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Abstract Efforts towards hosting safety-critical, real-time applications on multicore
platforms have been stymied by a problem dubbed the “one-out-of-m” problem:
due to excessive analysis pessimism, the overall capacity of an m-core platform can
easily be reduced to roughly just one core. The predominant approach for addressing
this problem introduces hardware-isolation techniques that ameliorate contention
experienced by tasks when accessing shared hardware components, such as DRAM
memory or caches. Unfortunately, in work on such techniques, the operating system
(OS), which is a key source of potential interference, has been largely ignored. Most
real-time OSs do facilitate the use of a coarse-grained partitioning strategy to separate
the OS from user-level tasks. However, such a strategy by itself fails to address any
data sharing between the OS and tasks, such as when OS services are required for
interprocess communication (IPC) or I/O. This paper presents techniques for lessening
the impacts of such sharing, specifically in the context of MC2, a hardware-isolation
framework designed for mixed-criticality systems. Additionally, it presents the results
from micro-benchmark experiments and a large-scale schedulability study conducted
to evaluate the efficacy of the proposed techniques and also to elucidate sharing vs.
isolation tradeoffs involving the OS. This is the first paper to systematically consider
such tradeoffs and consequent impacts of OS-induced sharing on the one-out-of-m
problem.
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1 Introduction

The desire to host real-time workloads on multicore platforms in safety-critical ap-
plication domains has been stymied by a problem dubbed the “one-out-of-m” prob-
lem (Erickson et al. 2015; Kim et al. 2017b): when certifying the real-time correctness
of a system running on m cores, analysis pessimism can be so excessive that the
processing capacity of the “additional” m− 1 cores is entirely negated. In effect, only
“one core’s worth” of capacity can be utilized even though m cores are available. In
domains such as avionics, this problem has led to the common practice of simply
disabling all but one core.

The roots of the one-out-of-m problem are directly traceable to interference due to
contention for shared hardware components: as noted in a recent FAA report (Certifica-
tion Authorities Software Team 2016), interference creates effects that are difficult to
predict, and when this happens, analysis pessimism is the inevitable result. Given these
roots, the predominant approach for addressing the one-out-of-m problem involves
affording tasks some degree of hardware isolation, with the ultimate goal of enabling
lower (and more predictable) task execution-time estimates (Alhammad and Pellizzoni
2016; Alhammad et al. 2015; Altmeyer et al. 2014; Audsley 2013; Chisholm et al.
2016, 2015; Giannopoulou et al. 2013; Hassan and Patel 2016; Hassan et al. 2015;
Herter et al. 2011; Jalle et al. 2014; Kim et al. 2015, 2014a, 2013, 2017a,b; Kotaba
et al. 2013; Krishnapillai et al. 2014; Pellizzoni et al. 2010; Tabish et al. 2016a; Ward
et al. 2013; Xu et al. 2016; Yun et al. 2014, 2012).
Sharing breaks isolation. In practice, various sources of sharing commonly exist that
can break any isolation guarantees afforded to real-time tasks. Such sources include
data sharing among tasks using user-level techniques, read-only sharing through
the usage of shared libraries, and the sharing of data between the operating system
(OS) and user-level tasks that occurs when tasks invoke OS services for interprocess
communication (IPC) or I/O.

An ideal, “complete” solution to the one-out-of-m problem would require pre-
venting interference from all possible sources of sharing in a system. In reality, this
ideal solution is impossible—unfortunately, eliminating all interference is only tenable
if no task communicates with any other entity. Thus, when sharing is considered in
the context of the one-out-of-m problem, the focus inevitably shifts to the weaker
goal of lessening the negative side effects. Prior work in this direction by our group
has addressed user-level data sharing (Chisholm et al. 2016) and the usage of shared
libraries (Chisholm et al. 2016; Kim et al. 2017a) in the context of a hardware-
isolation framework targeting mixed-criticality systems called MC2 (mixed-criticality
on multicore) (Chisholm et al. 2017, 2016, 2015; Herman et al. 2012; Kim et al.
2017a,b; Mollison et al. 2010; Ward et al. 2013). To our knowledge, however, no
prior work on the one-out-of-m problem has investigated techniques specifically for
lessening the impact of OS-induced sharing by optimizing memory allocations.

Contributions. The primary contributions of this paper are:
– to provide a comprehensive description and explanation of the tensions between

task isolation and data-sharing among tasks as mediated by the OS through I/O
and IPC;
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– to propose a set of memory-management strategies that favorably resolve this
tension;

– and most importantly, to provide an extensive evaluation of the design space and
trade-offs pertaining to these memory-management strategies based on enhancing
real-time schedulability.

Our investigation required advances on three major fronts. First, we extended
MC2 to enable dynamic memory allocation. Prior work on MC2 was constrained to
making memory-allocation choices at task creation time. This strategy is insufficient
for OS kernel features such as IPC and device I/O, which have complex software
stacks that require allocating memory at runtime. While fully static memory allocation
is still available for highly critical hard real-time (HRT) tasks, MC2 also supports
less-critical soft real-time (SRT) tasks that may require greater flexibility in software
design. We enabled dynamic memory allocation in real-time tasks by augmenting
MC2’s kernel-level memory-allocation functions with controls for requesting specific
DRAM or last-level cache (LLC) regions.

Second, we devised options that leverage these controls to allow dynamic memory
allocation to be dealt with in an offline MC2 component that determines DRAM and
LLC allocations while optimizing schedulability. Prior to our modifications, this offline
component was incapable of determining where dynamic memory allocations should
be placed or how tasks should access I/O devices. Our modified offline component
continues to optimize schedulability, but can also guide how these finer-grained
memory-management controls are used at runtime.

Third, we conducted extensive experiments to evaluate the importance of optimiz-
ing data-sharing between devices, the OS, and user-level tasks. In these experiments,
we evaluated our modified version of MC2 in comparison to the preexisting version,
which did not consider this type of data sharing. Our experiments included micro-
benchmarking efforts and a large-scale overhead-aware schedulability study involving
randomly generated task systems. For most of the considered categories of generated
task systems, our memory-optimization techniques tended to yield a schedulability
improvement of 11% to 14% compared to a naı̈ve allocation, with larger improvements
seen for more I/O-intensive categories.

Organization. The rest of this paper is organized as follows. We begin in Sec. 2
by providing needed background. Then, in Sec. 3, we describe how OS-induced
sharing introduces interference, and in Sec. 4, we describe how we can mitigate such
interference. Next, in Sec. 5, we describe our micro-benchmark experiments, and in
Sec. 6, we discuss our schedulability study. Finally, we discuss related work in Sec. 7
and conclude in Sec. 8.

2 Background

In this section, we present relevant background material.

Task model. We consider real-time workloads specified via the implicit-deadline
periodic/sporadic task model and assume familiarity with this model. We specifically
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Fig. 1 Scheduling in MC2 on a quad-core machine.

consider a task system τ = {τ1, . . . , τn}, scheduled on m processors,1 where task τi’s
period, worst-case execution time (WCET), and utilization are given by Ti, Ci, and
ui = Ci/Ti, respectively. If a job of τi with a deadline at time d completes at time t,
then its tardiness is max{0, t− d}. Tardiness should always be zero for a HRT task,
and be bounded by a reasonably small constant for a SRT task.

Mixed-criticality scheduling. For systems with tasks of differing criticalities, Vestal
proposed mixed-criticality (MC) schedulability analysis, which uses less-pessimistic
execution-time provisioning for less-critical tasks (Vestal 2007). Under his proposal,
if L criticality levels exist, then each task has a provisioned execution time (PET)2

specified at each level and L system variants are analyzed. In the Level-` variant, the
real-time requirements of all Level-` tasks are verified with Level-` PETs assumed
for all tasks (at any level). The degree of pessimism in determining PETs is level-
dependent: if Level ` is of higher criticality than Level `′, then Level-` PETs will
generally exceed Level-`′ PETs. For example, in the systems considered by Vestal
(2007), observed WCETs were used to determine lower-level PETs, and such times
were inflated to determine higher-level PETs.

MC2. Vestal’s work led to a significant body of follow-up work on MC scheduling
and analysis, surveyed in Burns and Davis (2019). Within this body of work, MC2

was the first MC scheduling framework for multiprocessors (Mollison et al. 2010).
MC2 is implemented under LITMUSRT (LITMUSRT Project 2018), an extension

of Linux, and supports four criticality levels, denoted A (highest) through D (lowest),
as illustrated in Fig. 1. Higher-criticality tasks are statically prioritized over lower-
criticality tasks. Level-A tasks are partitioned and scheduled on each core using a
time-triggered, table-driven cyclic executive. Level-B tasks are also partitioned but are
scheduled using per-core rate-monotonic (RM) schedulers. MC2 requires the Level-A
and -B tasks on each core to be periodic (with implicit deadlines), have harmonic
periods, and start execution at time 0. In this paper, we require that Level-A and -B

1 We use the terms “processor,” “core,” and “CPU” interchangeably.
2 Under MC2, “PET” is used instead of “WCET” because SRT tasks are not provisioned on a worst-case

basis.
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Fig. 2 ARM Cortex A9.

tasks use polling when waiting for I/O or IPC, because dealing with suspensions
greatly complicates both scheduling and schedulability analysis, and delving into the
nuances of such analysis is beyond the scope of this work.

