
Speed-Dial: A Surrogate Mouse for Non-Visual Web
Browsing

Syed Masum Billah1 Vikas Ashok1 Donald E. Porter2 IV Ramakrishnan1
1Department of Computer Science, Stony Brook University, NY, USA

{sbillah, vganjiguntea, ram}@cs.stonybrook.edu
2Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA

porter@cs.unc.edu

ABSTRACT with vision impairments. Thus, modern screen readers feature

numerous shortcuts to accelerate web navigation. Sighted people can browse the Web almost exclusively using a

mouse. This is because web browsing mostly entails pointing and Even with these shortcuts, however, screen readers have significant
clicking on some element in the web page, and these two operations usability problems for web browsing [11, 27]. First, blind users
can be done almost instantaneously with a computer mouse. have to train on these shortcuts and learn a number of browsing
Unfortunately, people with vision impairments cannot use a mouse

as it only provides visual feedback through a cursor. Instead, they

are forced to go through a slow and tedious process of building a

mental map of the web page, relying primarily on a screen reader’s

keyboard shortcuts and its serial audio readout of the textual

content of the page, including metadata. This can often cause

content and cognitive overload.

This paper describes our Speed-Dial system which uses an off-the-

shelf physical Dial as a surrogate for the mouse for non-visual web

browsing. Speed-Dial interfaces the physical Dial with the

semantic model of a web page, and provides an intuitive and rapid

access to the entities and their content in the model, thereby

bringing blind people’s browsing experience closer to how sighted

people perceive and interact with the Web. A user study with blind

participants suggests that with Speed-Dial they can quickly move

around the web page to select content of interest, akin to pointing

and clicking with a mouse.

CCS Concepts

• Human-centered computing ~ Haptic devices

• Human-centered computing ~ Accessibility technologies.

Keywords

Semantic web browsing; tactile interaction; Microsoft Surface

Dial; visual impairment; screen reader; tactile exploration.

1. INTRODUCTION
For web browsing, people with vision impairments employ screen

readers (e.g., JAWS, VoiceOver, NVDA, and many more listed in

[2]), which reads aloud the textual content of the Web in serial

order, generally ignoring layout and graphics.

Blind users predominantly rely on keyboard shortcuts to accelerate

content navigation. Without shortcuts, blind users cannot skip past

or skim content; skimming is essential functionality, as websites

often have complex visual layouts, inline advertising, and

aggregate content from multiple sources. Forcing a listener to hear

all content would significantly and disproportionately harm users

strategies before they can efficiently browse the Web [11]. Second,

because one cannot judge the importance of content before listening

to it, blind users must listen to reams of irrelevant content before

they find what they need. Third, screen readers alone are of little

help in understanding the semantics of a page’s contents, as screen

readers are not aware of the fact that web content is organized into

several logical blocks or semantic entities. For example, consider a

list of products with their prices, features, and short descriptions in

a tabulated HTML list. Most screen readers do not capture the

relationships between these elements, and therefore treat these list

elements as separate items. Consequently, the user cannot easily

know that elements are related to each other, or when she has

navigated past the end of the list. In short, there is no overview, and

the user must assemble the semantic structure in her mind as the

content is being read. The end result of this is that the current state

of web browsing places significant and needless cognitive load on

people with vision impairments.

These problems are particularly acute for common tasks in content-

rich web sites with several semantic entities. For example, sighted

users can purchase something online or make a reservation in just

a few minutes with a few mouse clicks, whereas screen-reader users

often need 10 minutes or more to complete the same tasks [34].

The reason for this difference is that sighted users can perceive the

semantic structure of a page at a glance, via visual cues such as

white space, fonts, and colors. For example, a sighted user can

easily differentiate search results from advertisements on a side

panel. Further, with the mouse, the user can quickly place the cursor

on any element of interest in the page, select it, and operate on it.

In contrast, blind users must explore the screen by brute force, read

aloud by a screen reader, in order to construct their own semantic

model of the page. The visual feedback of a mouse is not useful for

blind users.

To address the aforementioned problems in non-visual web

browsing, speech and haptic interfaces have been explored as

alternatives to keyboards (e.g. [7, 39]). Although these interfaces

can alleviate the extensive use of keyboard shortcuts to a certain

extent, they still fall short of adequately addressing the cognitive

and content overload problem in non-visual web browsing (details

in sections 2 and 5).

This paper describes our research contribution towards reducing the

gap in the web-browsing experience between sighted people and

those with vision impairments. Specifically, this paper presents the

Speed-Dial Non-Visual Browsing System for desktop platforms—

a novel interaction paradigm that provides an intuitive and quick

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ASSETS '17, October 29-November 1, 2017, Baltimore, MD, USA © 2017 Copyright

is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4926-0/17/10…$15.00

https://doi.org/10.1145/3132525.3132531

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

110

access to the various entities and their content on the web page.

Speed-Dial automatically generates a model, based on [7],

explicitly capturing the semantics of the page that sighted users

implicitly construct visually. This semantic model is interfaced

with the interaction mechanics of an off-the-shelf physical Dial for

web navigation.

The Speed-Dial prototype uses the recently announced Microsoft

Surface Dial1; in principle, Speed-Dial should work with other Dial

devices as well. The Surface Dial is a small, cylindrical puck, 1 ½”

tall and 2 ½” in diameter. The Dial accepts three very simple

gestures as input—press it like a button and rotate it left and right.

The Dial can provide haptic feedback through vibration as output.

Pressing and holding the Dial can activate a radial menu, which the

user can navigate by rotating the Dial left or right. The Dial’s

behavior can be customized per-application.

The semantic model on which Speed-Dial operates is tree-

structured, to provide blind users with an understanding of the

hierarchical relationship of the elements in the page. Individual

elements, such as buttons or text, are represented as nodes, whereas

aggregate objects with clear visual boundaries, such as frames or

lists, are represented as sub-trees. The semantic model used in

Speed-Dial is created using techniques published in the extensive

research literature on understanding the semantics of web pages

(detailed in Section 2). The challenge is presenting the semantic

model in a format amenable to quick access by a user.

Figure 1 illustrates how Speed-Dial can be used to navigate the

search results page corresponding to a flight search, and the

corresponding semantic tree. The page has six semantic entities,

numbered 1 through 6, reflected by the six nodes at the 1st level in

the tree. Each node at this level can be expanded further to reveal

its (sub)-entities. The tree is traversed breadth-first. The press

gesture at a node navigates down the subtree rooted at that node.

The rotate right/left gestures traverse the nodes in a level bi-

directionally. A special haptic feedback, denoted by the “buzz”

indicates no more nodes remain to be traversed. When a node is

1 https://www.microsoft.com/en-us/surface/accessories/surface-dial

visited, the screen reader reads out all the information associated

with the entity, such as the price in node 5.1.1.

