
Modeling Transactional Memory Workload Performance

Donald E. Porter and Emmett Witchel
Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712

{porterde,witchel}@cs.utexas.edu

Abstract
Transactional memory promises to make parallel programming
easier than with fine-grained locking, while performing just as well.
This performance claim is not always borne out because an applica-
tion may violate a common-case assumption of the TM designer or
because of external system effects. In order to help programmers
assess the suitability of their code for transactional memory, this
work introduces a formal model of transactional memory as well
as a tool, called Syncchar. Syncchar can predict the speedup of a
conversion from locks to transactions within 25% for the STAMP
benchmarks. Because getting good performance from transactions
is more difficult than commonly appreciated, developers need tools
to tune transactional performance.

Categories and Subject Descriptors C.1.4 [Processor Architec-
tures]: [Parallel Architecture]; C.4 [Processor Architectures]: Per-
formance of Systems—Modeling Techniques

General Terms Design, Measurement, Performance

1. Introduction
Transactional memory [3] is a promising paradigm to simplify con-
current programming. Transactions relieve the programmer from
worry about deadlock, making it easier to code correctly. However,
most real-life programs need to be both correct and efficient, and
the introduction of transactions to an application can have negative,
counterintuitive consequences for performance.

Designers of transactional memory systems make implemen-
tation decisions based on an implicit model of common-case ap-
plication behavior, which may not be true for a given application
and cause poor performance. For instance, TM designs often trade
faster commits for slower aborts, causing applications with high-
contention transactions to perform much worse than with locking.
In many cases, application data structures can be reorganized to
improve transactional performance, but these opportunities are not
necessarily obvious upon inspection of the code. Thus, it is impor-
tant for developers to have tools that help then diagnose and correct
performance problems.

Performance problems for transactional programs may also
arise from the interaction of the TM system with unrelated portions
of the system. Figure 1 illustrates a simple conditional statement
the programmer would expect to reduce conflicting accesses to a
shared variable. Yet, the code generated by gcc always reads the

Copyright is held by the author/owner(s).
PPoPP’10, January 9–14, 2010, Bangalore, India.
ACM 978-1-60558-708-0/10/01.

if(a < threshold)
shared_variable = new_value;

mov 0x8(%ebp),%edx
cmp 0xc03e6008,%edx
mov %edx,%eax
cmovge 0xc03e600c,%eax
mov %eax,0xc03e600c

Figure 1. A simple code sequence and the x86 assembly produced
by gcc.

value from memory and always writes it back. It only uses the con-
dition to determine whether to update the register before writing
it back. The compiler is trying to avoid branching around the load
and store, which makes sense on a superscalar platform. On a hard-
ware transactional memory system, however, the performance lost
to a coherence conflict is much larger than that lost to a mispre-
dicted branch. These system effects are difficult for the application
developer to anticipate and debug. Ultimately, these issues must be
resolved with better integration of the TM implementation with the
rest of the system stack, but the a tuning tool can help developers
distinguish whether a performance problem originates with their
code or a is attributable to system effects.

To help developers characterize and tune the performance of
transactional programs, this work proposes and validates Syncchar,
a formal model of transactional memory performance and a tool
based on the model. The Syncchar, or synchronization characteri-
zation, model starts with a lock-based or transactional parallel ap-
plication and samples the sets of addresses read and written during
critical sections. It then builds a model of the program’s execution
that can predict the performance of the application if it used trans-
actions. The model has two key metrics, data independence and
conflict density of the critical regions. Data independence measures
the likelihood that threads will access disjoint data. Conflict den-
sity measures how many threads are likely to be involved in a data
conflict should one occur. Because most large-scale parallel appli-
cations use locking, a key use for the Syncchar model is identifying
which applications could benefit from using transactions before in-
vesting the engineering effort to make such a conversion.

2. The Syncchar model
The Syncchar model formalizes the intuition that transactional per-
formance is primarily determined by the number of conflicting
transactions, and provides the basis for the Syncchar performance
tuning tool. Transactional memory systems generally rely on con-
flict serializability as their safety condition. We call the set of ad-
dresses read during a critical section the read set, the set of ad-
dresses written the write set, and the union of read and write set
the address set. For critical sections A and B, A conflicts with B if:



AW ∩(BR∪BW ) 6= ∅. Informally, conflict serializability says that
the write set of one critical region must be disjoint from the other’s
address set to guarantee safety. Conflict serializability is efficient to
compute so it is used widely in transactional memory systems.

Critical regions are data independent if their write set is disjoint
from the other’s address set. If critical sections concurrently modify
the same data, or have data conflicts1, the transactional memory
system will serialize access to critical sections. In such cases,
transactional memory can perform much worse than conservative
locking due to the overhead required to detect and resolve conflicts.

Conflict density is a measure of the connectedness of the graph
for a data conflict. Assume a conflict among N threads. In the
best case, a single thread might write a datum read by N − 1
other threads. This is a low density conflict that produces a short
serialized execution schedule (N − 1 readers commit, and then the
writer). In the worst case, each thread can write a datum written by
each of the other N−1 threads, yielding a high density conflict that
necessitates a completely sequential schedule (the threads must run
serially, one after the next).

Syncchar estimates the data independence and conflict density
of critical regions by sampling their address sets. Syncchar sam-
ples address sets of critical regions that could potentially execute
concurrently using transactional memory and determines which of
them can conflict. This process, described in detail below, is effec-
tively an implementation of the safety property of the TM system.
Sampling incorporates the dynamic behavior of the application and
its potential data conflicts.