Level-C tasks are sporadic and scheduled via a global earliest-deadline-first
(GEDF) scheduler. Level-A and -B tasks are HRT tasks, Level-C tasks are SRT
tasks, and Level-D tasks are non-real-time, best-effort tasks. In this paper, we assume
that Level D is not present, as it is afforded no real-time guarantees. As in prior work
on MC2 (Kim et al. 2017b), we assume that Level-B and -C PETs are determined
to be, respectively, maximum observed execution times (MOETs) and average-case
execution times, and that Level-A PETs are obtained by inflating Level-B PETs by
50%.

MC2 hardware platform. MC2 includes several mechanisms for managing the LLC
and DRAM banks (Kim et al. 2017b), several of which require additional hardware
support provided by MC2’s test platform: the NXP i.MX6 quad-core ARM Cortex
A9 evaluation board. The rest of the paper assumes the same test platform. Each
core on this machine is clocked at 800MHz, supports out-of-order execution, and has
separate 32KB L1 instruction and data caches, as illustrated in Fig. 2. The LLC (the
L2 cache) is a shared, unified 1MB 16-way set-associative cache. The system has 1GB
of off-chip DRAM memory, partitioned into eight 128MB banks.

Bus controller configuration of the i.MX6. The bus system on the NXP i.MX6 consists
of five NIC-301 AXI (Advanced eXtensible Interface) arbiters (ARM Limited 2010),
and each arbiter contains one or more bus switches. The arbiter uses an arbitration
policy that allocates a single bus cycle at a time to a contending device based on the
Quality-of-Service (QoS) settings for the devices, discussed in more detail below.
Under default QoS settings, the arbiter allocates each bus cycle to contending devices
using a Least-Recently-Used (LRU) algorithm. The system has a single SATA II
interface, which is connected to one of the five arbiters. We configured the system
memory controller to disable bank interleaving (Freescale 2014, page 3876), as this
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was necessary to support bank partitioning, but did not modify any other memory-
controller settings.

On the surface, the availability of bus-level QoS features may sound like good news
for a project seeking to reduce memory-bus interference. Upon close examination,
however, we unfortunately found that the bus arbiters’ QoS settings were unable to
meet our needs for two reasons. First, the arbiter’s QoS setting is only one of several
factors affecting memory-access priority within the memory controller (Freescale 2014,
page 3813). Second, the QoS settings apply to all cores simultaneously,3 complicating
any attempt to prioritize memory access on a per-task or per-core basis using the
hardware-supported QoS settings. Therefore, in this paper, we opted not to use the bus
arbiter’s prioritization settings to further manage DMA (direct memory access) I/O,
and left all of the bus arbiter’s settings in their default state.

Cache and DRAM management in MC2. Our platform is an I/O coherent system that
has an Accelerator Coherency Port (ACP). Accesses to shared DMA memory regions
are routed to the cache controller, which does not insert new data into the cache, but
instead only invalidates or cleans cache lines in order to ensure coherency (ARM
Limited 2009).

MC2 supports LLC management using per-core lockdown registers to assign ways
(columns) of the LLC to task groups (Kim et al. 2017b). It can also allocate sets (rows)
of the LLC to task groups for finer partitioning, but we do not explore this option here.
Of more importance to this paper is MC2’s ability to partition DRAM banks among
task groups in order to mitigate DRAM interference due to row-buffer conflicts (Liu
et al. 2012).

Fig. 3 depicts the LLC and DRAM allocation strategy used in this paper. This
strategy ensures strong isolation guarantees for higher-criticality tasks, while allowing
for fairly permissive hardware sharing for lower-criticality tasks. DRAM allocations
are depicted at the bottom of the figure, and LLC allocations at the top. Level C
is allocated a subsequence of the available LLC ways; this subsequence is used by
the OS as well. Level-C tasks are SRT and provisioned on an average-case basis.
Under this assumption, Level-C tasks’ LLC sharing with the OS should not be a major
concern. The remaining LLC ways are partitioned among Level-A and -B tasks on a
per-core basis. DRAM is allocated similarly. This partitioning ensures that Level-A
and -B tasks do not experience LLC interference from tasks on other cores, i.e., spatial
isolation. Level-A tasks are also temporally isolated from Level-B tasks by being
afforded higher priority (this ensures there is no temporally interleaved access to
shared cache lines). In considering MC2-scheduled task systems, we assume all tasks
fit in memory and do not incur page faults.

Unmanaged hardware resources. The MC2 implementation described in the preced-
ing paragraphs does not provide management for L1 caches, translation lookaside
buffers (TLBs), memory controllers, memory buses, or cache-related registers that can
be contention sources (Valsan et al. 2016). However, we assume a measurement-based

3 All cores share two separate connections to the bus arbiter (Freescale 2014, page 3982), but assigning
a separate QoS value to each connection would be largely meaningless because, to our knowledge, there is
no way to specify which of the two connections any given memory request will use.
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Fig. 3 LLC and DRAM allocation. The boundaries within the LLC are configurable
parameters.

approach to determining PETs, so such uncontrolled resources are implicitly consid-
ered when determining PETs, as we measure execution times under the presence of
contention for such uncontrolled resources. We adopt a measurement-based approach
because work on static timing analysis tools for multicore machines has not matured
to the point of being directly applicable. Moreover, PETs are often determined via
measurement in practice. We assume that sufficient measurements are taken to cover
the worst-case behavior of all tasks with respect to unmanaged resources.4

Offline optimization component. The number of LLC ways allocated to the Level-C
partition and to the per-core Level-A and -B partitions are tunable parameters. These
per-task-set parameters can be determined offline using a linear program that optimizes
schedulability (Chisholm et al. 2015).

3 The Oxymoron of “Isolated Sharing”

By necessity, any real-time operating system (RTOS) must balance conflicting objec-
tives. Judging from research papers, the primary objective is ostensibly support for
predictable timing. The second objective, however, is likely more important: an RTOS
must carry out useful work. Early work on MC2 focused on the first objective, and
prevented cache and DRAM bank interference between concurrent tasks. Subsequent
MC2 variants began to bridge the gap between the two demands of timeliness and

4 Timing analysis for multicore machines is out of scope for this paper. Our measurement-based approach
is sufficient to inform realistic execution-time behavior under different resource-allocation policies, which
are the focus of this work.
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usefulness by enabling user-level data sharing between tasks. Data sharing allowed
tasks to interact with each other, but, unfortunately, inter-task data sharing alone is not
enough for most real-world use cases. In particular, a system can only be useful if it
produces output, and this fundamentally requires device I/O. Like IPC, device I/O is a
type of data sharing, and it, like all forms of data sharing, can cause interference. For
example, when Level-A/B tasks use IPC or I/O buffers in Level-C DRAM banks, they
may suffer cache evictions from Level-C activity. In prior work, such interference has
been considered in the context of temporal isolation (Pellizzoni et al. 2008b; Pellizzoni
and Caccamo 2010; Kim et al. 2014b; Muench et al. 2014), which is orthogonal to our
approach. This section discusses how data sharing, including IPC and I/O, is at odds
with the objective of hardware isolation.

3.1 Types of Data Sharing

As mentioned earlier, here we extend the data-sharing capabilities of MC2 in two key
areas: IPC and device I/O.

OS-supported IPC. Previous work on MC2 specifically focused on data sharing, but
took a limited view of the solution: it only supported user-level IPC using shared
memory (Kim et al. 2017a). This limitation facilitates maximizing isolation, because
it avoids the need for system calls or dynamic memory allocations. Shared-memory
buffers can be allocated and isolated during task initialization, and can be accessed
without involving the OS.

However, shared-memory IPC is often less convenient or less efficient than OS-
supported IPC. For example, even simple message-passing systems require in-memory
synchronization primitives or wait-free data structures (as recommended in Kim et al.
(2017a)). These shortcomings are addressed by other IPC mechanisms such as message
queues or pipes, but these mechanisms break isolation because, in addition to sharing
with other tasks, they require sharing data with the OS kernel. Involving the OS kernel
is particularly problematic because the OS is fundamentally shared among all tasks.

Device I/O. Even if OS-supported IPC can be achieved without compromising iso-
lation, IPC is still only one of several ways in which programs share data. A second
major source of data sharing is device I/O. Modern device I/O is largely centered
around DMA, where hardware peripherals can directly read from or write to the same
DRAM as the CPUs. Therefore, to support device I/O, the first requirement is that a
real-time system must prevent or account for unpredictable DRAM interference due to
DMA. However, device interaction does not end with raw data entering DRAM—such
data must also be processed by user-level CPU tasks. Therefore, a second requirement
is that a real-time system must deliver I/O data to user-level tasks (i.e., the OS must
place I/O data into user-space memory in order to be accessible to user-level tasks).
The second objective is similar to OS-supported IPC because low-level interaction with
hardware is typically delegated to the OS kernel, even if I/O is initiated by user-level
tasks (we do not consider cases where I/O is entirely handled in user space).
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Summary: types of interference due to data sharing. The prior paragraphs establish
why data sharing can lead to hardware interference without describing the specifics of
how the interference occurs. Fortunately, the types of interference we mitigate in our
modifications to MC2 can be simplified into two categories:

– CPU-sourced interference. CPU-sourced interference occurs when tasks suffer
interference due to other CPU tasks concurrently accessing the same DRAM bank
or cache region. Kernel-allocated IPC buffers that do not conform to our LLC
and DRAM allocation policy and interactions with the OS cause this type of
interference.

