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File systems attempt to avoid aging, or fragmentation over time, 
by strategically allocating space for files. System implementers 
and users alike treat aging as a solved problem. Here, we present a 

realistic workload, based on Git, that can cause these best-guess file-block-
placement heuristics to fail, inducing large performance declines due to 
aging. This performance decline cannot be prevented with more caching  
or larger disks, and SSDs reduce but do not eliminate the aging effects. Our 
Git-based aging scheme can simulate a year of aging in under an hour. To 
make it easy for practitioners to incorporate aging into benchmarks, we  
have open-sourced our aging scripts at betrfs.org.

File-system fragmentation occurs when a file system stores a file or directory’s contents 
in discontiguous ranges of disk blocks. As a file system becomes more fragmented, per-
formance can drop significantly, since reading the file requires issuing multiple I/Os to 
disk. The performance drop can be particularly severe on rotating disks, where each I/O 
may require a disk seek. Maintaining locality in a file system as files grow, shrink, and are 
renamed can be challenging.

For many years, file systems did not include effective measures for avoiding fragmentation. 
The seminal work of Smith and Seltzer [7] showed that FFS file systems age under realistic 
workloads, and this aging affects performance. 

Users mitigated fragmentation in early file systems by running special tools to defragment 
their file systems. Defragmenters reorganize file contents so that each file is stored in a 
contiguous range of disk blocks.

Modern file systems, on the other hand, strive to avoid fragmentation by applying best effort 
heuristics at allocation time. For example, file systems try to place related files close together 
on disk, while also leaving empty space for future files [1, 4, 5, 8]. These and other heuristics 
attempt to stay ahead of fragmentation wrought by normal file-system usage.

Fragmentation is thus widely viewed as a solved problem. For example, the Linux System 
Administrator’s Guide [9] says:

Modern Linux file systems keep fragmentation at a minimum by keeping all blocks 
in a file close together, even if they can’t be stored in consecutive sectors. Some file 
systems, like ext3, effectively allocate the free block that is nearest to other blocks in 
a file. Therefore it is not necessary to worry about fragmentation in a Linux system.

As a result, few users run defragmentation tools. Furthermore, few file-system benchmarks 
attempt to age the file system before measuring its performance.

In this article, we demonstrate that modern file systems can still suffer from fragmentation 
under representative workloads, and we describe a simple method for quickly inducing aging. 
Our results suggest that fragmentation can be a first-order performance concern—some file 
systems slow down by over 20x over the course of our experiments. We show that fragmen-
tation causes performance declines on both hard drives and SSDs, when there is plentiful 
cache available, and even on large disks with ample free space.
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Fragmentation remains important because there is a large gap between sequential and 
random I/O performance of storage devices [2]. On rotating disks, even a few seeks can have 
an outsized effect on performance. For example, if a file system places a 100 MiB file in 200 
disjoint pieces (i.e., 200 seeks) on a disk with 100 MiB/s bandwidth and 5 ms seek time, read-
ing the data will take twice as long as reading it in an ideal layout.

Even on SSDs, which do not perform mechanical seeks, a decline in locality can harm perfor-
mance [6]. Figure 1 shows that both HDDs and SSDs achieve substantially higher throughput 
when reading large blocks. On both types of hardware, we found that a surprisingly large 
read block of 4 MiB is necessary to achieve 75% of device bandwidth (see [2] for the specifics 
of our experimental setup).

Our technique for causing fragmentation makes it easy for file-system implementers and 
benchmarkers to incorporate aging into their evaluations. Our technique can cause years’ 
worth of file-system aging in just a few hours and can take regular measurements as the file 
system ages. File systems begin aging almost immediately in our experiments, meaning that 
implementers and benchmarkers can use our tools to induce significant aging in under an hour.

The gold standard for realistically aging a file system is to replay a trace of file-system opera-
tions from a real system. Unfortunately, such traces are almost impossible to find. Smith and 
Seltzer proposed to approximate such traces by interpolating changes between successive 
file-system snapshots collected during a multi-year experiment [7]. Unfortunately, years-
long collections of file-system snapshots have also been hard to come by.
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Figure 1: Effective bandwidth vs. read size (higher is better). Even on SSDs, large I/Os can yield an order of 
magnitude more bandwidth than small I/Os.
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The key idea behind our aging technique is that we can view open-source Git (or any other 
version control system) repositories as collections of snapshots of the developers’ file systems. 
Furthermore, replaying a repository’s revision history will replay a significant portion of 
the developers’ actual file system activity, since many developers pull changes from their 
collaborators multiple times per day. Thus replaying the revision history should induce frag- 
mentation similar to that experienced by the developers when they were working on the project.

The large number of open-source projects—many of them with over a decade of history—
means that we can now easily induce representative aging in file systems. Our scripts, avail-
able at betrfs.org, make it straightforward for developers and benchmarkers to integrate 
aging into their performance measurements.

How to Age Your File System
In the experiments in this article, we replay commits to the Linux kernel Git repository 
hosted on github.com. We start from the first commit and proceed in chronological order. 
After every 100 Git pulls, we unmount and remount the file system, clear all caches, and 
measure read performance (Figure 2).

We measure performance by the wall-clock time required to perform a recursive grep start-
ing from the root directory of the file system. This operation descends through the directory 
structure, reading the content of each file. This grep reads a sequence of file and metadata 
blocks, which we call the logical order of the file-system blocks. Fragmentation occurs when 
two logically successive blocks are not stored in adjacent logical block addresses on the stor-
age device. Greater fragmentation means that the average I/O size is smaller. As shown in 
Figure 1, this reduces the effective bandwidth, causing the grep to take longer.

