
6    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYTEMS AND STORAGEHow to Fragment Your File System
A L E X C O N W A Y , A I N E S H B A K S H I , Y I Z H E N G J I A O , Y A N G Z H A N , M I C H A E L A . B E N D E R ,
W I L L I A M J A N N E N , R O B J O H N S O N , B R A D L E Y C . K U S Z M A U L , D O N A L D E . P O R T E R ,
J U N Y U A N , A N D M A R T I N F A R A C H - C O L T O N

Alex Conway is a PhD student
at Rutgers University, New
Brunswick, New Jersey. His
research interests include
the theory and application

of external memory algorithms and data
structures, caching algorithms, and file
systems. alexander.conway@rutgers.edu

Ainesh Bakshi is looking
forward to starting a PhD in
computer science at Carnegie
Mellon University in 2017.
He graduated from Rutgers

University, New Brunswick, New Jersey. His
research interests broadly include algorithms
and theoretical machine learning, with a focus
on algorithms that look to bridge the gap
between theory and practice.
aineshbakshi@gmail.com

Yizheng Jiao is a PhD student
at Stony Brook University. His
research interests focus on
storage system design and
implementation. Currently, he

is working on a write-optimized file system
for high-speed storage devices as well as
efficient memory system design of big data
applications. He also is interested in hacking
the Linux kernel storage stack and database
index engine. yizheng@cs.unc.edu

Yang Zhan is a PhD student at
the University of North Carolina
at Chapel Hill and is advised
by Donald Porter. His research
mainly focuses on write-

optimized data structures. He also works on
concurrent data structures. yzhan@cs.unc.edu

File systems attempt to avoid aging, or fragmentation over time,
by strategically allocating space for files. System implementers
and users alike treat aging as a solved problem. Here, we present a

realistic workload, based on Git, that can cause these best-guess file-block-
placement heuristics to fail, inducing large performance declines due to
aging. This performance decline cannot be prevented with more caching
or larger disks, and SSDs reduce but do not eliminate the aging effects. Our
Git-based aging scheme can simulate a year of aging in under an hour. To
make it easy for practitioners to incorporate aging into benchmarks, we
have open-sourced our aging scripts at betrfs.org.

File-system fragmentation occurs when a file system stores a file or directory’s contents
in discontiguous ranges of disk blocks. As a file system becomes more fragmented, per-
formance can drop significantly, since reading the file requires issuing multiple I/Os to
disk. The performance drop can be particularly severe on rotating disks, where each I/O
may require a disk seek. Maintaining locality in a file system as files grow, shrink, and are
renamed can be challenging.

For many years, file systems did not include effective measures for avoiding fragmentation.
The seminal work of Smith and Seltzer [7] showed that FFS file systems age under realistic
workloads, and this aging affects performance.

Users mitigated fragmentation in early file systems by running special tools to defragment
their file systems. Defragmenters reorganize file contents so that each file is stored in a
contiguous range of disk blocks.

Modern file systems, on the other hand, strive to avoid fragmentation by applying best effort
heuristics at allocation time. For example, file systems try to place related files close together
on disk, while also leaving empty space for future files [1, 4, 5, 8]. These and other heuristics
attempt to stay ahead of fragmentation wrought by normal file-system usage.

Fragmentation is thus widely viewed as a solved problem. For example, the Linux System
Administrator’s Guide [9] says:

Modern Linux file systems keep fragmentation at a minimum by keeping all blocks
in a file close together, even if they can’t be stored in consecutive sectors. Some file
systems, like ext3, effectively allocate the free block that is nearest to other blocks in
a file. Therefore it is not necessary to worry about fragmentation in a Linux system.

As a result, few users run defragmentation tools. Furthermore, few file-system benchmarks
attempt to age the file system before measuring its performance.

In this article, we demonstrate that modern file systems can still suffer from fragmentation
under representative workloads, and we describe a simple method for quickly inducing aging.
Our results suggest that fragmentation can be a first-order performance concern—some file
systems slow down by over 20x over the course of our experiments. We show that fragmen-
tation causes performance declines on both hard drives and SSDs, when there is plentiful
cache available, and even on large disks with ample free space.