– DMA-sourced interference. DMA-sourced interference occurs when tasks suffer
interference due to ongoing DMA transfers. In this paper, we specifically address
DMA-sourced DRAM bank interference. In contrast to CPU-sourced interference,
DMA-sourced interference has only a minor impact on our Cortex-A9 platform’s
LLC.5 DMA may interfere with other resources not managed in this work, includ-
ing TLBs, memory buses, memory controllers, and cache-related registers.

Our modifications to MC2’s DRAM and cache-aware memory-management sys-
tem reduce both of these sources of interference. We note here that other kernel data
structures such as task structures, page tables, and page caches are already isolated in
Level-C DRAM banks as we described in Sec. 2. We defer a further discussion of our
specific modifications until Sec. 4, and instead dedicate the remainder of this section
to examples of how these types of interference arise in practice.

3.2 Memory Interference in Real Software

To understand some of the difficulties with data sharing, one can observe the proce-
dures for interacting with devices on a Linux-based system. I/O for different devices
can differ surprisingly in terms of software complexity and the potential sources of
memory interference. We illustrate this point using two devices: a secondary-storage
disk and a USB video camera.

Memory interference from zero-copy I/O. “Zero-copy” refers to I/O that does not
require copying data between separate memory buffers. Fig. 4 depicts one possible
type of zero-copy I/O in Linux: reading from secondary storage.6 Generally, a program
reads from a disk by issuing a read system call and specifying a user-allocated
memory buffer to receive the data. This is shown at the top of Fig. 4. This prompts the
kernel to determine the specific sectors of the disk to read, and to issue a request to
the disk via the appropriate communication bus. The disk itself will then use DMA
to populate the user-space buffer. When the DMA transfer is complete, the disk will
send an interrupt to the kernel, which returns control to the user task. Finally, the user
task is free to operate on the received data.

5 By this, we mean that interference due to cache evictions does not occur on our platform as the DMA
data pages are marked as uncacheable. However, as mentioned in Sec. 2, overhead due to the coherency
protocol (i.e. invalidating cache lines) may still exist.

6 This actually is not the default disk-access behavior in Linux; zero-copy disk I/O requires passing the
optional O DIRECT flag to the open system call.
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User task: Read from disk

Kernel: Issue request to disk

Disk: DMA transfer

User task: Process data

DMA-sourced interference

CPU-sourced interference

Fig. 4 Simplified direct disk I/O data flow.

The zero-copy example from Fig. 4 illustrates two useful points. First, it illustrates
both DMA-sourced interference when the device writes to the buffer, and CPU-sourced
interference when the task accesses it. Second, being zero-copy, this example involves
only a single, user-allocated buffer. Therefore, both sources of interference can be
managed by properly provisioning a single region of memory. For example, if we
allocate the buffer in a Level-A/B DRAM bank, then a Level-A/B task performing
I/O does not experience CPU-sourced interference, but all Level-A/B tasks allocated
on this bank may suffer DMA-sourced interference due to bank conflicts. On the
other hand, if we allocate the buffer in the Level-C banks, then the I/O-performing
task experiences CPU-sourced interference, but Level-A/B tasks will not experience
DMA-sourced interference.

Memory interference from USB I/O. In contrast to the zero-copy example, Fig. 5
illustrates the flow of data when a user-level task attempts to read a frame from a USB
camera on a Linux-based system like MC2.7 Tasks using Linux’s standard Video for
Linux version 2 (v4l2) API must first request one or more buffers to hold video
frames, but this actual allocation is managed in kernel code. Next, the user task may
issue a request to read a new video frame, which prompts the kernel to start receiving
data from the camera. Despite using DMA to transfer USB packets, each USB packet
only contains a small portion of the overall frame, which must be copied to the frame
buffer. Finally, when the kernel finishes copying an entire frame, the user task is able
to access the frame buffer.

Fig. 5 demonstrates the counterintuitive fact that device complexity is not nec-
essarily related to difficulty in preventing interference. In the zero-copy example,
ensuring the isolation of a single user-allocated buffer is sufficient to prevent unpre-
dictable CPU- and DMA-sourced interference. However, the seemingly simpler USB
driver uses intermediate buffers that can also be subject to CPU- and DMA-sourced
interference. An RTOS must instrument allocation decisions by each device driver.
Experiments presented in Sec. 5 indicate that the decision as to where to place these
dynamic buffers introduces subtle tradeoffs.

7 USB devices may not be common in HRT systems; we use a USB camera only as an exemplar of
devices where OS activity may cause memory interference.
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User task: Request frame buffer

Kernel: Allocate frame buffer

User task: Request video frame

Kernel: Issue USB request

Camera: Send USB packets (DMA)
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packets to frame buffer

User task: Process video frame

DMA-sourced interference

CPU-sourced interference

CPU-sourced interference

Fig. 5 Simplified USB camera I/O data flow.

Non-data-related sources of interference. While the discussion above focuses on
DRAM and cache interference due to data transfers, both IPC and device I/O also
involve other sources of interference, including interrupt overhead and interference due
to instruction fetches. In practice, however, we found that these sources of interference
are small enough to account for by inflating PETs. We leverage overhead-accounting
techniques presented in our prior work (Kim et al. 2017b) to accommodate this
requirement.

To further reduce the impact of interrupt interference, we redirect all interrupts
to a single CPU. To account for interrupt-handling time, we inflate the PET of any
tasks assigned to this CPU accordingly.8 As MC2 always places kernel code into the
Level-C banks and LLC partition, the OS accesses Level-C DRAM and LLC areas
when it executes interrupt handlers or invokes system calls. Therefore, Level-A and -B
tasks assigned to the interrupt-handling processor do not experience interference with
respect to the LLC and memory banks. However, when Level-A and -B tasks on this
processor invoke system calls, they suffer a small amount of additional interference
because the OS fetches instructions from the Level-C banks and LLC partitions
regardless of where IPC or I/O data buffers are located. This, unfortunately, is an
unavoidable consequence of loading kernel code into Level-C banks at boot time—and
the MC2 kernel is too large to fit into a Level-A/B bank.

8 This requires knowledge of worst-case interrupt interarrival and execution times. We assume that we
operate in a “closed world,” with a priori knowledge of interrupt types and maximum frequencies, as is
typically assumed in real-time overhead accounting.
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4 Implementation in MC2

The possibility for interference in both I/O and IPC stems from a single difficulty:
the need to isolate MC2’s kernel-managed memory buffers. This section discusses
our modifications to MC2’s memory-management system, and how we leveraged our
modifications to reduce or prevent CPU- and DMA-sourced interference. All of our
code, both for these modifications and for running the experiments presented later, is
open source.9

4.1 Modifications to MC2 Memory Allocation

As discussed in Sec. 2, MC2’s primary means of reducing shared-hardware inter-
ference is cache partitioning and DRAM bank isolation. Level-C tasks may share a
dedicated region of the LLC or certain DRAM banks, but Level-A and -B tasks are
guaranteed to be free from unpredictable interference whenever possible. Each task is
a Linux process, and must invoke a special system call after initialization. This system
call prompts the MC2 kernel to migrate the task’s memory to appropriate physical
locations (Kim et al. 2017b).

This prior memory-remapping approach has two shortcomings. First, it only
occurs once per task, after initialization. Second, it only migrates pages allocated in
a task’s own address space. These problems preclude isolating IPC and device I/O,
which use dynamically allocated kernel memory. We addressed both shortcomings
by modifying the kernel’s memory-allocation routines. We begin by describing the
memory-management system in Linux. We then present our modifications to this
system.

Memory management in Linux. In Linux, physical pages are managed and allocated
by the buddy allocator (Knowlton 1965; Knuth 1968). Memory is divided into blocks
of pages where the size of each block is 2k pages for some k. The buddy allocator
maintains a list of free blocks.10 Fig. 6 illustrates the management of free blocks
in Linux. When the OS kernel allocates memory, the buddy allocator searches for
an appropriately sized block. When a block of the requested size is not available, a
larger block is divided into two half-sized blocks. (These two blocks are “buddies” to
each other—hence the name “buddy allocator.”) One of these halves is used for the
allocation and the other is simply added back into the list of free blocks. When a block
is freed, it will be re-combined with its buddy if the buddy is still free.

Our modification to the memory-management system. Our modification to the buddy
allocator consists of replacing the single list of free pages with m+1 independent
lists as illustrated in Fig. 7. m of these lists hold free pages for the Level-A and -B

9 Source code is available at https://wiki.litmus-rt.org/litmus/Publications.
10 The buddy allocator maintains a list of free blocks per zone. A zone is a group of pages that have similar

properties. The hardware platform considered in this paper has only one zone, ZONE NORMAL. However,
other architectures may have multiple zones such as ZONE DMA, ZONE NORMAL, and ZONE HIGHMEM.
In such platforms, the buddy allocator can have more than one list (Gorman 2004).
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Fig. 6 A list of free blocks managed by the buddy allocator.

tasks on each of the m CPUs. The additional list holds free pages for Level-C tasks.
We extended Linux’s core allocation function, alloc pages(), which is used
internally by all of Linux’s memory-allocation APIs, to allow specifying which of the
m+1 lists to allocate from. By default, we allocate from the Level-C list.

With this modification, all memory requests are served by the Level-C/OS DRAM
banks unless an allocation request explicitly requires Level-A/B pages. To enable
such requests, we extended the Get Free Page (GFP) flags, a set of bits that must
be provided when invoking most memory-allocation routines in the Linux kernel.
Normally, these flags configure several aspects of how Linux’s memory allocator
behaves for an allocation. Our modification only required adding a single bit to the
GFP flags. If this bit is set, it prompts our modified buddy allocator to determine which
processor is making the request, and to fulfill the request from the free-page list for
that processor’s Level-A/B bank.