This illustration shows the distinctive features of Speed-Dial.

Unlike shortcuts, there are a few, simple gestures. Gestural motions

such as rotations and presses are almost instantaneous. The top-

level semantic entities give a quick, high-level overview of the

page, helping the user find an entity of interest quickly (i.e., with

few gestures). The haptic feedback helps orient to the user within

the page, such as indicating they have reached the end of a list.

Speed-Dial can work with any screen reader, and provides uniform

experience across different screen readers—an attribute that is

highly desired by blind screen reader users [10]. Lastly, Speed-Dial

exemplifies the well-known “information visualization mantra”,

namely, overview, zoom, details on demand [38] but in the context

of non-visual web browsing.

A user study with 12 blind participants indicates that Speed-Dial is

a promising approach to solve the content and cognitive overload

problem with non-visual web browsing—the participants took 77%

less time with Speed-Dial compared to that with a screen reader,

and 49% less time compared to that with a screen reader augmented

with speech interface to complete their tasks. In summary, Speed-

Dial enables users to rapidly access any web content, thereby

serving as a surrogate for the mouse.

2. RELATED WORK
Augmenting screen readers with different kinds of interaction

modalities for web browsing continues to attract serious research

attention, with audio-haptic and speech being the most popular.

Audio-haptic Interfaces for Web Browsing

In addition to the standard Braille displays [1], several research

works [23, 24, 31, 39, 42, 43] have demonstrated the usability and

applicability of audio-haptic interfaces for web browsing. These

interfaces not only provide vibrations and audio cues, but also

communicate the presence of HTML elements and various shapes

on a page by using force-feedback [24, 28, 43], and tactile pin

representations [33, 36, 39]. Prior work proposed guidelines for

3

1

4

5

2

6

5.2

5.1

more

more

more

5.1.1

5.1.2

5.1.5

5.1.3 5.1.4

0

5.1 …5.2

1 … 5 6

5.1.1 …5.1.2 5.1.5

Rotate Right (Go to next sibling)

Rotate Left (Go to previous sibling)

Single Press (Go to an immediate child)

Double Press (Go to parent)

Triple Press (Search & Go to an element)

Buzz (a continuous haptic feedback)

Figure 1: An illustration of Speed-Dial. On the left is a flight-reservation web site, which is divided into six logical blocks or

semantic entities. Entity 5 is further divided into (sub)-entities. On the right is the corresponding semantic tree, and a list of

valid gestures offered by the Dial to navigate on the tree.

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

111

designing appropriate haptic sensations (e.g. tactons) for people

with vision impairments [23].

Although audio-haptic devices are very helpful in obtaining an

overview of a webpage, the unrestrained freedom of movement

within the page is a hindrance for precise navigation and

information finding; users may navigate past visual delimiters, such

as white space. The user may have a sense of direction from the

overview, but may still spend a lot of time searching for specific

content of interest, such as the fare of a flight.

Extant audio-tactile interfaces incorporate a very limited notion of

content semantics; in particular, they only represent the boundaries

of various web entities on the page. The Dial-based system

described in this paper utilizes the semantic meaning of the entities

to organize navigation.

Closely related to haptic interfaces are tactons that provide

vibrotactile feedback through the cutaneous senses to convey non-

visual information [9, 13, 26, 32, 37, 40]. Sensory pulses of

different durations that encode different kinds of taps such as

single, double, etc. and amplitude of sensory stimulation that

encode different values are some examples of tactons [12]. Speed-

Dial system incorporates the idea of tactons for navigating the

semantic model.

Speech Interfaces for Web Browsing

Natural-language interfaces for web browsing have been explored

since inception of the Web, and have the potential to alleviate the

extensive use of keyboard shortcuts by using spoken commands.

House et al. [20] proposed a modified version of the NCSA Mosaic

system [5] that was capable of translating user utterances to simple

browsing actions. However, their system supported only a few

basic actions on browser controls such as opening URLs or new

windows. Dragon NaturallySpeaking [30] supports a slightly larger

set of user commands to control websites by speech—besides

browser controls, it has commands to operate on a few syntactic

elements like links, buttons, forms, and form fields—all of which

are readily identifiable by their HTML tags [21]. However, Dragon

[30] relies on visual cues and a graphical user interface, thereby

reducing accessibility. JSay [19] improves the accessibility of

Dragon by interoperating with the popular JAWS screen reader.

But JSay is also limited to a handful of basic functions, such as

accessing application controls, scrolling, and refresh. A far richer

set of more flexible commands is supported by Capti-Speak [6]

that, like JSay, integrates a speech-interface with a screen-reader.

All of the previously-mentioned, speech-driven interfaces,

including Capti-Speak, operate only at the syntactical level, and do

not incorporate the semantics of page content.

We also mention that generic voice-based Assistants such as Siri,

Cortana, and Echo are being used to manage one’s daily activities,

but their focus is not web browsing.

Perhaps the closest related research to Speed-Dial is the spoken-

dialog Assistant system proposed by Ashok et al. [7]. With their

Assistant, users can not only navigate the page using spoken dialog,

but also query the page content for certain information, such as the

price of a product or duration of a flight. Further, the Assistant

supports interaction at a semantic level, i.e., the users can

communicate directly with the web entities present in the page

without having to understand HTML markup. However, the

Assistant, like all other speech interfaces, is heavily reliant on the

availability and accuracy of automatic speech recognition (ASR).

Speech interfaces have several open challenges to widespread use

for non-visual browsing. ASRs require high-fidelity microphones

to accurately capture speech and eliminate spurious background

noise; the built-in microphones in most desktops or laptops often

corrupt the speech and cause substantial recognition errors.

Moreover, the latency of ASR-based browsers is significant.

Speech cannot be used in all scenarios, such as in public places

where privacy and security may be compromised [3]. Speech alone

is also unsuitable and tiring for ad-hoc navigation. For instance,

skimming through a list of several products on a shopping website

requires speaking “go to next product” repeatedly. We believe that

rotating a dial is faster and less cumbersome for users. Under the

best of circumstances, speech only addresses the element selection

problem, not the content navigation problem.

Web Page Semantics

A principal component driving the Dial interface is the semantic

model or semantic representation of the web page content.

Semantic understanding of web pages is a classic research topic

dating back to the inception of the Web (e.g., [16-18]). The use of

web page semantics in accessibility is a long-standing research

topic (e.g., [22, 35]). The starting point for semantic understanding

of web pages is a web ontology. Broadly speaking, an ontology

explicitly encodes a shared and common understanding of a

particular domain, in this case the Web. The encoding captures

commonly-used concepts in the domain, namely descriptions of

web entities in the Web domain such as forms, text-boxes, menus,

buttons, and widgets; attributes associate these concepts and

relationships among them. With a web ontology in hand, one can

create a semantic model of a web page. Web entity data extraction

for constructing this semantic model is based on well-established

web segmentation techniques [4, 8, 15, 44, 45]. Broadly speaking,

these techniques partition a web page into semantically-related

units, based on the observation that related items in a Web page

often exhibit consistency in presentation style and spatial locality.