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  7

FILE SYTEMS AND STORAGE

Fragmentation remains important because there is a large gap between sequential and
random I/O performance of storage devices [2]. On rotating disks, even a few seeks can have
an outsized effect on performance. For example, if a file system places a 100 MiB file in 200
disjoint pieces (i.e., 200 seeks) on a disk with 100 MiB/s bandwidth and 5 ms seek time, read-
ing the data will take twice as long as reading it in an ideal layout.

Even on SSDs, which do not perform mechanical seeks, a decline in locality can harm perfor-
mance [6]. Figure 1 shows that both HDDs and SSDs achieve substantially higher throughput
when reading large blocks. On both types of hardware, we found that a surprisingly large
read block of 4 MiB is necessary to achieve 75% of device bandwidth (see [2] for the specifics
of our experimental setup).

Our technique for causing fragmentation makes it easy for file-system implementers and
benchmarkers to incorporate aging into their evaluations. Our technique can cause years’
worth of file-system aging in just a few hours and can take regular measurements as the file
system ages. File systems begin aging almost immediately in our experiments, meaning that
implementers and benchmarkers can use our tools to induce significant aging in under an hour.

The gold standard for realistically aging a file system is to replay a trace of file-system opera-
tions from a real system. Unfortunately, such traces are almost impossible to find. Smith and
Seltzer proposed to approximate such traces by interpolating changes between successive
file-system snapshots collected during a multi-year experiment [7]. Unfortunately, years-
long collections of file-system snapshots have also been hard to come by.

Michael A. Bender is a
Professor of Computer Science
at Stony Brook University.
He was Founder and Chief
Scientist at Tokutek, Inc., an

enterprise database company, which was
acquired by Percona in 2015. Bender’s research
interests span the areas of data structures
and algorithms, I/O-efficient computing,
scheduling, and parallel computing. Bender
received his BA in applied mathematics from
Harvard University in 1992 and obtained a
DEA in computer science from the Ecole
Normale Superieure de Lyon, France, in 1993.
He completed a PhD on scheduling algorithms
from Harvard University in 1998.
bender@cs.stonybrook.edu

William Jannen teaches at
Williams College, where he
attempts to design systems
that accommodate the
physical characteristics of their

underlying media. He is also an artist and a
player of games. wjannen@cs.stonybrook.edu

Rob Johnson is a Senior
Researcher at VMware and
Research Assistant Professor
at Stony Brook University. He
developed BetrFS, invented

the quotient filter, founded cache-adaptive
analysis, broke the High-bandwidth Digital
Content Protection (HDCP) crypto-system,
and co-authored CQual, a static analysis tool
that has found dozens of bugs in the Linux
kernel. rob@cs.stonybrook.edu

Until July 2016, Bradley C.
Kuszmaul was a Research
Scientist in the Computer
Science and Artificial Intelligence
Laboratory at the Massachusetts

Institute of Technology (MIT CSAIL), where his
research focused on performance engineering
of multicore software as well as data structures
and algorithms that optimize cache and disk I/O.
He has now joined the Bare Metal Cloud group
at Oracle. bradley@mit.edu

0.004 0.016 0.063 0.25 1 4 16 64 256

0.25

1

4

16

64

256

1024

Read size (MiB)

E
ff
ec
ti
ve

b
an

d
w
id
th

(M
iB

p
er

se
co
n
d
)

SSD HDD

Figure 1: Effective bandwidth vs. read size (higher is better). Even on SSDs, large I/Os can yield an order of
magnitude more bandwidth than small I/Os.

8    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYSTEMS AND STORAGE
How to Fragment Your File System

The key idea behind our aging technique is that we can view open-source Git (or any other
version control system) repositories as collections of snapshots of the developers’ file systems.
Furthermore, replaying a repository’s revision history will replay a significant portion of
the developers’ actual file system activity, since many developers pull changes from their
collaborators multiple times per day. Thus replaying the revision history should induce frag-
mentation similar to that experienced by the developers when they were working on the project.

The large number of open-source projects—many of them with over a decade of history—
means that we can now easily induce representative aging in file systems. Our scripts, avail-
able at betrfs.org, make it straightforward for developers and benchmarkers to integrate
aging into their performance measurements.

How to Age Your File System
In the experiments in this article, we replay commits to the Linux kernel Git repository
hosted on github.com. We start from the first commit and proceed in chronological order.
After every 100 Git pulls, we unmount and remount the file system, clear all caches, and
measure read performance (Figure 2).