As each CPU core has one dedicated 128 MB DRAM bank for high-criticality
Level-A and -B tasks, we are unable to allocate more than 128 MB to any group of
Level-A and -B tasks that share a CPU core (as doing so would require breaking isola-
tion by allocating from other cores’ banks). We assume the total memory consumption
of Level-A and -B tasks fits within this constraint and, in our implementation, any
attempt to get free pages from such a list when none are available will fail.

Device drivers and IPC system calls generally request kernel memory via two sim-
ple interfaces, vmalloc and kmalloc. The vmalloc function calls the alloc
pages function, so we can achieve criticality-aware vmalloc allocations by ex-

tending the alloc pages function as mentioned earlier. However, vmalloc is
typically used to allocate larger chunks of memory. The kmalloc function, by con-
trast, is used when smaller memory buffers are required. As the kernel manages the
system’s physical memory in page-sized chunks, the kmalloc function may use
a different memory-allocation technique to provide sub-page-sized allocations. To
handle small memory allocations, Linux uses a set of pools of memory objects of
fixed sizes; this functionality is provided by the kmem cache allocator. Therefore,
we also extended this kmem cache allocator to create per-core memory pools with
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Fig. 7 Modified m+1 lists of free blocks in the buddy allocator.

Level-A/B pages in order to serve small memory allocations on behalf of Level-A
and -B tasks. The kmem cache allocator creates memory pools of different sizes
for kmalloc allocations at boot time by subdividing pages obtained from the buddy
allocator. Therefore, modifications to the buddy allocator ultimately affect all dynamic
memory allocations, of both large and small buffers, and in both the kernel and user
space.

Safe default behavior. A major benefit of the modifications outlined above is that
Level-C tasks can dynamically allocate memory without further kernel modification.
Level-C memory allocations, issued by Level-C tasks or by the kernel on behalf of
Level-C tasks, no longer cause unpredictable interference in Level-A and -B tasks.
Even though our new allocator is capable of obtaining isolated pages for Level-A
and -B tasks, doing so requires explicitly modifying the driver or kernel code where
pages are allocated. Unfortunately, simply allowing Level-A and -B tasks completely
unfettered access to IPC or I/O buffers in Level-C banks may cause them to suffer
cache evictions from Level-C activity. We address such additional complications in
Sec. 4.2.

4.2 Optimizing Allocations to Reduce IPC-Related Interference

Even with the kernel modifications described in Sec. 4.1, making the best use of the
newly introduced features requires additional input from MC2’s offline optimization
component. Usually, we want to minimize interference experienced by Level-A and -B
tasks, which are HRT and are therefore most sensitive to additional overhead. Ideally,
Level-A and -B tasks should only experience interference in a bounded amount of time
when they access shared buffers. The prior work on shared-memory IPC in MC2 (Kim
et al. 2017a) considered this problem in detail—at least for IPC via statically allocated



Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-Criticality Real-Time Tasks 15

shared buffers.11 Here, we apply the same proposed techniques to reduce interference
in dynamically allocated memory. The techniques are:

– Selective LLC Bypass (SBP): Allocate buffers from Level-C banks, but make
them uncacheable. Even if tasks concurrently access these buffers, they will not
cause other content to be evicted from the LLC, avoiding cache interference.

– Concurrency Elimination (CE): If two communicating tasks are Level-A or -B
tasks, assign both to the same CPU, and allocate the buffers from that CPU’s
Level-A/B bank. This prevents DRAM bank and LLC interference from tasks
running on other CPUs. Cache-reload overheads are already accounted for in our
analysis for Level-B tasks, and Level-A tasks cannot be preempted by Level-B
tasks so they do not experience cache reload overheads.

– LLC Locking (CL): Lock a pre-allocated buffer into the LLC, so data can be
shared without risking evictions or row-buffer conflicts. This approach reduces
LLC space for other purposes, but eliminates both cache and DRAM bank inter-
ference.

Even though only one of these approaches may be applied to a single given buffer,
different approaches can be in use for different buffers across the entire system. To this
end, we modified MC2’s offline optimization component to choose the appropriate
mechanism for each pair of communicating tasks. We evaluate the efficacy of this
optimization in Secs. 5–6.

4.3 Optimizing I/O-Related Interference

DMA-sourced interference primarily affects DRAM banks and not the LLC, so we
explore comparatively fewer management options for I/O buffers. Even so, with the
ability to allocate kernel DMA buffers, we can handle DMA-sourced interference in
two ways. The first, simpler, way is the default behavior described in Sec. 4.1: place
DMA buffers in Level-C banks. The second way is to allocate DMA buffers in a
Level-A/B bank if the corresponding device is being used by a Level-A or -B task.

These two approaches have different implications regarding how tasks are impacted
by DMA-sourced interference. If all DMA buffers are in Level-C banks, then Level-A
or -B tasks do not experience row-buffer conflicts as part of DMA-sourced interference,
whereas allocating buffers from per-core Level-A/B banks may expose the Level-A or
-B tasks on that core to DMA-sourced interference.

However, as discussed in Sec. 3, I/O data is useless without being accessed, and
such accesses can give rise to CPU-sourced interference. So, while placing I/O buffers
in Level-C banks reduces DMA-sourced interference in Level-A and -B tasks, it will
increase CPU-sourced interference when Level-A and -B tasks access those buffers.
Similar to the IPC-management options, we incorporated these two I/O-management
options into our offline optimization component and evaluate their efficacy in Secs. 5–
6.

11 The prior work also considers sharing between tasks of different criticality levels, but we chose not
to evaluate such sharing in this paper to reduce the complexity of the schedulability study, which already
required the addition of several new parameters. However, cross-criticality sharing remains theoretically
possible under our new modifications so long as it remains limited to wait-free communication.
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Task’s Criticality Level A B C
Task’s Buffer Location A/B C A/B C C

On/from the same CPU

Causes DMA-sourced Yes Yes† Yes Yes Yes
Experiences DMA-sourced Yes Yes* Yes Yes* Yes
Causes CPU-sourced No No No No No
Experiences CPU-sourced No No No No No

On/from other CPUs

Causes DMA-sourced No Yes† No Yes Yes
Experiences DMA-sourced No Yes* No Yes* Yes
Causes CPU-sourced No Yes No Yes Yes
Experiences CPU-sourced No Yes* No Yes* Yes

* Only experiences interference when accessing the particular buffer
† Only causes interference to Level-C tasks

Table 1 Types of interference a task may cause or experience, depending on whether
it has a buffer located in a Level-A/B bank or Level-C banks.

4.4 Summary of Memory-Allocation Options

Table 1 summarizes the potential buffer-allocation options enabled by our modifica-
tions to MC2. The columns of Table 1 are divided based on the location of the buffer
(which may be in the Level-A/B bank for a given core, or the Level-C banks shared
among all cores), and the criticality level of the task accessing the buffer. The rows of
Table 1 indicate both whether such an allocation causes the task for which the buffer
is allocated to experience interference, and whether such an allocation will cause
interference in other tasks.

Table 1 summarizes several facts described earlier in the paper. First, no task can
cause or experience CPU-sourced interference from other tasks assigned to the same
core (preemptions do not fall into the definition of CPU-sourced interference from
Sec. 3.1; we account for them elsewhere in analysis), so the third and fourth rows of
the table are all “No”. The rightmost column, representing Level-C tasks, contains
“Yes” in every row apart from the third and fourth, because buffers for Level-C tasks
can only be allocated from Level-C banks, which are always subject to interference
from other Level-C tasks on all cores. In contrast, MC2’s bank isolation ensures that
Level-A/B tasks will never experience interference from other cores if all of their
buffers are located in the per-core Level-A/B bank.

Entries marked “Yes∗” correspond to the cases where Level-A/B tasks allocate
I/O or IPC buffers in Level-C banks. As discussed earlier, even though these cases
may experience additional interference, the policies discussed in Secs. 4.2 and 4.3
ensure that interference is only experienced when accessing the buffer, differentiating
these cases from the other “Yes” entries in the table, where interference can occur at
any time during the task’s execution. Likewise, entries marked “Yes†” correspond to
cases where Level-A/B tasks allocate I/O buffers in Level-C banks. These entries are
distinct from others marked “Yes” in that such allocations only cause Level-C tasks to
experience additional interference. On the other hand, other Level-A/B tasks, which
require stricter isolation, are not affected by bank conflicts due to these allocations.
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While Table 1 summarizes the causes and effects of various types of interference,
it does not reflect the relative magnitude of each type of interference. We investigate
performance impacts in the following section, using micro-benchmark experiments.

5 Micro-Benchmark Experiments

To assess the impacts of CPU- and DMA-sourced interference under the different
buffer-allocation options, we experimented with various micro-benchmark programs.
The micro-benchmark experiments here serve a dual purpose. First, they simply
provide a concrete illustration of interference’s negative impact on timing. Second,
they provide the inflation factors used during the task-system generation process,
required by the schedulability study in Sec. 6. In these micro-benchmark experiments,
we investigated IPC impacts using Linux’s System V message-queue implementation,
and I/O impacts using a USB camera and a solid-state disk (SSD). We conducted our
experiments on the ARM A9 platform described in Sec. 2 using the allocation scheme
shown in Fig. 3.

In cases where we computed average-case execution times (ACETs), we used the
arithmetic mean to compute averages. Across all of our means, the largest confidence
interval (at a 95% confidence level) was 11 microseconds—a negligible time in those
experiments, which had measured response times of hundreds of milliseconds. We
continue below with our major experimental findings.