We note that Apple’s VoiceOver screen-reader also employs a

basic notion of semantics using Web spots—landmarks that

separate different segments on the webpage, some of which may be

semantic entities. However, the caveat is that the user must

manually associate segments with semantic entities.

A semantic model, in essence, is a tree that is similar in structure to

the HTML DOM of the web page. Conceptually, the semantic layer

is an abstract layer over the DOM tree. The semantic model in this

paper is similar to the one developed by Ashok et al. [7], in that a

collection of hand-coded web entity descriptions in the web

ontology provides the necessary blueprints for identifying and

representing various web entities, their characteristics, and their

relationships as a hierarchy in the semantic model.

3. SPEED-DIAL INTERFACE DESIGN
We now explain the various components of Speed-Dial in detail.

Figure 2 depicts the workflow and the architectural schematic of

the Speed-Dial system. A user can interact with a webpage using

either the standard screen reader shortcuts or the Dial gestures. A

special gesture (press & hold) brings up a radial menu (Figure 3)

listing out several choices, such as navigate by heading or web-

entity overview; each option determines the meaning of the other

dial gestures, such as rotating or tapping.

We note that the radial-menu choices, as well as the interpretation

of the gestures, also depend on the semantics of the page content.

For example, if the screen-reader focus is presently on a text-box,

the Dial radial menu contains characters (Figure 4); if the focus is

on a date form field, the radial menu contains options to change the

day, month, and year (Figure 7); if the focus is on a flight-result

item (Figure 8), a single tap with subsequent rotate gestures will

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

112

enable the user to quickly navigate through the important details,

such as price or duration.

To obtain the semantic structure and composition of the webpage

from the DOM, the Dial leverages a custom-defined Web-Entity

Ontology [7] that provides the necessary blueprints or “class

definitions” to identify and represent various web entities, such as

forms, filters, menu, search-results, and calendars, as well as their

characteristics and relationships. The Dial models this abstracted

information as a Semantic Tree – a “cleaned-up” semantics-based

non-visual presentation of the HTML DOM. The Semantic Tree

then forms the basis for gestural navigation as illustrated in Figure

1. Additionally, a blueprint in the Web-Entity Ontology may also

specify custom radial menu choices and gesture interpretations,

which will be applied to the Dial interface whenever the

corresponding entity is in focus.

Note that it is also possible to navigate the raw HTML DOM with

Dial. But this reduces to navigating the HTML DOM element-by-

element at the syntactic level, and hence inherits all the “content

and cognitive” overload problems associated with navigating using

keyboard shortcuts.

Finally, depending on the radial-menu option selected and gesture

performed by the user, the Dial either performs the intended action

(e.g., fill a form text field) directly on the webpage content, or

instructs the screen reader to perform certain actions (e.g., navigate

to the next heading). For users’ convenience, the Dial also provides

audio-haptic feedback, such as a tick with a small vibration when

navigating to the next element.

It is instructive to mention that it is certainly possible to navigate

the semantic model with keyboard alone without using the Dial

device, although this will require either new shortcuts that do not

overlap with standard shortcuts or overriding existing shortcuts.

Consequently, the new shortcuts will likely be non-uniform across

screen-readers. In contrast, Speed-Dial interface is uniform across

all screen-readers, and requires users to remember less to efficiently

navigate webpages.

3.1 The Speed-Dial
This subsection describes the important components of the Speed-

Dial interface.

3.1.1 Hardware and Gestures
We did not build our own hardware; instead we used an off-the-

shelf input device—the Surface Dial (see Figure 3) from Microsoft.

It is a wireless rotational peripheral device (dimensions: 59 mm x

30 mm, weight: 145 g) with adaptive haptic feedback and 3,600

points of precision. The Surface Dial is designed to be placed on

the screen of the Microsoft Surface tablet, but the Surface Dial also

works off-screen with any PC, laptop or tablet running the

Windows 10 Anniversary Update platform version.

Gestures. By default, the Surface Dial supports four basic types of

gestures; a user can (i) rotate left, (ii) rotate right, (iii) quick press

or just press, and (iv) press and hold. The press and hold or long

press gesture brings up a radial Dial menu (Figure 3). Additionally,

adaptive haptic feedback lets the user feel every action. Using the

Surface Dial SDK, we customized the interface and the controls to

suit our specific needs, including the addition of two custom

gestures: double presses and triple presses (Figure 1, bottom-right).

Haptic Feedback. Speed-Dial also uses two tactons (haptic

feedback) [32] to inform users about either the movements of the

virtual navigational cursor, or the boundaries of the entities on the

page. For navigational movements, we used a short, tick-like

feedback on every rotation; and for entity-boundary notifications,

we used a continuous buzz-like vibratory feedback (Figure 1).

3.1.2 Web-Entity Ontology
Web ontology has been extensively studied in the context of

information extraction from web-pages. It has also been applied to

improve accessibility [25]. The Web-Entity Ontology is based on

our prior work on Web-Entity-Description Library described in [7],

which followed well-studied methodologies and algorithms [4, 7,

29, 44, 45]. The Ontology contains hand-crafted descriptions or

blueprints of various entities, such as forms, tables, filters, menu,

search results, and calendars. The descriptions of web entities can

be thought of as Java classes (from a programmer’s perspective),

whereas the entities in the Semantic Tree generated from the

webpage can be thought of as corresponding instances or objects.

Each description contains the following information:

(i) The characteristics and properties (i.e., data and methods) of

the corresponding entity type. For example, a search-results

entity contains fields to store the list of result items, a pointer

to the root node (in the DOM), and a list of strings containing

keywords such as “flight” or “tickets;

(ii) Algorithms to identify or extract the entities belonging to that

entity type on the page; and

(iii) Custom Dial-interface specifications (more details in the

next subsection).

To create the Web-Entity Ontology, we built and analyzed a

training dataset of 200 popular websites from various domains

including shopping, social networking, music, sports, banking,

User

Screen Reader

DOM

Sh
o

rt
cu

t(
s)

Audio Feedback

D
O

M
Gestures

Action(s)

Adaptive Haptic Feedback

Action(s)

Instruction(s)
Web-Entity
Ontology

Semantic
Tree

Webpage

Dial

Figure 2. Architectural schematic and workflow of

Speed-Dial system.

Figure 3: Surface Dial (left) and custom Dial menu (right)

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

113

flight/hotel reservations, government, video-streaming, and news.

We identified the common aspects of the entities belonging to the

same type but on different websites (e.g., list of products on

different shopping websites), and designed generic descriptions for

these types. Overall, our Web Entity Ontology consists of over 100

descriptions. Note that new descriptions for new web-entity types

can be easily added to the Ontology manually without modifying

the other components of Speed-Dial, thereby making it scalable

across multiple websites.