There is very little published about performance tuning transac-
tional programs. Heindl and Pokam [2] present a framework for an-
alytical performance modeling of STM implementations, whereas
this work models performance of applications. Perfumo et al. intro-
duce a Haskell runtime with transactional memory instrumentation
support for performance profiling [6]. This work is complementary
to the Syncchar model, which provides limits that are not tied to
specific schedules. The closest model is presented by von Praun
et al.[9], which provides a definition of dependence density that is
similar to the aggregation of data independence and conflict density
under Syncchar. This work closes the loop by applying the model
to making concrete performance predictions.

3. Model validation
In this section we validate the Syncchar model by implementing it
as a module for Virtutech Simics [4] and comparing the predicted
performance with transactions to the measured performance on an
HTM model. We validate the Syncchar model against seven bench-
marks from STAMP version 0.9.9 [5]. All experiments model 8,
16, and 32 1GHz, x86 processors. Additional simulation parame-
ters and results are available in a companion technical report [7].
All lock-based experiments are run on Linux version 2.6.16.1, and
TM experiments use MetaTM [8]. Measurements presented are
a mean of 4 simulated executions, with main memory access la-
tency pseudo-randomly perturbed to account for simulator deter-
minism [1].

Table 1 shows the predicted and actual execution times of the
parallel phases of these benchmarks. The geometric mean error
across benchmarks is 25%. Syncchar tracks the scalability trends
very closely, both for high-contention workloads that have poor
scalability, like intruder, and for low-contention workloads that
have good scalability, like kmeans. Syncchar’s precision decreases
as the benchmarks become very short, particularly for benchmarks
that run for .3 seconds or less. In the worst cases, Syncchar predicts
the scaling trends offset by a factor of 40-153%.

1 We selected the term data conflicts over data dependence to avoid confu-
sion with other meanings.

Workload Tx Syncchar % Err DI CD
bayes 8 CPU - - - - -

16 CPU .29 .29 0 0.00 3.10
32 CPU .20 .15 25 0.21 3.39

genome 8 CPU 1.35 1.11 19 5.89 0.01
16 CPU .79 .94 16 11.44 0.04
32 CPU .50 .84 40 28.40 0.13

intruder 8 CPU 1.06 1.52 43 2.20 2.72
16 CPU 1.33 1.63 22 2.60 4.51
32 CPU 1.67 1.72 3 2.68 8.45

kmeans 8 CPU 7.72 8.69 13 5.28 1.98
16 CPU 4.40 5.98 37 8.43 2.92
32 CPU 3.05 3.06 1 11.93 4.19

ssca2 8 CPU .64 .64 13 7.98 0.00
16 CPU .40 .36 13 15.94 0.00
32 CPU .27 .21 11 31.94 0.01

vacation 8 CPU 1.39 1.16 17 5.03 .90
16 CPU .72 .53 26 6.92 1.74
32 CPU .39 .21 46 7.70 3.18

yada 8 CPU .38 .39 26 4.76 2.51
16 CPU .21 .37 19 7.94 4.71
32 CPU .15 .37 153 15.44 9.43

Table 1. The execution time in seconds for the STAMP bench-
marks in seconds (labeled Tx), the projected execution time in sec-
onds, labeled Syncchar, and accuracy (% Error). DI is the data in-
dependence value for the benchmark and CD is the conflict density.
8 CPU bayes data was not available at the time of submission.

Data independence and conflict density prove to be interest-
ing metrics, with widely varying values across STAMP applica-
tions. Ssca2 is highly data independent, while the high-contention
intruder is not. Bayes has very light conflict density while yada’s
conflicts are quite dense, with an average of nine densely conflict-
ing threads per transactional conflict.

These experiments show that the Syncchar model strikes a good
balance between accuracy and complexity. While there are outliers
in the model’s predictions, most are off by 26% or less, and all
capture the scaling trends of the workload. Thus, the Syncchar
model is an important tool that application developers will need
to leverage transactional memory more effectively.

References
[1] A. Alameldeen and D. Wood. Variability in architectural simulations of

multi-threaded workloads. In HPCA, 2003.
[2] A. Heindl and G. Pokam. An analytic framework for performance mod-

eling of software transactional memory. Comput. Netw., 53(8):1202–
1214, 2009.

[3] M. Herlihy and J. E. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In ISCA, May 1993.

[4] P. Magnusson, M. Christianson, and J. E. et al. Simics: A full system
simulation platform. In IEEE Computer vol.35 no.2, Feb 2002.

[5] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. Stamp: Stanford
transactional applications for multi-processing. In IISWC, 2008.

[6] C. Perfumo, N. Sonmez, A. Cristal, O. Unsal, M. Valero, and T. Harris.
Dissecting transactional executions in Haskell. In TRANSACT, 2007.

[7] D. E. Porter and E. Witchel. Understanding transactional memory
performance. Technical Report TR-09-31, UTCS, 2009.

[8] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhandari, and
E. Witchel. MetaTM/TxLinux: Transactional memory for an operating
system. In ISCA, 2007.

[9] C. von Praun, R. Bordawekar, and C. Cascaval. Modeling optimistic
concurrency using quantitative dependence analysis. In PPoPP, 2008.