5.1 Impact of IPC-Related Interference

Workloads. To evaluate the SBP, CE, and CL policies from Sec. 4.2 on IPC, we imple-
mented tasks that communicated using message queues. Specifically, we implemented
a Sender task, which sends 100 fixed-sized messages, and a Receiver task, which
receives 100 messages. We ran these tasks at Level A concurrently with a background
workload at Level C, with message sizes ranging from 64 to 8,192 bytes. The Receiver
was set to start executing after the Sender completes, to guarantee immediate message
availability. We designed the background workload to stress the Level-C partition in
the LLC and DRAM banks. We measured execution times of the kernel functions
load msg() and do msg fill(). The load msg() function allocates a mes-
sage buffer and copies a message from a user buffer, and do msg fill() copies a
message to a user buffer and frees the message buffer. We collected 10,000 samples
for each considered message size under each of the three management strategies
(SBP, CE, and CL). Fig. 8 plots the MOET data collected for load msg() and
do msg fill().

Observation 1 Sending and receiving execution times were the lowest under CL and
the highest under SBP.

Unsurprisingly, the time required to send and receive messages was the fastest
when IPC buffers were locked into the cache (CL) and slowest when they were forced
to bypass the cache (SBP). Observed CL sending times were between 2.7% and 5.4%
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Fig. 8 MOETs for (a) load msg() of the Sender task and (b) do msg fill() of
the Receiver task.

of SBP sending times, and receiving times were 10.6% to 15.9% of SBP receiving
times. The CE sending times were between 9.2% and 12.9%, and receiving times
were between 29.2% and 40.5%, of the respective SBP times. These results are in
accordance with results concerning user-level sharing reported in Chisholm et al.
(2016). CL offers the fastest response times if the LLC is large enough to hold all
message buffers. However, CL effectively reduces the LLC size for other purposes.
CE provides a good middle ground, as two Level-A or -B tasks assigned to the same
core can communicate without any interference from the Level-C background task.
CE exhibits only slightly slower execution times than CL, likely due to the fact that its
communication buffers are no longer locked into the cache, meaning that the buffers
can sometimes be evicted by the communicating tasks’ other activities. Our new offline
component for MC2, detailed in Sec. 6, takes these tradeoffs into consideration.
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Program Description
Matrix DIS Stressmark Suite program. Solve the equation Ax = b.
Synthetic Keep writing arbitrary data to a random memory address.
Framecopy Copy image data from the frame buffer to user-space buffer.
Yuv2gray Convert YUV formatted image to a grayscale image.

Table 2 Micro-benchmark programs.

5.2 Impact of I/O-Based CPU-Sourced Interference

While IPC only causes CPU-sourced interference, I/O can cause both CPU- and
DMA-sourced interference. Of these, we first examine CPU-sourced interference.

Workloads. We assessed CPU-sourced interference using the micro-benchmarks in
Table 2. Matrix comes from the data intensive systems (DIS) stressmark suite (Mus-
manno 2003), which was designed to reflect memory-intensive workloads. Synthetic
continuously iterates a main loop that writes arbitrary data to randomly selected
memory locations. It was designed to stress the LLC, DRAM, and other unmanaged
resources. Framecopy and Yuv2gray are video-processing tasks. We modified the
v4l2 driver, which supports many USB cameras in Linux, to control where buffers
are allocated for these tasks.12 Other non-shared data such as the matrix arrays of
Matrix and the array used by Synthetic were statically allocated in accordance with
our allocation strategy described in Fig. 3.

Scenarios. To assess CPU-sourced interference, we considered three scenarios:

– Idle: Each micro-benchmark was run alone, with no interfering competing work-
load.

– Managed: The tasks were executed with the DRAM allocations shown in Fig. 9(a).
(Each task’s criticality level is denoted with a superscript in this figure.) The frame
buffer was allocated in CPU 3’s Level-A/B bank. This prevents tasks τA4 and τA5
from experiencing CPU-sourced interference.

– Unmanaged: The frame buffer was instead allocated in a Level-C bank, as shown
in Fig. 9(b). This causes τA4 , τA5 , and τC2 to experience CPU-sourced interference.
This scenario reflects the prior MC2 implementation, which provides no means
for allocating buffers anywhere other than in Level-C banks.

We collected 1,000 execution-time samples for each task in each scenario. Fig. 10
presents normalized (relative to Managed) MOETs and ACETs obtained from this
data for the copy and color-conversion functions of Framecopy (τA4 ) and Yuv2gray
(τA5 ), respectively, for different frame sizes. We limit measurements to these functions
as only these portions of tasks’ execution times experience interference due to ac-
cessing the frame buffer. Fig. 12 presents data showing the impact on Matrix (τC2 ) of

12 This was done by modifying calls to kmalloc and similar functions to allocate pages from the
per-core high-criticality partitions when necessary via the memory-management interface changes described
in Sec. 4.
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Fig. 9 Micro-benchmark tasks and resource allocations.

CPU-sourced interference caused by Yuv2gray (τA5 ) as a function of the LLC region
size allocated to Matrix (τC2 ).

Observation 2 CPU-sourced interference inflated the MOET of copying by up to
81% and of color conversion by up to 31%. It also inflated the respective ACETs by
85% and 25%.

This observation is supported by insets (a) and (b) of Fig. 10 and confirms that
DRAM interference due to I/O buffers can be problematic. The MOET inflation of 81%
between Managed and Unmanaged is shown in the MOET of Framecopy.640x480,
which is 5321.33µs under Unmanaged and 2925.67µs under Managed. We ob-
served higher impact on the execution times of Framecopy because Yuv2gray requires
additional computation to re-encode each pixel, and this computation is not affected
by CPU-sourced interference. Fig. 11 shows the MOETs and ACETs of Framecopy
and Yuv2gray. Note that the gap between Idle and Managed is caused by interfer-
ence from unmanaged resources (see Sec. 2). (This is not to be confused with the
Unmanaged measurements, which were made while no resources were managed,
included DRAM and cache.) Under Managed, two instances of Synthetic (τA1 and
τA3 ) contend for unmanaged resources, while under Idle, no competing workload
exists.
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Fig. 10 Normalized execution times of Framecopy and Yuv2gray.

Observation 3 CPU-sourced interference inflated Matrix’s MOET by 6% and its
ACET by 3%.

This observation is supported by insets (a) and (b) of Fig. 12. As expected, the
execution-time inflation decreases as the number of LLC ways allocated to Matrix
increases. Note that frame-buffer accesses do not break LLC isolation because CPUs 1
and 3 use different partitions in the LLC. The inflation seen here is due to DRAM bank
conflicts. The smaller increases here (relative to those shown in Fig. 10), in addition to
the smaller differences between average and maximum observed times, are due to the
fact that Matrix is far more deterministic than the video-processing microbenchmarks,
due to operating on a fixed set of inputs without communicating with other tasks or
peripheral devices.
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Fig. 11 Measured execution times of Framecopy and Yuv2gray.

5.3 Impact of DMA-Sourced Interference

As discussed in Sec. 3, tasks can experience DMA-sourced interference whenever an
I/O device sends or reads data. We conducted the following experiments to assess the
impact of such interference.

Workloads. We used an SSD to generate DMA transactions at varying bandwidths.
This was done by configuring a Load-Generator task to repeatedly read 400KB of
data from the SSD at a fixed interval. Higher bandwidths were achieved by shrinking
the duration of this interval. We configured Load-Generator to access the SSD using
the O DIRECT flag to enable DMA directly into user-allocated memory. To observe
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Fig. 12 Matrix execution times as a function of allocated LLC space.

the impact of DMA-sourced interference, we measured the runtime of a Synthetic task
that repeatedly writes 256KB of arbitrary data to randomly selected memory locations.

Scenarios. We ran three instances of Load-Generator on separate CPUs, and one
instance of Synthetic on the remaining CPU, all at Level A. We collected 1,000
execution-time samples for Synthetic to determine how DMA-sourced interference
affected it. This task system was evaluated under two scenarios:

– Level-A/B: All Load-Generator I/O buffers were allocated in Synthetic’s Level-
A/B bank. This scenario represents the Managed scenario in Sec. 5.2, where an
I/O-performing task does not experience CPU-sourced interference, but other tasks
on the same CPU could experience DMA-sourced interference.13

– Level-C/OS: All Load-Generator I/O buffers were allocated in the Level-C banks.
This scenario represents the Unmanaged scenario in Sec. 5.2, where an I/O-
performing task experiences CPU- and DMA-sourced interference.

Fig. 13 presents MOET data obtained for Synthetic under these two scenarios with
a small (Fig. 13(a)) and large (Fig. 13(b)) LLC region allocated to it.

13 Note that the Load-Generator tasks were not actually executed on the same CPU as Synthetic. Running
them all on the same CPU makes obtaining accurate execution-time measurements more difficult, and
this experiment was only intended to isolate the impact of DMA-sourced interference on the measured
(Synthetic) task.
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Fig. 13 Synthetic MOETs under two allocation scenarios.

Observation 4 Synthetic’s MOET rose with increasing DMA bandwidth.

This observation is supported by both insets of Fig. 13. Because this slowdown
happened under both scenarios, we can infer that it is mainly due to memory-bus
contention caused by DMA.

Observation 5 Allocating an I/O buffer in a Level-A/B bank can have a negative
impact on other Level-A/B tasks that access that bank.