Accuracy. Depending on the type of semantic entity, our extraction

accuracy varied from 75% to over 90%. For example, the accuracy

was over 90% for identifying calendars, menus, sort-options, and

filter-options; over 85% for forms and search-results; and 75% for

individual news-articles. Almost all errors were false negatives

(i.e., not able to identify the entity on the page) as opposed to false

positives (i.e., identifying one entity incorrectly as some other

entity). In case of false negatives, the users can still find the

corresponding entities using keyboard shortcuts.

3.1.3 Custom Interface Specifications
In this subsection, we describe how we encode custom navigational

behavior for different semantic entities onto the Dial interface.

Because the Dial gestures, such as rotation, are strictly one

dimensional, we convert any two-dimensional (2-D) information

on the web page into multiple one-dimensional (1-D) lists.

Not all web entities require a custom Dial interface. For example,

the Dial can directly operate (press) on buttons, radio-buttons, and

check-boxes. However, some semantic elements require special

adaptation, including the autocomplete text-box; date-picker or

calendar; drop-down or combo-box; and generic search-results list.

As shown in prior studies [29], screen-reader users have a hard time

interacting with these complex UI entities due to their inconsistent

behavior, appearance, and the inaccessibility of underlying

JavaScript libraries. Therefore, whenever such elements are in

focus, the Dial offers customized interfaces to improve their

usability. Next, we present the details of custom interfaces for a few

key entity types.

Basic/Leaf. We consider an entity that does not have any children

or sub-entities to be a leaf entity. Examples of this type include

buttons, radio-buttons, check-boxes, and links. For these entities,

the Dial does not offer any custom interface; it simply brings focus

to the HTML element underlying the entity. User action (or the

press operation) is directly performed on the HTML element by

calling the HTML element’s corresponding in-built function.

Text-Box. In text-box entity, user can enter text using either the

default keyboard, or an onscreen radial keyboard provided by the

Dial. To bring up the radial keyboard (Figure 4), user needs to

perform the press & hold gesture (long press). Once the radial

keyboard is on, the user rotates the Dial left/right to select a

character and then press once to add the character to the text-box.

Although this radial keyboard is not suitable for lengthy textual

input, it is handy for entering a few characters.

Drop-Down/Combo-Box. The custom interface for a drop-down is

a popup containing a list-box that populates data dynamically from

the available options in the underlying HTML element (i.e.

elements under a HTML markup tag). The user rotates the

Dial left/right to move down/up the list. A press gesture finalizes

the selection and dismisses the custom-interface popup (Figure 5).

Autocomplete. Similarly, the custom interface for the autocomplete

text-boxes includes a popup that contains a text-box for input, and

a list-box for storing dynamically-generated auto-complete

suggestions (Figure 6). The user can type the first few characters

using either the keyboard, or the radial keyboard (Figure 4). Then

the user rotates the Dial left/right to go through the suggested list

items, and performs press to select a list item. The selected value is

entered into the HTML autocomplete text-box and the custom-

interface popup is dismissed automatically.

Calendar. Calendar is one of the most difficult widgets to interact

with a screen reader [29]. Different websites may have different

presentations of the calendar widget (e.g., showing only days of a

month, or days of two months; or having small arrows and

dropdowns to change the month and year). A few websites do not

even permit users to manually enter the date, thereby forcing them

to use a cumbersome and often inaccessible calendar widget. Even

if the date-field is editable, sometimes there is no mention of the

expected date format (e.g., 01/05/2017, or 01-05-2017, or 01/05/17,

or May 1), and thus the users are unable to proceed due to form-

validation errors, which screen readers often times fail to report.

Figure 5: A sample HTML drop-down (left), and its

equivalent custom drop-down widget for Dial (right).

Figure 6: A sample HTML autocomplete box (left), and its

equivalent custom autocomplete widget for Dial (right).

.

F

Figure 4: On-screen radial keyboard in Dial for entering text

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

114

To address these usability concerns, our custom calendar interface

(popup) has three separate 1-D lists containing (i) days of a month,

(ii) months of a year, and (iii) recent years (Figure 7). The access

to these 3 lists is provided via 3 separate options on the radial menu,

and the contents of each list can be easily accessed by simply

rotating the dial after selecting that list with a press gesture. Once

the user has settled on a date, a double press gesture populates the

underlying HTML date-field with the chosen date while dismissing

the custom popup.

Search Result/Data-grid. A lot of content on the web is tabular in

nature. However, different websites may format tabular content

differently, e.g., as lists, tables, or nested div elements. To

represent tabular content, we use a custom data-grid view (Figure

8, in the foreground), where each column contains semantically-

identical elements. For example, consider the search results in

Figure 8 (in the background), and its equivalent custom interface

(in the foreground). Each search-result item is represented as a row,

and columns represent different properties of an item such as fare,

duration, itinerary, and airline. The user can navigate either along

the direction of a row or along a column using rotational gestures,

with the press gesture for toggling between these two directions.

Thus, the users not only can get a quick overview of the important

details of any single flight, but also rapidly navigate over the

properties (e.g. prices) of all the flights in the results list.

3.2 Screen Reader Integration
We encoded a few essential screen-reader shortcuts (e.g., h: go to

next heading, l: go to next link) in the default Dial radial menu (see

Figure 3). Selecting such a menu option (e.g., h) enables users to

navigate by headings using rotational gestures. This is particularly

helpful for less-experienced screen-reader users with limited

shortcut vocabulary. Additionally, it reduces cognitive overload by

promoting uniformity, since different screen readers may have

different key-bindings for the same function (e.g., R in JAWS vs. D

in NVDA to go to the next landmark). In other words, given an

action and a screen reader, the onus of determining the right

shortcut for this purpose is shifted from the user to the Dial; the

Dial examines what screen reader the user is currently using, and

then simulates the appropriate, low-level keystroke. Thus, by

playing the role of an intermediary between the user and a screen

reader, the Dial ensures uniformity of user experience, and

minimizes the disruption when a user switches from one screen

reader to another—a feature highly desired by blind users [10].

3.3 System Implementation Notes
Speed-Dial was developed with the C# visual studio .NET

framework version 4.6.2. It was a Windows Form application with

an embedded browser (WebBrowser form control) object.

Internally, this embedded browser shares the same rendering

engine with Microsoft’s Internet Explorer (IE) web browser.

Therefore, from the perspective of screen readers, our application

was equivalent to IE, and therefore the same screen-reader

shortcuts can be used to browse the web.

In future work, we can integrate the Speed-Dial with any other

browser through a custom plug-in or browser-extension. Our initial

study selected IE because studies have shown that IE still remains

the most popular browser among blind users [41].