We measure performance by the wall-clock time required to perform a recursive grep start-
ing from the root directory of the file system. This operation descends through the directory
structure, reading the content of each file. This grep reads a sequence of file and metadata
blocks, which we call the logical order of the file-system blocks. Fragmentation occurs when
two logically successive blocks are not stored in adjacent logical block addresses on the stor-
age device. Greater fragmentation means that the average I/O size is smaller. As shown in
Figure 1, this reduces the effective bandwidth, causing the grep to take longer.

We divide fragmentation into three categories:

◆◆ Intrafile is fragmentation involving blocks from the same file.

◆◆ Interfile is fragmentation involving blocks from two different files.

◆◆ Metadata is fragmentation involving at least one metadata block.

A recursive grep measures the impact of all these types of fragmentation on overall file-
system performance.

When we run our Git aging workload, various statistics of the file system will naturally
change over time as files and directories are created, modified, and deleted. For example,
as a project progresses, it might include more small files, or subdirectories may include
more source files. In order to make direct comparisons, we need to normalize for such
changes. First, we normalize for file-system size by reporting the grep time in seconds
per GiB. We obtain the file-system size from the output of du.

In order to measure potential aging, after each measurement, we copy the entire file
system to a freshly formatted file system on another partition and repeat the performance

Donald E. Porter is an Assistant
Professor of Computer Science
at the University of North
Carolina at Chapel Hill and,
by courtesy, at Stony Brook

University. His research aims to improve
computer system efficiency and security. In
addition to recent work on write-optimization
in file systems, recent projects have developed
lightweight guest operating systems for virtual
environments, system security abstractions,
and efficient data structures for caching.
porter@cs.unc.edu

Jun Yuan is an Assistant
Professor of Computer Systems
at Farmingdale State College
of SUNY, New York. Her
research interests primarily lie

in systems and data structures. In addition
to write-optimized file systems, she has
researched programming-language-based
security and access control on the Android OS.
yuanj@farmingdale.edu

Martin Farach-Colton is a
Professor of Computer Science
at Rutgers University, New
Brunswick, New Jersey. His
research focuses on both

the theory and practice of external memory
and storage systems. He was a pioneer in
the theory of cache-oblivious analysis. His
current research focuses on the use of write
optimization to improve performance in both
read- and write-intensive big data systems.
He has also worked on the algorithmics of
strings and metric spaces, with applications
to bioinformatics. In addition to his academic
work, Professor Farach-Colton has extensive
industrial experience. He was CTO and co-
founder of Tokutek, a database company that
was founded to commercialize his research.
During 2000–2002, he was a Senior Research
Scientist at Google. farach@cs.rutgers.edu

Figure 2: The Git workload

Do 100 Git pulls

Measure performance

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  9

FILE SYSTEMS AND STORAGE
How to Fragment Your File System

measurement there. We call this copy of the file system the clean
instance, since the file system does not undergo any changes
after the files are copied to it. The logical states of both file
systems are the same; any performance difference between the
aged and clean instances of a file system are due to the history
of preceding operations.

Do modern file systems age? Figure 3 shows the results of
aging btrfs with Git on a hard drive. The grep performance drops
by a factor of 20 after 10,000 pulls. This drop in performance
happens quickly; it only takes 100 pulls for a 2x slowdown and
1100 pulls for a 10x slowdown. Moreover, the grep ends up being
very slow in absolute terms; by the end of the test it takes more
than eight minutes to grep through 1 GiB.

In this article, we present only one file system in each experi-
ment. Our USENIX FAST paper evaluates five popular Linux
file systems under all of these experimental conditions and finds
similar results [2].

Do SSDs fix aging? When we run the same workload on an
SSD, we would expect to see less aging as a result of the superior
random-read performance. Figure 4 shows the results of aging
XFS with Git on an SSD. Although the slowdown due to aging
is smaller, it is still significant. After 10,000 pulls, greps in
the aged file-system instance are 1.9x slower than in the clean
instance. After 800 pulls, the slowdown is 25%, and after 2,500
pulls, the slowdown is 50%.

Does caching fix aging? If most or all of our file system fits in
cache, then the on-disk layout will not affect grep performance,

since reads will be served from cache. We evaluated the sensitiv-
ity of the Git workloads to varying amounts of system RAM and,
therefore, varying amounts of available disk cache. We use the
same Git aging procedure, except that we do not flush any caches
or remount the hard drive between iterations. The size of the
data on disk is initially about 280 MiB and grows throughout the
test to approximately 1.2 GiB.