Fig. 13(a) supports this observation. The difference between the two curves here
is due to additional row-buffer conflicts that occur in the Level-A/B scenario. These
conflicts become much less of an issue if a task is allocated sufficient LLC space, as
seen in Fig. 13(b).

These results confirm in practice the tradeoff alluded to in Sec. 4.4. If an I/O-
performing Level-A or -B task is allocated I/O buffers in its own Level-A/B bank, then
the I/O-performing task does not experience CPU-sourced interference. However, the
resulting DMA transfers can cause other tasks that access the same Level-A/B bank
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Fig. 14 Synthetic MOETs under six different I/O-buffer allocations.

to experience additional row-buffer conflicts as part of DMA-sourced interference.
These conflicts can be avoided by allocating I/O buffers in the Level-C banks, but then
the I/O-performing task experiences CPU-sourced interference when accessing the
buffers. In either case, tasks executing on any CPU can experience interference from
unmanaged resources as part of DMA-sourced interference. To further quantify this
tradeoff, we conducted an additional micro-benchmark experiment.

Tradeoff between two allocation approaches. To evaluate the tradeoff between allocat-
ing buffers in Level-A/B or Level-C banks, we modified the Load-Generator task to
read 400KB of data spread across both a Level-A/B bank and the Level-C banks. We
evaluated six different scenarios, respectively allocating 0%, 20%, 40%, 60%, 80%, or
100% of the I/O buffers in the Level-C banks. For example, in the scenario where 40%
of the I/O buffers are allocated in the Level-C banks, the Load-Generator task reads
160KB of data from the Level-C banks and 240KB of data from its core’s Level-A/B
bank.

Observation 6 Synthetic’s MOET decreases as the percentage of Level-C allocation
increases.

Fig. 14 supports this observation. A Level-A or -B non-I/O-performing task ex-
periences more interference if it must share its Level-A/B bank with other tasks’
I/O buffers. Such interference is caused by row-buffer conflicts in the Level-A/B
bank as part of DMA-sourced interference. However, the I/O-performing tasks will
experience less CPU-sourced interference. Therefore, the overall impact of CPU- and
DMA-sourced interference depends on a ratio between non-I/O-performing tasks and
I/O-performing tasks in a task system. To sift through this tradeoff and other issues,
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we conducted a large-scale, overhead-aware schedulability study, which we discuss
next.

6 Schedulability Study

Sec. 5 investigated the impact of our IPC and I/O management approaches on in-
dividual tasks, but high-level tradeoffs require investigating potential impacts on
schedulability for entire task systems. To assess such tradeoffs, we conducted a large-
scale, overhead-aware schedulability study.

Schedulability studies. Drawing concrete conclusions about different hardware-man-
agement techniques or real-time algorithms is difficult when the efficacy of each
approach is highly dependent on task-system characteristics. For example, the addi-
tional I/O-management techniques introduced in this paper clearly would be of little
use to a task system that performs no I/O. However, an I/O- or IPC-intensive task
system may experience a large benefit from the additional management. Evaluating
the efficacy of our hardware-management techniques using either one of these two
extremes could result in a misleading conclusion, so we must instead evaluate our
work with respect to a large number of task systems, while accounting for any new
overheads that our techniques introduce.

Schedulability studies are a widely used tool in real-time research intended to
address this difficult problem. Schedulability studies produce generalizable results
about the utility of new techniques by generating the parameters for a large number
of synthetic task systems (i.e., not actual executable code), and then determining
what fraction of the generated systems are schedulable using the techniques under
study and an appropriate schedulability test. The claim then is that if a synthetic task
system is schedulable, then a real task system with the same parameters would also be
schedulable.

A large number of task systems is necessary in order to provide statistical confi-
dence and to cover a broad spectrum of task-system parameters. The generated systems
must be synthetic, consisting only of task parameters, e.g., utilization, period, working
set size, etc., because generating and running executable code at the necessary scale
is infeasible. However, schedulability studies still must model behavior (i.e., interfer-
ence) encountered on real hardware. To account for this, it is a common practice for
schedulability studies to use microbenchmark experiments, as mentioned in Sec. 5, to
model how the synthetically generated execution costs should be adjusted to represent
the impact of interference and overheads (Brandenburg 2011).

6.1 Approach

We begin by describing the optimization framework used in this schedulability study.
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Optimization framework. The overall objective of the optimization framework within
this work is to lower the total utilization of Level-C tasks, as this generally lowers
the tardiness of these tasks (we assume that the response times of Level-A/B tasks
are irrelevant so long as they make their HRT deadlines). The framework explores a
space of possible partitions of the hardware to accomplish this. However, the level
of interference experienced by a task depends on how the hardware is partitioned, so
the execution costs of tasks are conditioned on this partitioning. Thus, the framework
is constrained to produce hardware partitionings under which the given task system
passes all required schedulability tests.

The framework can be roughly divided into three phases. The first phase in-
volves partitioning Level-A/B tasks among cores. The second phase involves deciding
whether to allocate I/O buffers of Level-A/B tasks in Level-A/B or -C banks. The
third phase involves partitioning the LLC ways. The ways are partitioned into six
regions: four per-core regions for the exclusive access of Level-A/B tasks, a region for
Level-C tasks and the OS, and a region for shared buffers locked into the LLC. While
more optimal resource-management solutions might be found by considering these
decisions together rather than in phases, the phases are kept separate in order to keep
the framework tractable for a schedulability study.

The first phase is similar to bin packing. The underlying heuristic used to partition
tasks is worst-fit, though this process is complicated by CE. CE produces an advantage
when tasks that share buffers are partitioned onto the same core, but this has the
consequence of making the combined tasks more difficult to pack efficiently. If CE
is applied too aggressively, schedulability may even be lost for Level-A/B tasks if
they cannot be packed into the four bins (cores). The packing heuristic used by this
framework addresses this tradeoff by monitoring the remaining capacity of each core
by applying CE less aggressively as capacity diminishes. This is done by initially
packing groups of tasks that share buffers instead of packing them individually. If the
remaining capacity becomes insufficient to pack these groups, the groups are split until
either all tasks are successfully partitioned or the system is deemed unschedulable.
Pseudocode of this packing heuristic is presented in App. B of Chisholm et al. (2016).

The second phase allocates all Level-A/B I/O buffers in Level-A/B banks. As
stated in Sec. 4.3, this approach benefits Level-A/B tasks that consume the data in these
buffers at the expense of Level-A/B tasks that share the same DRAM banks. While
this approach may initially seem naı̈ve, this decision is supported by observations that
this generally increases the likelihood that a task system will be schedulable, which
we will elaborate on later.

The third phase is solved by a mixed integer linear program (MILP). The decision
variables of the MILP are the number of ways provided to each LLC partition. This
MILP is largely similar to one explained in detail in prior work on MC2 where the
effects of sharing are not considered (Chisholm et al. 2015). The total utilization of
Level-C tasks is reduced and schedulability is maintained by the MILP’s objective
function and constraints, respectively. Note that shrinking the per-core LLC partition
will cause a higher rate of cache misses to the Level-A/B tasks on that core, thereby
increasing their execution times. The same occurs with respect to Level-C tasks when
shrinking the Level-C/OS LLC partition. Shrinking the region dedicated to locked
buffers reduces the benefits of CL. The MILP balances these needs in the face of finite
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LLC space to produce an optimal LLC partitioning for the assignment decisions made
in the first two phases.

Note that while we have mentioned CE and CL in this discussion of the opti-
mization framework, we have not mentioned SBP. This is because the framework
defaults to SBP for any buffers that it chooses not to apply CE or CL to due to the
tradeoffs discussed above. This is necessary to avoid unpredictable cache evictions
due to buffers, as discussed in Sec. 4.2. From the point of view of the optimization
framework, Level-A/B tasks that access buffers under SBP have increased execution
costs due to their accessing of Level-C DRAM banks, tasks that access buffers under
CE have unchanged execution costs because the buffers are stored in the tasks’ original
Level-A/B banks, and tasks under CL have reduced execution costs because their
buffers are permanently cached.

Schemes. In order to evaluate the individual strengths of the optimizations considered
above, we considered nine management schemes, which vary depending on how
buffers for IPC and I/O are handled. To facilitate discussing these schemes, we denote
them using the notation x|y, where x indicates how IPC buffers are handled, and y
indicates how I/O buffers are handled. The possibilities for x are:

– R (random): IPC buffers are randomly assigned to DRAM banks with none of the
optimizations in Sec. 4.2 applied;

– C (C banks used): all IPC buffers are allocated in Level-C banks, again with no
optimizations applied;

– O (optimized): IPC buffers are allocated using the optimization techniques de-
scribed above.

The possibilities for y are:

– R (random): I/O buffers are randomly assigned to banks;
– C (C banks used): all I/O buffers are allocated in Level-C banks;
– C+A/B-LP (long periods in A/B banks): the I/O buffers belonging to the half

(within each level) of the Level-A/B tasks with the longest periods are assigned to
their corresponding tasks’ Level-A/B banks, and others are assigned to Level-C
banks;

– C+A/B-SP (short periods in A/B banks): the I/O buffers belonging to the half
(within each level) of the Level-A/B tasks with the shortest periods are assigned to
their corresponding tasks’ Level-A/B banks, and others are assigned to Level-C
banks;

– C+A/B-All (all A/B tasks in A/B banks): an I/O buffer used by a Level-A/B task
is assigned to its Level-A/B bank, and those used by Level-C tasks are assigned to
Level-C banks.