For generating adaptive haptic feedback, we manipulated the value

of the RotationResolutionInDegrees property exposed by the Dial

API. For instance, setting this property value to 1.0 generates a

continuous buzz-like feedback, whereas values greater than 10.0

generate a simple tick.

4. USER STUDY
To assess the effectiveness and usability of Speed-Dial, we

conducted an IRB-approved user study aimed at validating the

following primary and secondary hypotheses:

H: Speed-Dial significantly improves web usability compared to:

(i) popular screen readers and (ii) screen readers augmented with

speech interfaces. We test the following secondary hypotheses:

• H1: Higher efficiency in web tasks involving continuous

navigation within the page.

• H2: Lesser effort to locate, understand and interact with

desired web element.

• H3: Higher usability rating.

• H4: More intuitive interaction with webpage contents.

4.1 Participants
We conducted a user study with 12 visually-impaired participants

who had no hearing or speech impairments. All participants were

familiar with the IE web browser and the JAWS screen reader.

They varied in age from 25 to 65 (mean=40, median=36, SD=12.5),

and gender (7 males, 5 females). Regarding screen-reader

expertise, 5 participants considered themselves to be “experts”,

whereas the remaining 7 participants were “beginners”. On

average, the participants browse internet for 1.5 hours per day.

Figure 7: A sample HTML calendar (left), and the

custom (generic) calendar widget for Dial (right)

.

Figure 8: An HTML data-grid view (background), and its

equivalent custom data-grid view for Dial (foreground).

The green lines show the direction of Dial cursor.

 .

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

115

4.2 Study Setup
We assigned tasks to the participants that were transactional in

nature, requiring a sequence of steps spanning multiple web pages.

Users with vision impairments typically find these tasks

challenging. We assigned the following 3 types of tasks:

• T1: On a travel booking site, find the form for reserving a

flight, booking a hotel, renting a car, or purchasing a vacation

package. Fill-out the form with experimenter-provided data

(such as From city, To city, Departure date, Number of

travelers), and hit the search button.

• T2: On the search-results page of the same travel booking site,

find the search-results list, and identify the top 3 search results

satisfying predefined criteria (i.e., flight-related criteria were

cheapest airfare, shortest travel time, or number of layovers).

• T3: On the search-result page, use different filters to narrow

down the search-results list, and consider any special deals.

This task was purely exploratory, and, as such, we did not

record any objective measurements.

We choose the following 3 travel booking websites: priceline.com,

expedia.com, and cheapoair.com, based on the observation that

these websites differ considerably in appearance, accessibility

support, richness of contents, and content placement. Additionally,

all the participants indicated that they were not that familiar with

these websites. For each website, a participant was supposed to

perform the 3 aforementioned tasks under each of the following 3

conditions, thereby totaling 9 tasks per participant:

• Screen-Reader Only (SR). Participants could only use the

standard keyboard shortcuts supported by JAWS. This was

also considered as the baseline condition.

• Screen-Reader with Speech Command (SR+Speech).

Participants could use the standard keyboard shortcuts of

JAWS, and high-level speech commands described in [7],

e.g., “select this item”, “pick the next item”, “go to search-

result”, or “choose 5th for departure date”.

• Screen-Reader with Speed-Dial (SR+Dial). Participants

could use the standard shortcuts of JAWS, as well as the

gestures offered by the Speed-Dial interface.

To avoid confounds, we used the same underlying semantic model

in both SR+Speech and SR+Dial conditions. To minimize the

learning effect, we counterbalanced the ordering of the websites,

the conditions, and the tasks T1 & T2.

Prior to the study, participants were given sufficient instructions

and time (~30 minutes) to familiarize themselves with all three

conditions. We chose the following 3 websites for practice runs:

Craigslist (classifieds), Twitter (social), and CNN (news).

Each participant was allotted 30 minutes to complete tasks T1 &

T2. If a participant completed both tasks within the allotted time

window, only then he or she was requested to perform T3 for the

remaining time. All conversations during the study were in English.

4.3 Data Collection and Analysis
We used the publicly-available software globalmousekeyhook2 to

record participants’ keystrokes and time spent on each page. We

also audio-recorded all sessions and transcribed them later for post-

analysis. For tasks T1 and T2, we recorded the following measures:

(i) completion time; (ii) number of shortcuts used under each

condition; (iii) number of speech commands used; (iv) number of

2 https://github.com/gmamaladze/globalmousekeyhook

times each Dial gesture was used; (v) number of times a participant

navigated back and forth between the boundaries of an entity; (vi)

number of times the participant sought moderator’s help; and (vii)

reasons for failure, such as automatic speech recognition (ASR)

errors, content inaccessibility, semantic error, or Speed-Dial error.

We also recorded any unusual browsing behavior that delayed the

completion of assigned tasks, such as repeatedly navigating over

the same content, confusion due to form-validation errors, or failure

to recognize the entities.

At the end of the experiment, the participants were asked to

complete the standard System Usability Scale (SUS) questionnaire

[14], and a set of open-ended questions eliciting comments and

suggestions for all 3 study conditions.

5. RESULTS
In this section, we analyze the collected measurements and

subjective feedback, as well as compare the participants’

performance and web browsing experiences under the 3 different

study conditions (i.e., SR, SR+Speech, and SR+Dial). We

conducted one-way ANOVA test with Tukey’s honestly significant

difference (HSD) post hoc test to determine if any differences in

measures between these 3 conditions were statistically significant.

Completion time. We found significant effect of study conditions

on completion time for both tasks T1 (F2,33 = 47.6, p < .0001) and

T2 (F2,33 = 18.4, p < .0001). The mean completion times for tasks

T1 and T2 under each condition are shown in Figure 9. For task T1,

when using SR+Dial, the mean completion time (60.4s) was

reduced by 73.0% compared to that of the baseline SR (224.2s), and

5.7% compared to the SR+Speech condition (66.2s). For task T2,

these reductions were 80.2% and 62.8% respectively (SR+Dial:

mean=76.9s, SR: mean=389.6s, SR+Speech: mean=207.0s).

Number of shortcuts. We also found a significant effect of study

conditions on number of shortcuts issued in tasks T1 (F2,33 = 32.5,

p < .0001) and T2 (F2,33 = 28.4, p < .0001). Figure 10 shows the

mean number of shortcuts. When using SR+Dial (mean=2.6),

participants typed 97.1% and 90.6% fewer shortcuts than when

using SR (mean=92.4) and SR+Speech (mean=27.91) in task T1.

In task T2, these reductions were 95.5% and 89.5% respectively

(SR+Dial: mean=8.1, SR: mean=181.1, SR+Speech: mean=77.6).