The results for ext4 on a hard drive are summarized in Figure
5. When there is sufficient memory to keep all the data in cache,
the grep is very fast. As soon as the size of the file system grows
above a threshold, however, the warm-cache performance of grep
quickly approaches the cold-cache performance. Furthermore,
once the file system is no longer cached, the warm-cache perfor-
mance is in all cases worse than the cold-cache performance of a
clean copy of the file system. Unless all data fits into cache, there-
fore, fragmentation is a major driver of file-system performance.

Do big disks fix aging? The results shown in Figures 3 and 4
were performed on a 20 GiB partition in which the file system
size never exceeded 1.2 GiB; therefore, the partition is never
more than 6% full. If we run the Git workload on partitions of
different sizes, as shown in Figure 6, we see that having a larger
partition does not eliminate (or even mitigate) aging.

In fact, as the partition gets larger, the clean performance of
ext4 gets worse. This is because ext4 spreads data across the
partition in order to leave room for future files. Thus, the larger
partition size actually results in longer seeks.

Figure 3: Git aging workload on btrfs on HDD. The overall slowdown is
20.6x. Lower is better.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

2

4

6

8

10

12

14

16

18

20

Pulls accrued
G
re
p
co
st

(s
ec
/G

iB
)

XFS aged
XFS clean

Figure 4: Git aging workload on XFS on SSD. The overall slowdown is 1.9x.
Lower is better.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

50

100

150

200

250

300

350

400

450

500

550

Pulls accrued

G
re
p
co
st

(s
ec
/G

iB
)

Btrfs aged
Btrfs clean

10    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYSTEMS AND STORAGE
How to Fragment Your File System

Conclusion
The experiments above show that modern file systems can still
age substantially under workloads representative of a typical
software developer’s file-system usage. They also show that
SSDs, caching, and large disks do not prevent aging in today’s
file systems, though SSDs can help.

Furthermore, these results demonstrate that many modern file
system design features, such as delayed allocation, cylinder or
block groups, and extents, do not prevent aging. The file systems
in these benchmarks included some or all of these features, but
they aged nonetheless.

Our USENIX FAST paper delves into other file-system design
tradeoffs related to aging and confirms that our research proto-
type file system, BetrFS [3, 10], exhibits almost no aging [2].

Our Git-based method for inducing aging makes it easy to
incorporate aging into file-system benchmarks. Our scripts are
available at betrfs.org.

Acknowledgments
Part of this work was done while Jiao, Porter, Yuan, and Zhan
were at Stony Brook University. This research was supported in
part by NSF grants CNS-1409238, CNS-1408782, CNS-1408695,
CNS-1405641, CNS-1161541, IIS-1247750, CCF-1314547, a
NetApp Faculty Fellowship, and VMware.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

100

200

300

400

500

600

700

800

Pulls Accrued

G
re
p
co
st

(s
ec
/G

iB
)

768MiB
1024MiB
1280MiB
1536MiB
2048MiB
cold cache aged
cold cache clean

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

100

200

300

400

500

600

700

800

900

Pulls accrued

G
re
p
co
st

(s
ec
/G

iB
)

4GiB aged
4GiB clean
16GiB aged
16GiB clean
64GiB aged
64GiB clean
256GiB aged
256GiB clean

Figure 5: grep costs as a function of Git pulls with warm cache and vary-
ing system RAM on ext4 (top). Lower is better.

Figure 6: grep costs as a function of Git pulls with varying partition size
on ext4. Lower is better.

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  11

FILE SYSTEMS AND STORAGE
How to Fragment Your File System

References
[1] R. Card, T. Ts’o, and S. Tweedie, “Design and Implementa-
tion of the Second Extended Filesystem,” in Proceedings of the
First Dutch International Symposium on Linux, pp. 1–6: http://​
e2fsprogs.sourceforge.net/ext2intro.html.

[2] A. Conway, A. Bakshi, Y. Jiao, Y. Zhan, R. Johnson, B. C.
Kuszmaul, and M. Farach-Colton, “File Systems Fated for
Senescence? Nonsense, Says Science!” in Proceedings of the
15th USENIX Conference on Fi‑le and Storage Technologies
(FAST ’17), pp. 45–58: https://www.usenix.org/system/files​
/conference/fast17/fast17-conway.pdf.