We considered nine different management schemes, taken from combinations of
the choices listed above. The nine management schemes we considered are: R|R, C|C,
O|C, C|C+A/B-ALL, C|C+A/B-LP, C|C+A/B-SP, O|C+A/B-ALL, O|C+A/B-LP,
and O|C+A/B-SP. Note that O|C+A/B-ALL applies all optimizations as described in
the optimization framework above. We considered R|R to illustrate the ill effects of
paying no attention to OS buffer-assignment issues. C|C reflects the choice of coarse-
grained partitioning in order to separate the OS from HRT tasks by simply preventing
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OS data structures from existing in Level-A/B banks entirely (a similar partitioning
is possible on most RTOSs today). O|C, C|C+A/B-ALL, and O|C+A/B-ALL provide
varying degrees of fine-grained partitioning in which certain OS data structures are
allowed to exist in Level-A/B banks.

Note that the two choices of C and C+A/B-All for I/O give two extremes in a
spectrum of choices: in the former, all Level-A/B I/O buffers are allocated in Level-C
banks, while in the latter, they are all allocated in Level-A/B banks. While an optimal
assignment of Level-A/B I/O buffers to banks would consider this entire spectrum of
choices, this is not practical for a schedulability study that relies on solving a MILP,
like our optimization framework. For example, allowing our optimization framework
to make per-buffer choices, i.e., allocate Level-A/B I/O buffers to Level-C or Level-
A/B banks on a case-by-case basis, could be implemented by creating per-buffer
binary decision variables that indicate whether each buffer is allocated to a Level-A/B
bank. This would cause the number of integer variables in our MILP to scale with the
number of I/O-performing tasks instead of the number of cores, explosively increasing
our framework’s runtime when applied to a large number of task systems.

Even though exploring the entire spectrum of choices is intractable, we consider
the choices C+A/B-LP and C+A/B-SP in order to capture two midpoints between
C and C+A/B-All. Unlike C and C+A/B-All, which mitigate one of either DMA- or
CPU-sourced interference, C+A/B-LP and C+A/B-SP compromise between the two
interference sources. These two choices allocate Level-A/B I/O buffers based on
the length of their corresponding tasks’ periods. Allocating by period is interesting
because I/O-performing tasks with shorter periods request and access I/O data more
frequently (we assume an I/O operation is performed during every job). Because these
tasks perform I/O more frequently, they can potentially cause greater DMA-sourced
interference, which may have negative effects on other high-criticality tasks if I/O
buffers are allocated in Level-A/B banks. On the other hand, if these tasks’ I/O buffers
are located in Level-C banks, they will suffer greater CPU-sourced interference due to
accessing these I/O buffers more frequently. Therefore, although both choices result in
both CPU- and DMA-sourced interference, allocating the tasks with shorter periods in
Levels-A/B (C+A/B-SP) or -C (C+A/B-LP) favors reducing CPU- and DMA-sourced
interference, respectively.

Modeling IPC and devices. The intent of our study is not to delve into complicated
precedence-related schedulability issues but rather to demonstrate the effects of DRAM
and LLC allocation policies. To avoid complications due to precedence constraints,
we assumed that tasks that communicate via IPC share a common period, like in prior
work on user-level IPC in MC2 (Chisholm et al. 2016).

We considered the disk and camera mentioned in Sec. 3.2 as exemplars of two
categories of I/O devices. The former only causes interference when data is pushed
by the device or accessed by the task, while the latter involves intermediate steps
that cause additional interference. We assumed that intermediate buffers (USB packet
buffers in the camera example) remain in Level-C banks under C+A/B to prevent the
OS from inducing CPU-sourced interference on Level-A/B tasks while data is copied
between buffers.
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Task-system generation. We generated task systems by incorporating I/O sources
into a procedure used in previous MC2 work and discussed extensively in prior
papers (Chisholm et al. 2015, 2016; Kim et al. 2017a,b; Chisholm et al. 2017). Under
this procedure, the following stepwise process is used to generate a task system,
and each step is guided by measurement data, e.g., recorded MOETs and ACETs,
overheads pertaining to OS activities and I/O, cache reload times, etc. (we elaborate
on details relevant to this paper below). The steps in the procedure are the following:

1. Choose distributions from the first four categories in Table 3.14 For example, the
Task Utilization choice highlighted in bold indicates that tasks generated with that
choice will have Level-A tasks with utilizations ranging within [0.1, 0.2). The
chosen distributions are used to generate a preliminary task system that is modified
in the subsequent steps to introduce IPC and I/O.

2. Select distributions from Category 5 in Table 3. Sample these distributions to
determine the size of IPC buffers.

3. Select a distribution (one for all criticality levels) from Category 6. Sample this
distribution to determine the level of I/O bandwidth and assign buffers to tasks
until this level is met.

4. Select distributions from Category 7. Sample these distributions to determine the
percentage of I/O tasks whose buffers directly receive data via DMA (like the
SSD). The remaining I/O tasks perform intermediate copies (like the USB camera).

Note that the above procedure does not determine PETs. The value obtained by
multiplying a task’s generated period and utilization represents a bound on the time
required for it to complete a job in an idle system with the full LLC available and
no other competing work (including I/O) under Level-A pessimism. Task execution
costs under other management options and assumptions are determined by inflating
this idle-system cost using micro-benchmark data pertaining to way allocations, I/O
buffer allocations, and I/O bandwidths (data like that given in Figs. 4 and 13 is
particularly relevant in our context). How a synthetic task’s execution cost scales
under different way allocations is modeled as an exponential decay function to reflect
that allocating additional ways generally provide diminishing returns in terms of
reducing the execution cost. Likewise, how a synthetic task’s execution cost is inflated
under different I/O bandwidths is modeled as a negative exponential decay function to
reflect the behavior in Figs. 13 and 14 (that the increase in execution time caused by
raising the I/O bandwidth decreases at higher bandwidths). The parameters of these
scaling functions are sampled from ranges for each synthetic task to reflect that actual
tasks would have different memory access patterns which would affect their response
to their allocated LLC space or I/O bandwidth. These ranges are informed by our
microbenchmark experiments. Buffer access times under CL, which dedicates some
LLC space to buffers, are scaled similarly according to the size of the dedicated LLC
region.

14 Briefly (and informally), these categories specify: (1) the fraction of the overall workload that exists at
each criticality level, (2) task periods, (3) utilizations at each criticality level, and (4) an LLC reload factor
used to determine cache-related preemption delays. (2) and (3) Level-A, -B, and -C execution costs model
inflated worst-case, worst-case, and average-case execution costs, respectively. (4) is modeled based on
measurement data. These details are described in full in previously published papers (Chisholm et al. 2016,
2015; Kim et al. 2017a,b).
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Category Choice Level A Level B Level C
1: Criticality C-Light [35, 45) [35, 45) [10, 30)
Utilization C-Heavy [10, 30) [10, 30) [50, 70)
Percent (%) All-Mod. [28, 39) [28, 39) [28, 39)

Short {12, 24} {24, 48} [12, 100)
2:Period (ms) Moderate {20, 40} {40, 80} [20, 100)

Long {48, 96} {96, 192} [50, 500)
3:Task Light [0.001, 0.03) [0.001, 0.05) [0.001, 0.1)
Utilization Medium [0.02, 0.1) [0.05, 0.2) [0.1, 0.4)

Heavy [0.1, 0.2) [0.2, 0.4) [0.4, 0.6)
4:Max Quick [1, 10) [1, 10) [1, 10)
Reload Time(%) Slow [25, 50) [25, 50) [25, 50)
5:IPC Small {128, 256} {128, 256} {128, 256}
Size (bytes) Large {4096, 8192} {4096, 8192} {4096, 8192}
6:I/O Low [0, 20]
Bandwidth (MB/s) Medium [40, 60]

High [180, 200]
7:Direct Few [0, 30] [0, 30] [0, 30]
I/O Tasks(%) Many [70, 100] [70, 100] [70, 100]

Table 3 Task-set parameters and distributions. [a, b) denotes a continuous interval that
is closed on the left and open on the right; {E} denotes a discrete set of elements E.

Overhead accounting. Any Level-A/B task that accesses a kernel data structure stored
in Level-C banks requires additional execution time. The increases were informed by
Fig. 8 for IPC and Fig. 10 for I/O buffers. For the latter, we assumed that each I/O-
performing task begins with a system call that copies I/O data from kernel-managed
buffers into local buffers. This assumption standardizes the interference to the duration
of the copy rather than accounting for all possible buffer-access patterns. Additional
CPU-sourced interference also occurs in the R|R scheme, which allows I/O buffers to
be allocated in any Level-A/B bank.

We accounted for interrupts for all schemes by inflating the execution costs of
Level-A/B tasks on CPU 0, where interrupts are handled. This is done by assuming the
maximum possible number of interrupts delay the execution of every such job through
its period. The sum of the processing times of these interrupts is added to the execu-
tion cost of every task. For Level-C tasks, we used interrupt-accounting techniques
from Brandenburg et al. (2011), which are applicable under global scheduling.