The post-hoc pairwise comparison with Tukey HSD test indicated

that the differences in means in completion time and shortcut usage

for tasks T1 and T2 were statistically significant (p < .01) between

the pairs of SR & SR+Speech and SR & SR+Dial. However,

between SR+Speech & SR+Dial the differences were not

significant for task T1, but significant (p < .05) for task T2.

A closer inspection of the collected data reveals the reason behind

this significant difference for task T2. For each spoken utterance,

the Speech interface in SR+Speech condition incurred an

(unavoidable) overhead of about 1.0 to 1.5 seconds for converting

speech to text, interpreting this text, and translating the

interpretation to actions. Additionally, the Speech interface

occasionally encountered speech-recognition failures, errors, and

natural-language ambiguities, such as vague commands matching

two or more elements with identical names and tags. The situation

was further exacerbated on the search-results page for task T2 that

contained many semantic entities and related content. For

navigation, participants had to speak the same commands (e.g., “go

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

116

next”, “how much is the price?”, “what is the duration?”) over-and-

over again for each search-result item. The overhead accumulated

to the point that participants reduced the usage of speech commands

and reverted to using keyboard shortcuts.

In contrast, in SR+Dial condition, the participants did not encounter

these issues because: (1) the Dial interface gave them feedback

almost immediately—within 0.3 seconds on every rotation, while

also providing haptic feedback whenever the focus reached the

boundaries of entities. All participants liked this feature, and stated

that it gave them confidence and a better understanding of their

orientation in a webpage; and (2) the semantics-driven content-

presentation style of Speed-Dial was straightforward to navigate,

requiring only a few simple gestures. Therefore, even though the

search-results webpage contained many entities, almost all

participants systematically and semantically explored the page with

Dial gestures rather than falling back to keyboard shortcuts that

operated on the syntactic HTML content. The participants also

explicitly stated that they pressed a few keyboard shortcuts in

SR+Dial condition due to their habitual reflex or by accident, and

not because they needed those shortcuts.

Note however that, for the form-filling task T1, there were no

statistically significant differences in average measure values

between SR+Speech vs SR+Dial. Because in SR+Speech

condition, participants simply gave speech commands to choose the

dates, thereby avoiding the painful screen-reader interaction with

the calendar widget. Regardless, the above results and observations

validate our hypotheses H1, H2, and H4.

5.1 Interaction Behavior and Subjective

Feedback for Speed-Dial
We observed an interesting behavioral pattern with Speed-Dial—

the participants kept rotating the Dial even after finding their

content of interest until they reached the boundary. Then, they

rotated the Dial to navigate back to the desired content, and perform

the desired action. When asked, the participants explained that they

were always afraid of missing important information as well as

losing focus and orientation—something that they claimed as a

frequent occurrence while browsing web with screen readers. For

example, when they press a ‘TAB’ shortcut, the screen readers

might sometimes inexplicably take them to a different, undesired

section of the webpage. As a result, they subconsciously became

cautious and less exploratory while navigating a webpage (with

screen reader). But with Dial, the participants were more confident

exploring the content given that they would never unknowingly

navigate past the boundaries of entities—Speed-Dial always

confines the navigation within these boundaries unless the user

explicitly instructs it to move to other entities.

Regarding the usage of custom gestures, we noticed that the

participants frequently used the double press gesture to move “one

level” up in the Semantic Tree so that they could reorient

themselves. 9 out of 12 participants stated that traversing up in the

Semantic Tree until reaching the top level with Dial was much

better than pressing ‘ESC’ multiple times with JAWS to get to the

beginning of a page. If they wanted to return to their previously-

focused location, with JAWS, they had to use multiple shortcuts

once again; whereas with the Dial, they could find the previous

location with fewer steps (at most, the height of the Semantic Tree).

Surprisingly, they did not use the triple press gesture often; only 2

out of 12 used that gesture, and said that it slowed them down.

While participants were using only the screen reader, we observed

that the expert users spent quite a bit of time guessing the features

supported by the entities. For example, they checked if a text-box,

had the “autocomplete” feature by entering a few characters, and

pressing the down-arrow key. With Speed-Dial, they said that they

did not have to guess anymore due to the custom-Dial interface that

is consistent across all websites.

5.1.1 Usability Rating
At the end of each session, each participant was asked the standard

System Usability Scale (SUS) questionnaire where participants

rated positive and negative statements about each study condition

on a Likert scale from 1-strongly disagree to 5-strongly agree, and

3-being neutral. We found significant effect of study conditions on

SUS score (F2,33 = 15.5, p < .0001). The mean SUS score of

SR+Dial (85.0) was 18.3% higher than that of SR (69.3) and 4.6%

higher than that of SR+Speech (81.04). Post hoc comparisons using

the Tukey HSD test indicated that the pairwise differences in means

in SR vs. SR+Speech and in SR vs. SR+Dial were statistically

significant (p < .01). However, it was not significant in case of

SR+Speech vs. SR+Dial (p = .36). Still, participants stated that they

preferred Speed-Dial to others, as SR was the most cumbersome to

use, and the Speech interface was becoming cumbersome to use for

task involving continuous navigation. Furthermore, with the

Speech interface, speech commands often interfered with listening

to the page content—a problem avoided by using Speed Dial.

0

100

200

300

400

500

600

Task 1 Task 2

C
o

m
p

le
ti

o
n

 t
im

e
(s

ec
o

n
d

s)
Mean completion time (±1 SD)

SR SR+Speech SR+Dial

Figure 9: The mean time to complete task T1 (left) and

task T2 (right) in 3 conditions. Error bars show ±1 SD.

0

50

100

150

200

Task 1 Task 2

N
u

m
b

er
 o

f
sh

o
rt

cu
ts

 p
re

ss
ed

Mean number of shortcuts (±1 SD)

SR SR+Speech SR+Dial

Figure 10: The mean number of shortcuts issued in task T1

(left) and task T2 in 3 conditions. Error bars show ±1 SD.

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

117

5.2 Post-Evaluation
Finally, we administered a brief, Likert-type questionnaire (1-

strongly unfavorable, 5-strongly favorable response) to solicit

participants’ opinions and suggestions regarding Speed-Dial. As

shown in Table 1, all participants liked the “buzz” feedback

indicating entity boundaries (Question 3). They also liked the

uniformity of interaction experience (Question 10), and the ease of

learning (Question 2). The participants were undecided about the

potential of using Dial for text entry (Question 9) as well as the

triple press gesture for the “search & go” feature. Finally, there was

a strong consensus that Speed-Dial can indeed serve as a mouse

surrogate (Question 6).

5.3 Feature Requests
The participants expressed a desire for more custom gestures, such

as press & turn to immediately select a menu option. They also

wanted a relatively stronger haptic feedback, and incorporation of

rotational momentum to skip multiple entities in one go. Integration

of Speed-Dial with smartphones was also highly coveted.

Table 1. Post-experiment questionnaire and responses.