[3] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao,
A. Mittal, P. Pandey, P. Reddy, L. Walsh, M. Bender, M. Farach-
Colton, R. Johnson, B. C. Kuszmaul, and D. E. Porter, “BetrFS: A
Right-Optimized Write-Optimized File System,” in Proceedings
of the 13th USENIX Conference on File and Storage Technologies
(FAST ’15), pp. 301–315: https://www.usenix.org/system/files​
/conference/fast15/fast15-paper-jannen_william.pdf.

[4] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas,
and L. Vivier, “The New ext4 Filesystem: Current Status and
Future Plans,” in Proceedings of the Ottawa Linux Symposium
(OLS), vol. 2 (2007), pp. 21–34: https://www.kernel.org/doc/ols​
/2007/ols2007v2-pages-21-34.pdf.

[5] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A
Fast File System for UNIX,” ACM Transactions on Computer
Systems (TOCS), vol. 2, no. 3 (August 1984), pp. 181–197: https://​
cs162.eecs.berkeley.edu/static/readings/FFS84.pdf.

[6] C. Min, K. Kim, H. Cho, S. Lee, and Y. I. Eom, “SFS: Random
Write Considered Harmful in Solid State Drives,” in Proceed‑
ings of the 10th USENIX Conference on File and Storage Technol‑
ogies (FAST ’12), pp. 139–154: https://www.usenix.org/system​
/files/conference/fast12/min.pdf.

[7] K. A. Smith and M. Seltzer, “File System Aging—Increasing
the Relevance of File System Benchmarks,” in Proceedings of
the 1997 ACM SIGMETRICS International Conference on Mea‑
surement and Modeling of Computer Systems (SIGMETRICS),
pp. 203–213: https://www.eecs.harvard.edu/margo/papers​
/sigmetrics97-fs/paper.pdf.

[8] S. Tweedie, “EXT3, Journaling Filesystem,” Proceedings
of the Ottawa Linux Symposium (OLS), (July 20, 2000), pp.
24–29: http://olstrans.sourceforge.net/release/OLS2000-ext3​
/OLS2000-ext3.pdf.

[9] L. Wirzenius, J. Oja, S. Stafford, and A. Weeks, Linux System
Administrator’s Guide, The Linux Documentation Project,
Version 0.9, 2004: http://www.tldp.org/LDP/sag/sag.pdf.

[10] J. Yuan, Y. Zhan, W. Jannen, P. Pandey, A. Akshintala, K.
Chandnani, P. Deo, Z. Kasheff, L. Walsh, M. Bender, M. Farach-
Colton, R. Johnson, B. C. Kuszmaul, and D. E. Porter, “Optimiz-
ing Every Operation in a Write-Optimized File System,” in
Proceedings of the 14th USENIX Conference on File and Stor‑
age Technologies (FAST ’16), pp. 1–14: https://www.usenix.org​
/system/files/conference/fast16/fast16-papers-yuan.pdf.

http://​e2fsprogs.sourceforge.net/ext2intro.html
http://​e2fsprogs.sourceforge.net/ext2intro.html
https://www.usenix.org/system/files​/conference/fast17/fast17-conway.pdf
https://www.usenix.org/system/files​/conference/fast17/fast17-conway.pdf
https://www.usenix.org/system/files​/conference/fast15/fast15-paper-jannen_william.pdf
https://www.usenix.org/system/files​/conference/fast15/fast15-paper-jannen_william.pdf
https://www.kernel.org/doc/ols​/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols​/2007/ols2007v2-pages-21-34.pdf
https://​cs162.eecs.berkeley.edu/static/readings/FFS84.pdf
https://​cs162.eecs.berkeley.edu/static/readings/FFS84.pdf
https://www.usenix.org/system​/files/conference/fast12/min.pdf
https://www.usenix.org/system​/files/conference/fast12/min.pdf
https://www.eecs.harvard.edu/margo/papers​/sigmetrics97-fs/paper.pdf
https://www.eecs.harvard.edu/margo/papers​/sigmetrics97-fs/paper.pdf
http://olstrans.sourceforge.net/release/OLS2000-ext3​/OLS2000-ext3.pdf
http://olstrans.sourceforge.net/release/OLS2000-ext3​/OLS2000-ext3.pdf
http://www.tldp.org/LDP/sag/sag.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-yuan.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-yuan.pdf