As a cumulative example of how a task’s conditional execution cost under a
scheme may be calculated by inflating its idle-system cost, consider a hypothetical
Level-A task that performs I/O under the C|C+A/B-SP scheme that is scheduled
on CPU 0. Assume that under C|C+A/B-SP, the I/O buffer corresponding to the
considered task is stored in Level-C banks. Under this scheme, this task suffers
interference from unmanaged resources, DMA-sourced interference due to peripherals
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accessing the considered task’s Level-A/B bank, CPU-sourced interference due to
other tasks accessing the DRAM bank containing the considered task’s I/O buffer,
and interrupts due to being scheduled on CPU 0 (i.e., the CPU where all interrupts
are directed—see Sec. 3). The degree of inflation due to unmanaged resources and
DMA-sourced interference is informed by Fig. 14. The total DMA transfer rate and
percentage of DMA directed at Level-A/B banks under C|C+A/B-SP for the task
system the considered task belongs to are used to interpolate an execution time in
Fig. 14. The inflation of this interpolated execution time relative to the MOET of an
idle system (a DMA transfer rate of 0 MB/s) in Fig. 14 is used as a reference for
how much to inflate the idle-system cost of the considered task. The inflation due
to CPU-sourced interference is similarly informed by Fig. 10. Finally, to apply the
interrupt accounting techniques mentioned previously, we took measurements of the
execution times required to process these interrupts.

Scenarios. We denote each combination of distribution choices using a tuple notation.
For example, (C-Light, Moderate, Heavy, . . .) denotes using the C-Light, Moderate,
Heavy, etc., distribution choices in Table 3. We call such a combination a scenario.
We generated sufficient task systems to estimate mean schedulability within ±0.05
with 95% confidence for each scenario and system utilization.

6.2 Results

Our full study generated 648 schedulability plots, one per scenario, taking roughly
80 days of CPU time to compute. Our full set of plots is available online (Kim et al.
2019).

Fig. 15 shows three representative plots. The horizontal axis gives total system
utilization.15 For each utilization, the vertical axis gives the proportion of randomly
generated task systems that were schedulable under each considered scheme. For
example, the circled point in Fig. 15(c) indicates that 60% of the generated task
systems with a total utilization of 2.6 were schedulable under O|C.

Evaluation metric. We used the data in these plots to compute per-scheme schedulable-
utilization areas (SUAs) in order to compare different schemes. For a given scheme,
SUA is simply the sum of the areas under that scheme’s curves in all of our 648 plots.
A larger SUA implies that a larger fraction of the randomly generated task systems was
deemed schedulable, so we can compare any two management schemes by calculating
the ratio of their respective SUAs.

We now state several observations that follow from the full set of plots. We
illustrate these observations using the plots in Fig. 15.

Observation 7 Coarse I/O and IPC partitioning is beneficial.

This observation is supported by the fact that the SUA of the C|C scheme is 5%
larger than that of R|R. This can be observed qualitatively in Fig. 15, where the R|R
curve is always below that for any other management scheme.

15 The “utilization” referred to here is that initially obtained during task-set generation without accounting
for MC2’s hardware management, which improves execution times. Thus, it is possible for a task system to
have a total utilization exceeding four and be schedulable.
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Fig. 15 Representative schedulability plots.
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Observation 8 IPC-buffer optimizations outperform coarse partitioning.

The SUA of O|C is 11% greater than that of C|C. This behavior can be observed
by comparing the C|C and O|C curves in insets (a) and (b) of Fig. 15. The 11%
improvement increases to 13% when only Large (Table 3, Category 5) message sizes
are considered. As expected, this indicates that the benefit is proportional to the amount
of data shared with the OS.

Observation 9 Reducing CPU-sourced I/O interference is more important than
reducing DMA-sourced interference.

This observation addresses the tradeoff discussed in Sec. 4.3. The SUA of
C|C+A/B-ALL is 3% better than that of C|C. This means that CPU-sourced interfer-
ence from accessing I/O buffers in Level-C banks is usually worse than the DMA-
sourced interference from placing I/O buffers in a Level-A/B bank. The improvement
increases to around 4% if we only consider High bandwidths (Table 3, Category 6).
Unlike in IPC-buffer optimization, reducing CPU-sourced interference in I/O buffers
leads to increased DMA-sourced interference, meaning that the overall improvement
of I/O-buffer optimization is smaller. However, it is still visible in the C|C+A/B-ALL
and C|C curves of insets (b) and (c) of Fig. 15.

Observation 10 No scheme that allocated some Level-A/B I/O buffers in Level-C
outperformed allocating all such buffers in Level-A/B banks.

This observation is supported by all insets of Fig. 15, where C|C+A/B-LP and
C|C+A/B-SP cover at most the area of C|C+A/B-ALL. Quantitatively, the SUA
of C|C+A/B-ALL is roughly 3% better than C|C+A/B-LP and C|C+A/B-SP. Like-
wise, O|C+A/B-LP and O|C+A/B-SP cover at most the area of O|C+A/B-ALL, and
the SUA of O|C+A/B-ALL is 3% better than O|C+A/B-LP and 2% better than
O|C+A/B-SP. In most scenarios, such as in insets (a) and (b) of Fig. 15, schedu-
lability under C|C+A/B-LP and C|C+A/B-SP is much closer to the schedulability
under C|C (coarse-grained OS isolation) than to C|C+A/B-ALL. Similarly, the SUA
of O|C+A/B-LP and O|C+A/B-SP is closer to that of O|C (which only optimizes IPC
buffer placement) than to O|C+A/B-ALL (which always puts high-criticality DMA
buffers in Level-A/B banks). This suggests that schedulability is highly sensitive to
CPU-sourced I/O interference, supporting Obs. 9.

Observation 11 Used in conjunction, fine-grained I/O and IPC management outper-
form all other schemes.

This observation is supported by Fig. 15, where O|C+A/B-ALL covers the greatest
area in all insets. Quantitatively, the SUA of O|C+A/B-ALL is 14% greater than that
of C|C, which is even greater than the difference between C|C and R|R. Overall,
O|C+A/B-ALL exhibits a 20% improvement over the SUA of R|R. From these ob-
servations, we can conclude that our extensions to MC2 significantly improve the
schedulability of systems requiring OS-supported IPC and device I/O. In some cases,
such as Fig. 15(c), the improvement encompasses nearly an entire core’s worth of
additional computing capacity. This is even more impressive given that tasks spend
only a relatively small proportion of their time accessing IPC and I/O buffers.
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7 Related Work

This work’s major contribution relates two significant research areas: managing DMA
interference, and improving memory allocation to reduce cache and DRAM-bank
interference.

Prior research on managing DMA interference includes WCET analysis (Huang
et al. 2006, 1996a,b), implementing DMA schedulers using hardware mediation
(Huang et al. 2003; Pellizzoni et al. 2008a; Pellizzoni and Caccamo 2010; Pellizzoni
et al. 2010), mixed-criticality systems (Muench et al. 2014), and scheduling legacy I/O
operations (Kim et al. 2014b). However, these works focus primarily on bus contention,
and almost entirely address I/O interference via improved temporal isolation. While
this is useful, temporal partitioning is orthogonal to our approach, which focuses
instead on reducing DRAM bank interference using spatial isolation.

Other research has focused on reducing DRAM-bank and cache contention via
memory-allocator improvements (Yun et al. 2014; Liao et al. 2017). Of these, PALLOC
(Yun et al. 2014), like MC2, uses page coloring to implement a bank-aware memory
allocator. (We did not consider page coloring in MC2 in this work.) However, PALLOC
only supports user-level allocations, limiting its applicability to problems related to
data sharing with the OS and among user-level tasks.

More broadly, this paper falls within an overarching set of research results per-
taining to shared-hardware isolation (Kotaba et al. 2013). Prior efforts have focused
on issues such as cache partitioning (Altmeyer et al. 2014; Herter et al. 2011; Kim
et al. 2013; Scolari et al. 2016; Xu et al. 2017, 2016; Awan et al. 2017), DRAM
controllers (Audsley 2013; Guo and Pellizzoni 2017; Jalle et al. 2014; Kim et al. 2015;
Krishnapillai et al. 2014; Muralidhara et al. 2011), and bus-access control (Alham-
mad and Pellizzoni 2016; Alhammad et al. 2015; Giannopoulou et al. 2013; Hassan
and Patel 2016; Hassan et al. 2015; Pellizzoni et al. 2010). Other work has focused
on reducing shared-resource interference when per-core scratchpad memories are
used (Tabish et al. 2016b), throttling lower-criticality tasks’ memory accesses (Yun
et al. 2012), and controlling bandwidth allocations (Seetanadi et al. 2017).

8 Conclusion

We have presented techniques for mitigating OS-induced interference in multicore real-
time systems. Our focus on such techniques distinguishes this paper from prior work
on providing hardware isolation, which has largely ignored the OS. We evaluated the
effectiveness of the considered techniques through micro-benchmark experiments and
a large-scale, overhead-aware schedulability study. Our micro-benchmark experiments
show that OS-related sharing can increase individual PETs. Our schedulability study
demonstrates the importance of properly considering IPC- and I/O-related allocation
decisions from a schedulability point of view.

In the future, we plan to apply the work from this paper to systems that must
support multiple functional modes (as commonly required in safety-critical systems).
In multi-mode systems, the aggregate memory footprint of all tasks may exceed total
DRAM capacity. Thus, mode-change protocols may need to dynamically transfer task
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pages to or from external storage. Such protocols will require OS and I/O support for
fast, persistent storage. We are currently investigating the usage of SSDs to meet this
need. In other future work, we hope to consider alternative hardware platforms that
can help limit DMA interference.

This paper builds upon and extends the prior conference paper (Kim et al. 2018).
The main additions are: (i) we have provided further implementation details regarding
the memory-management system; (ii) we added additional micro-benchmark experi-
ments; (iii) we considered finer-grained I/O-buffer allocation heuristics in Sec. 6.
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