Question: On a scale of 1 to 5 Avg SD

1. How easy is it to rotate the Dial compared to

pressing keyboard shortcuts?
4.50 0.65

2. How easy is it to learn Speed-Dial? 4.75 0.43

3. How important is it to know the entity

boundaries?
5.00 0.00

4. How useful is vibration feedback? 4.17 0.90

5. How useful is the combination of audio and

vibratory feedback?
3.17 1.40

6. Can Speed-Dial serve as a mouse? 4.50 0.65

7. Is “search & go” feature useful? 3.83 0.99

8. How easy is it to fill forms with Speed-Dial? 4.42 0.76

9. How useful is the radial keyboard? 3.33 1.11

10. Does Speed-Dial provide uniform

interaction experience?
4.75 0.43

6. CONCLUSION
This paper explores the applicability of an off-the-shelf, physical

Dial as a surrogate for a computer mouse in the context of non-

visual web browsing. Our experimental results demonstrate that the

combination of Dial & semantic model has a bestter constructive

synergy over extant non-visual web browsing systems that combine

speech interface and semantic model. A unique aspect of Speed-

Dial is that it provides uniformity of interaction experience

regardless of the underlying screen reader. Uniformity can

eliminate the need to learn new screen readers, thereby reducing

training effort and associated cost. In fact, this was affirmed by a

participant who said: “If I have this, I shouldn’t spend my time in

computer class”. Speed-Dial enables blind users to quickly move

around the web page to select content of interest, akin to pointing

and clicking with a mouse, i.e., it serves as a surrogate for the

computer mouse.

7. ACKNOWLEDGMENTS
We thank Glenn Dausch, Yevgen Borodin, and the anonymous

reviewers for their insightful feedback that helped shape this paper.

Asmita Negi, Leela Bharath Kumar, and Rakesh Agarwal

contributed to the implementation of Speed-Dial. This research was

supported in part by NSF: IIS-1447549, CNS-1405641; National

Eye Institute of NIH: R01EY026621; and NIDILRR: 90IF0117-01-

00. The content is solely the responsibility of the authors and does

not necessarily represent the official views of NIH nor represent the

policy of NIDILRR.

8. REFERENCES
[1] AFB, Refreshable Braille Displays. Retrieved from

http://www.afb.org/ProdBrowseCatResults.aspx?CatID=43.

[2] AFB, Screen Readers. Retrieved from

http://www.afb.org/ProdBrowseCatResults.aspx?CatID=49.

[3] Ahmed, T., Hoyle, R., Connelly, K., Crandall, D., and

Kapadia, A., 2015. Privacy Concerns and Behaviors of

People with Visual Impairments. In Proceedings of the

Proceedings of the 33rd Annual ACM Conference on Human

Factors in Computing Systems. ACM, 3523-3532.

[4] Álvarez, M., Pan, A., Raposo, J., Bellas, F., and Cacheda, F.,

2010. Finding and extracting data records from web pages.

Journal of Signal Processing Systems 59, 1, 123-137.

[5] Andreessen, M., 1993. NCSA Mosaic technical summary.

National Center for Supercomputing Applications 605.

[6] Ashok, V., Borodin, Y., Puzis, Y., and Ramakrishnan, I. V.,

2015. Capti-Speak: A Speech-Enabled Web Screen Reader.

In Proceedings of the Proceedings of the 12th Web for All

Conference. ACM, 327-328.

[7] Ashok, V., Puzis, Y., Borodin, Y., and Ramakrishnan, I.,

2017. Web Screen Reading Automation Assistance Using

Semantic Abstraction. In Proceedings of the Proceedings of

the 22nd International Conference on Intelligent User

Interfaces. ACM, 407-418.

[8] Baluja, S., 2006. Browsing on small screens: recasting web-

page segmentation into an efficient machine learning

framework. In Proceedings of the Proceedings of the 15th

international conference on World Wide Web. ACM, 33-42.

[9] Bardot, S., Brock, A., Serrano, M., and Jouffrais, C., 2014.

Quick-glance and in-depth exploration of a tabletop map for

visually impaired people. In Proceedings of the Proceedings

of the 26th Conference on l'Interaction Homme-Machine.

ACM, 165-170.

[10] Billah, S. M., Ashok, V., Porter, D. E., and Ramakrishnan, I.

V., 2017. Ubiquitous Accessibility for People with Visual

Impairments: Are We There Yet? In Proceedings of the

Proceedings of the 2017 CHI Conference on Human Factors

in Computing Systems. ACM, 5862-5868.

[11] Borodin, Y., Bigham, J. P., Dausch, G., and Ramakrishnan,

I. V., 2010. More than meets the eye: a survey of screen-

reader browsing strategies. In Proceedings of the

Proceedings of the 2010 International Cross Disciplinary

Conference on Web Accessibility (W4A). ACM, 1-10.

[12] Brewster, S. and Brown, L. M., 2004. Tactons: Structured

Tactile Messages for Non-Visual Information Display. In

Proceedings of the Fifth Australasian User Interface

Conference (AUIC2004). ACS, 15-23.

[13] Brock, A., Kammoun, S., Macé, M., and Jouffrais, C., 2014.

Using wrist vibrations to guide hand movement and whole

body navigation. i-com 13, 3 (2014-12-10), pp. 19-28.

[14] Brooke, J., 1996. SUS-A quick and dirty usability scale.

Usability evaluation in industry 189, 194.

[15] Cai, D., Yu, S., Wen, J.-R., and Ma, W.-Y., 2004. VIPS: A

vision based page segmentation algorithm. Microsoft

technical report.

[16] Chung, C. Y., Gertz, M., and Sundaresan, N., 2002. Reverse

engineering for web data: From visual to semantic structures.

In Proceedings of the Proceedings 18th International

Conference on Data Engineering. IEEE, 53-63.

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

118

[17] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran,

A., Kanungo, T., Rajagopalan, S., Tomkins, A., and Tomlin,

J. A., 2003. SemTag and Seeker: Bootstrapping the semantic

web via automated semantic annotation. In Proceedings of

the Proceedings of the 12th international conference on

World Wide Web. ACM, 178-186.

[18] Fensel, D., Decker, S., Erdmann, M., and Studer, R., 1998.

Ontobroker: Or how to enable intelligent access to the

WWW. In Proceedings of the Proceedings of the 11th Banff

Knowledge Acquisition for Knowledge-Based Systems

Workshop. CiteSeer.

[19] Hartgen Consultancy, 2017. J-Say. Talk to Your Computer,

It Talks Back! Retrieved from

http://www.ngtvoice.com/products/software/astec/j-say/.

[20] House, D., Novick, D., Fanty, M., and Walpole, J., 1995.

Spoken-Language Access to Multimedia (SLAM).

[21] HTML5.2, 2017. Hyper-Text Markup Language v.5.2.

Retrieved from http://w3c.github.io/html/.

