indis-
pensable on every installations is higher than the ioctl opcodes. 
In Linux 3.19, 18 fcntl opcodes and 44 prctl opcodes are defined. 
Among them, 11 fcntl opcodes and nine prctl opcodes have 100% 
API importance.

Pseudo-Files and Devices
In addition to the main system call table, Linux exports many 
additional APIs through pseudo-file systems, often mounted 
at /proc, /dev, and /sys. These are called pseudo-files because 
they are not backed by any physical storage but instead export 
the contents of kernel data structures to applications or admin-
istrators. Although many of these pseudo-files are used on the 
command line or in scripts input by an administrator, there is 
also routine use of pseudo-files in applications.

We use static analysis to find hard-coded pseudo-file paths in 
application binaries. Our approach does not capture the cases 
where paths of pseudo-files are passed in as input to the applica-
tions, such as dd if=/dev/zero. However, we observe that when 
pseudo-files are widely used as alternative system APIs, their 
paths tend to be hard-coded in the binary as a string or string 
pattern, such as /proc/%d/cmdline, where %d can be any process 
ID. Our analysis captures hard-coded paths and string patterns.

Easy extensibility is an appeal of using pseudo-files as system 
APIs; as a result, their count can be an order-of-magnitude larger 

than the number of system calls or opcodes. We found 12,039 
binaries that access pseudo-files and devices. Of these, 5846 
unique paths were found hard-coded in these binaries. Figure 6 
shows the API importance of several common paths for pseudo-
files and devices.

We find that several files, such as /dev/null, are widely used 
through hard-coded paths in applications, even though there 
might be simpler alternatives. For instance, among 12,039 bina-
ries that use a hard-coded path, 3324 are hard-coded to access  
/dev/null. Although /dev/null is convenient for use on the com-
mand line and in scripts, it is surprising that such a significant 
number of applications write to this pseudo-file rather than elid-
ing the write system call.

Because many pseudo-files are accessed from the command line, 
it is hard to conclude that any should be deprecated. Nonethe-
less, these files represent large and complex APIs that create an 
important attack surface to defend. As noted in other studies, the 
permissions on pseudo-files and devices tend to be set liberally 
enough to leak a significant amount of information [8]. For files 
used by a single application, an abstraction like a fine-grained 
capability [9] might better capture the security requirement.

Standard System Library Functions
Functions defined in standard system libraries, such as libc, are 
also system APIs. It is a common practice that developers tend to 
use library functions as more portable, user-friendly wrappers 
of the kernel APIs instead of directly calling these kernel APIs. 
For instance, GNU libc [10] exports functions for using locks and 
condition variables, which internally use the more subtle futex 
system call.

We study 1274 global function symbols exported by GNU libc 
2.21 (libc.so only; other libraries, such as libm.so and libp-

thread.so are not included). Among these functions, 42.8% have 
an API importance of 100%, 50.6% have a API importance of 
less than 50%, and 39.7% have an API importance of less than 
1%, including ones that are never used. This result implies that 

Figure 5: API importance of 635 ioctl opcodes defined in Linux 3.19 
source, ordered from the most to the least important

Figure 6: API importance of selected pseudo-files and devices under  
/proc and /dev
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processes load a significant amount of unnecessary code into 
their address space. By splitting libc into sub-libraries based on 
API importance and common linking patterns, systems could 
realize a non-trivial space savings and reduce the attack surface 
for code reuse attacks.

We analyzed the space savings of a GNU libc 2.21 which 
removed any APIs with API importance lower than 90%. In 
total, libc would retain 889 APIs and the size would be reduced 
to 63% of its original size. The probability that an application 
would need a missing function and load it from another library 
is less than 9.3% (equivalent to 90.7% weighted completeness for 
the stripped libc). Further decomposition is also possible, such as 
placing APIs that are commonly accessed by the same applica-
tion into the same sub-library.

Unweighted API Usage in Applications
Weighing metrics based on installations is important for under-
standing the impact of API changes on end users. By removing 
this weight, however, we can also observe trends in how APIs are 
used by application developers.

Unweighted API Importance
For a given API, the probability an application (package) uses 
that API, regardless of its installation probability

Unweighted API importance shows the preference of application 
developers for an API over its variants and the effort to com-
municate with all relevant application developers if an API is 
changed.

One common reason for system developers to design API vari-
ants is to replace APIs that are prone to security problems. For 
instance, many of the set*id system calls (e.g., setuid) have 
subtle semantic differences across UNIX platforms. Chen et al. 
[11] conclude that setresuid is the most secure choice for having 
the clearest semantics across all UNIX flavors. Another example 
is that file-accessing system calls (e.g., access) can be exploited 
through time-of-check-to-time-of-use (TOCTTOU) attacks, 
and their variants (e.g., faccessat) can be used to resist these 
attacks.

Table 2 shows the difference in unweighted API importance 
among the secure and insecure API variants. In some cases, like 
set*id system calls, the secure API variants (e.g., setresuid) 
are well-adopted and have higher unweighted API importance 
than the insecure ones. However, in more cases, like get*id and 
access, the insecure API variants are more commonly used by 
application developers.

Besides security-related reasons, system developers may create 
API variants by retaining old APIs for backward-compatibility. 
For instance, the wait4 system call is considered obsolete and 

will soon be replaced by waitid [12], but wait4 still remains 
available in Linux. In some other cases, multiple API variants 
are retained because one variant is specific to a particular OS 
like Linux, and the other is more generic and portable. Table 
3 shows the difference in unweighted API importance among 
these variants. In general, API variants designed to be portable 
(e.g., writev) are more commonly used by the application devel-
opers than Linux-specific ones (e.g., pwritev). However, older 
APIs (e.g., wait4) may still be widely used in applications, even 
though the new APIs are introduced to improve the application 
portability.

Insecure API Usage Secure API Usage

setuid 15.67% 
setresuid 99.68%

setreuid 1.88% 

getuid 99.81%
getresuid 36.19%

geteuid 55.15% 

access 74.24% faccessat 0.63%

rename 43.18% renameat 0.30%

chmod 39.80% fchmodat 0.13%

Table 2: Usage (unweighted API importance) of secure and insecure API 
variants in applications

Old (Obsolete) APIs vs. New APIs

Old API Usage New API Usage

getdents 99.80% getdents64  0.08%

tkill  0.51% tgkill 99.80%

wait4 60.56% waitid  0.24%

Linux-Specific APIs vs. Portable APIs

Linux-specific API Usage Portable API Usage

preadv 0.15% readv 62.23%

pwritev 0.16% writev 99.80%

accept4 0.93% accept 29.35%

recvmmsg 0.11% recvmsg 68.82%
sendmmsg 5.17% sendmsg 42.49%

Table 3: Usage (unweighted API importance) of similar API variants in 
applications
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Conclusion
In this study, we define new metrics for evaluating API usage 
and compatibility, and, based on these results, we draw several 
conclusions about the nature of Linux APIs. First, for any OS 
installation in our data set, the required API size is several 
times larger than the all-system calls defined in Linux, once 
one considers vectored system call opcodes and pseudo-files. 
We also show that a substantial range of system calls and other 
APIs are rarely used. Finally, we provide a method to evaluate 
partial support of APIs in prototype systems, and plot an optimal 
path for adding system calls. We expect that the data set will be 
of use to researchers and developers for further study, and the 
methodology can be applied to future releases and other operat-
ing systems.

The data set and analysis tool are available at:  
http://oscar.cs.stonybrook.edu/api-compat-study.
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