We divide fragmentation into three categories:

◆◆ Intrafile is fragmentation involving blocks from the same file.

◆◆ Interfile is fragmentation involving blocks from two different files.

◆◆ Metadata is fragmentation involving at least one metadata block.

A recursive grep measures the impact of all these types of fragmentation on overall file-
system performance.

When we run our Git aging workload, various statistics of the file system will naturally 
change over time as files and directories are created, modified, and deleted. For example,  
as a project progresses, it might include more small files, or subdirectories may include  
more source files. In order to make direct comparisons, we need to normalize for such 
changes. First, we normalize for file-system size by reporting the grep time in seconds  
per GiB. We obtain the file-system size from the output of du.

In order to measure potential aging, after each measurement, we copy the entire file 
system to a freshly formatted file system on another partition and repeat the performance 
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measurement there. We call this copy of the file system the clean 
instance, since the file system does not undergo any changes 
after the files are copied to it. The logical states of both file 
systems are the same; any performance difference between the 
aged and clean instances of a file system are due to the history  
of preceding operations.

Do modern file systems age? Figure 3 shows the results of 
aging btrfs with Git on a hard drive. The grep performance drops 
by a factor of 20 after 10,000 pulls. This drop in performance 
happens quickly; it only takes 100 pulls for a 2x slowdown and 
1100 pulls for a 10x slowdown. Moreover, the grep ends up being 
very slow in absolute terms; by the end of the test it takes more 
than eight minutes to grep through 1 GiB.

In this article, we present only one file system in each experi-
ment. Our USENIX FAST paper evaluates five popular Linux 
file systems under all of these experimental conditions and finds 
similar results [2].

Do SSDs fix aging? When we run the same workload on an 
SSD, we would expect to see less aging as a result of the superior 
random-read performance. Figure 4 shows the results of aging 
XFS with Git on an SSD. Although the slowdown due to aging 
is smaller, it is still significant. After 10,000 pulls, greps in 
the aged file-system instance are 1.9x slower than in the clean 
instance. After 800 pulls, the slowdown is 25%, and after 2,500 
pulls, the slowdown is 50%.

Does caching fix aging? If most or all of our file system fits in 
cache, then the on-disk layout will not affect grep performance, 

since reads will be served from cache. We evaluated the sensitiv-
ity of the Git workloads to varying amounts of system RAM and, 
therefore, varying amounts of available disk cache. We use the 
same Git aging procedure, except that we do not flush any caches 
or remount the hard drive between iterations. The size of the 
data on disk is initially about 280 MiB and grows throughout the 
test to approximately 1.2 GiB.

The results for ext4 on a hard drive are summarized in Figure 
5. When there is sufficient memory to keep all the data in cache, 
the grep is very fast. As soon as the size of the file system grows 
above a threshold, however, the warm-cache performance of grep 
quickly approaches the cold-cache performance. Furthermore, 
once the file system is no longer cached, the warm-cache perfor-
mance is in all cases worse than the cold-cache performance of a 
clean copy of the file system. Unless all data fits into cache, there-
fore, fragmentation is a major driver of file-system performance.

Do big disks fix aging? The results shown in Figures 3 and 4 
were performed on a 20 GiB partition in which the file system 
size never exceeded 1.2 GiB; therefore, the partition is never 
more than 6% full. If we run the Git workload on partitions of 
different sizes, as shown in Figure 6, we see that having a larger 
partition does not eliminate (or even mitigate) aging.

In fact, as the partition gets larger, the clean performance of 
ext4 gets worse. This is because ext4 spreads data across the 
partition in order to leave room for future files. Thus, the larger 
partition size actually results in longer seeks.

Figure 3: Git aging workload on btrfs on HDD. The overall slowdown is 
20.6x. Lower is better.
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Figure 4: Git aging workload on XFS on SSD. The overall slowdown is 1.9x. 
Lower is better.
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Conclusion
The experiments above show that modern file systems can still 
age substantially under workloads representative of a typical 
software developer’s file-system usage. They also show that 
SSDs, caching, and large disks do not prevent aging in today’s 
file systems, though SSDs can help.

Furthermore, these results demonstrate that many modern file 
system design features, such as delayed allocation, cylinder or 
block groups, and extents, do not prevent aging. The file systems 
in these benchmarks included some or all of these features, but 
they aged nonetheless.

Our USENIX FAST paper delves into other file-system design 
tradeoffs related to aging and confirms that our research proto-
type file system, BetrFS [3, 10], exhibits almost no aging [2].

Our Git-based method for inducing aging makes it easy to 
incorporate aging into file-system benchmarks. Our scripts are 
available at betrfs.org.

Acknowledgments
Part of this work was done while Jiao, Porter, Yuan, and Zhan 
were at Stony Brook University. This research was supported in 
part by NSF grants CNS-1409238, CNS-1408782, CNS-1408695, 
CNS-1405641, CNS-1161541, IIS-1247750, CCF-1314547, a 
NetApp Faculty Fellowship, and VMware.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

100

200

300

400

500

600

700

800

Pulls Accrued

G
re
p
co
st

(s
ec
/G

iB
)

768MiB
1024MiB
1280MiB
1536MiB
2048MiB
cold cache aged
cold cache clean

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

100

200

300

400

500

600

700

800

900

Pulls accrued

G
re
p
co
st

(s
ec
/G

iB
)

4GiB aged
4GiB clean
16GiB aged
16GiB clean
64GiB aged
64GiB clean
256GiB aged
256GiB clean

Figure 5: grep costs as a function of Git pulls with warm cache and vary-
ing system RAM on ext4 (top). Lower is better.

Figure 6: grep costs as a function of Git pulls with varying partition size 
on ext4. Lower is better.
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