[22] Huang, A. W. and Sundaresan, N., 2000. A semantic

transcoding system to adapt Web services for users with

disabilities. In Proceedings of the Proceedings of the 4th

International ACM Conference on Assistive Technologies.

ACM.

[23] Kuber, R., Yu, W., and McAllister, G., 2007. Towards

Developing Assistive Haptic Feedback for Visually Impaired

Internet Users. In Proceedings of the Proceedings of the

SIGCHI conference on Human Factors in Computing

Systems. ACM, 1525-1534.

[24] Kuber, R., Zhu, S., Arber, Y., Norman, K., and Magnusson,

C., 2014. Augmenting the non-visual web browsing process

using the geomagic touch haptic device. SIGACCESS

Access. Comput., 109, 4-10.

[25] Labský, M., Svátek, V., and Nekvasil, M., 2008. Information

Extraction Based on Extraction Ontologies: Design,

Deployment and Evaluation. Ontology-based Information

Extraction Systems (OBIES), 9.

[26] Lawrence, M. M., Martinelli, N., and Nehmer, R., 2009. A

Haptic Soundscape Map of the University of Oregon.

Journal of Maps 5, 1, 19-29.

[27] Lazar, J., Allen, A., Kleinman, J., and Malarkey, C., 2007.

What Frustrates Screen Reader Users on the Web: A Study

of 100 Blind Users. International Journal of human-

computer interaction 22, 3, 247-269.

[28] Magnusson, C., Tan, C. C. S., and Yu, W., 2006. Haptic

access to 3D objects on the web. In Proceedings of the

Eurohaptics.

[29] Melnyk, V., Ashok, V., Puzis, Y., Soviak, A., and Borodin,

Y., 2014. Widget Classification with Applications to Web

Accessibility. In Proceedings of the International

Conference on Web Engineering (ICWE).

[30] Nuance, 2017. Dragon Naturally Speaking Rich Internet

Application. Retrieved from

http://www.nuancesoftwarestore.com/dragon-

naturallyspeaking-premium/.

[31] O’Modhrain, M. S. and Gillespie, B., 1997. The moose: A

haptic user interface for blind persons. In Proceedings of the

Proc. Third WWW6 Conference.

[32] Pielot, M., Poppinga, B., Heuten, W., and Boll, S., 2011. A

tactile compass for eyes-free pedestrian navigation. In

Proceedings of the Proceedings of the 13th IFIP TC 13

international conference on Human-computer interaction -

Volume Part II. Springer-Verlag, 640-656.

[33] Pietrzak, T., Crossan, A., Brewster, S. A., Martin, B., and

Pecci, I., 2009. Creating Usable Pin Array Tactons for

Nonvisual Information. IEEE Transactions on Haptics 2, 2,

61-72.

[34] Puzis, Y., Borodin, Y., Puzis, R., and Ramakrishnan, I. V.,

2013. Predictive Web Automation Assistant for People with

Vision Impairments. In Proceedings of the proceedings of

the 22th international conference on world wide web. ACM,

1031-1040.

[35] Ramakrishnan, I. V., Stent, A., and Yang, G. L., 2004.

HearSay: enabling audio browsing on hypertext content. In

Proceedings of the International World Wide Web

Conference (WWW).

[36] Rotard, M., Knödler, S., and Ertl, T., 2005. A tactile web

browser for the visually disabled. In Proceedings of the

Proceedings of the sixteenth ACM conference on Hypertext

and hypermedia. ACM, 15-22.

[37] Rümelin, S., Rukzio, E., and Hardy, R., 2011. NaviRadar: a

novel tactile information display for pedestrian navigation.

In Proceedings of the Proceedings of the 24th annual ACM

symposium on User interface software and technology.

ACM, 293-302.

[38] Shneiderman, B., 1996. The eyes have it: A task by data type

taxonomy for information visualizations. In Proceedings of

the Visual Languages, 1996. Proceedings., IEEE Symposium

on. IEEE, 336-343.

[39] Soviak, A., Borodin, A., Ashok, V., Borodin, Y., Puzis, Y.,

and Ramakrishnan, I., 2016. Tactile Accessibility: Does

Anyone Need a Haptic Glove? In Proceedings of the

Proceedings of the 18th International ACM SIGACCESS

Conference on Computers and Accessibility. ACM, 101-109.

[40] Tsukada, K. and Yasumura, M., 2004. ActiveBelt: Belt-Type

Wearable Tactile Display for Directional Navigation. In

UbiComp 2004: Ubiquitous Computing: 6th International

Conference, Nottingham, UK, September 7-10, 2004.

Proceedings, N. DAVIES, E.D. MYNATT and I. SIIO Eds.

Springer Berlin Heidelberg, Berlin, Heidelberg, 384-399.

[41] WebAIM, 2015. Survey of Preferences of Screen Readers

Users. Retrieved from

http://webaim.org/projects/screenreadersurvey6/.

[42] Wong, E. J., Yap, K. M., Alexander, J., and Karnik, A., 2015.

HABOS: Towards a platform of haptic-audio based online

shopping for the visually impaired. In Proceedings of the

Open Systems (ICOS), 2015 IEEE Confernece on. IEEE, 62-

67.

[43] Yu, W., Kuber, R., Murphy, E., Strain, P., and McAllister,

G., 2006. A novel multimodal interface for improving

visually impaired people’s web accessibility. Virtual Reality

9, 2-3, 133-148.

[44] Zhai, Y. and Liu, B., 2005. Web data extraction based on

partial tree alignment. In Proceedings of the Proceedings of

the 14th international conference on World Wide Web.

ACM, 76-85.

[45] Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., and Ma, W.-Y., 2006.

Simultaneous record detection and attribute labeling in web

data extraction. In Proceedings of the Proceedings of the

12th ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 494-503.

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

119

	1. INTRODUCTION
	2. RELATED WORK
	3. SPEED-DIAL INTERFACE DESIGN
	3.1 The Speed-Dial
	3.1.1 Hardware and Gestures
	3.1.2 Web-Entity Ontology
	3.1.3 Custom Interface Specifications

	3.2 Screen Reader Integration
	3.3 System Implementation Notes

	4. USER STUDY
	4.1 Participants
	We conducted a user study with 12 visually-impaired participants who had no hearing or speech impairments. All participants were familiar with the IE web browser and the JAWS screen reader. They varied in age from 25 to 65 (mean=40, median=36, SD=12.5...
	4.2 Study Setup
	4.3 Data Collection and Analysis

	5. RESULTS
	5.1 Interaction Behavior and Subjective Feedback for Speed-Dial
	5.1.1 Usability Rating

	5.2 Post-Evaluation
	5.3 Feature Requests

	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

Accessibility Report

		Filename:

		fp022-billahA (1).pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 1

		Passed: 26

		Failed: 3

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Failed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

