

A Platform Agnostic Remote Desktop System
for Screen Reading

Syed Masum Billah Vikas Ashok Donald E. Porter IV Ramakrishnan
Stony Brook University

{sbillah, vganjiguntea, porter, ram}@cs.stonybrook.edu

ABSTRACT
Remote desktop technology, the enabler of access to appli­
cations hosted on remote hosts, relies primarily on scraping
the pixels on the remote screen and redrawing them as a
simple bitmap on the client’s local screen. Such a technol­
ogy will simply not work with screen readers since the latter
are innately tied to reading text. Since screen readers are
locked-in to a specific OS platform, extant solutions that
enable remote access with screen readers such as NVDARe­
mote and JAWS Tandem require homogeneity of OS plat­
forms at both the client and remote sites. This demo will
present Sinter, a system that eliminates this requirement.
With Sinter, a blind Mac user, for example, can now access
a remote Windows application with VoiceOver, a scenario
heretofore not possible.

1. INTRODUCTION
Remote desktop technology is primarily used to access

applications that are hosted on remote machines, such as
a physician accessing a medical records application running
on an office server from her home. The graphical display of
the remote system is virtualized and shipped across the net­
work to the client. Virtualization emulates the graphics card
frame buffer in which the pixel values are scraped from the
screen of the remote system, and redrawn as a simple bitmap
on the client’s local screen. This approach yields seamless
access to remote applications, as if they were running on
the local desktop. Remote desktop access is indispensable
to users engaged in activities such as telecommuting, dis­
tance learning, remote troubleshooting and maintenance.

Unfortunately, remote desktop technology in its current
incarnation, namely via emulation of the graphics frame
buffer, simply will not work for blind users. These users rely
on screen readers to interact with digital content. Screen
readers require semantic information, such as text and hier­
archical relationships to narrate screen contents—all of this
information is lost by the time the screen is rendered as a
bitmap.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).
ASSETS ’16 October 23-26, 2016, Reno, NV, USA
©c 2016 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4124-0/16/10.
DOI: http://dx.doi.org/10.1145/2982142.2982151

Figure 1: A schematic of remote access in Sinter.

One obvious solution is to run a screen reader on the
remote host and relay the synthesized audio to the client.
But network delays, especially over WANs, can introduce
unacceptable latencies to relaying audio, a fact validated
by our experiments [1]. A second approach, exemplified by
commercial systems such as NVDARemote [3] and JAWS-
Tandem [2], is to intercept text from the remote screen
reader just before audio synthesis, relay this text to the lo­
cal client and synthesize audio locally. Getting this to work
requires identical screen readers, one running remotely and
the other locally. The serious problem with such a solution
is that screen readers are locked into a single operating sys­
tem platform; the differences in the underlying accessibility
APIs (e.g., Microsoft’s MSAA and UI Automation, Apple’s
Accessibility, and GNOME’s ATK & AT-SPI) has been a
strong barrier to portability. Consequently, NVDARemote­
like solutions require both the remote and local platforms
to be similar. Platform-specific remote access solutions are
clearly inadequate in the modern computing era where com­
puter users increasingly use applications designed for differ­
ent OSes, spanning desktops, laptops, tablets, mobile de­
vices, cloud and other platforms. For instance, a Mac user
may access a cloud-based Windows remote desktop to run an
application required for her job. Similarly, a Windows desk­
top user may use VMware workstation to develop and test a
Linux server application. Such scenarios are the norm these
days and, thus, calls for platform-independent remote ac­
cess solutions for screen reader users. Our Sinter system [1]
provides such a solution.

2. SINTER SYSTEM OVERVIEW
Sinter is predicated on the observation that applications

on every OS consist of similar User Interface (UI) widgets

http://dx.doi.org/10.1145/2982142.2982151
mailto:ram}@cs.stonybrook.edu

such as buttons, drop-down menus, text fields, etc. The
key idea then is to create a UI model of the application’s
GUI from the existing, platform-specific accessibility APIs,
analogous to an HTML document ob ject model (DOM) tree,
convert the model into a generic intermediate representation
(IR), and finally render the IR encoding of the application
GUI on a different platform, using native UI widgets. A
screen reader on the client system can then read the na­
tive rendering of the IR. Fig. 1 is a high level schematic
of this idea. The figure corresponds to a scenario where
a user wants to run VoiceOver, the Mac screen reader, to
read a Windows application on a remote system. In Sin­
ter, a scraper on Windows mines the Windows-specific UI
model of the application, and converts it into Sinter’s IR
which is shipped to a client system–Mac in this example,
where a proxy converts the IR back to a native represen­
tation of these elements that VoiceOver understands. The
Sinter proxy relays keystrokes and other user inputs back
to the scraper, and the scraper relays incremental changes
in the UI back to the proxy. In Sinter, the IR is a generic
XML which we found to be sufficiently expressive for encod­
ing a majority of standard UI element types on Windows
and Mac. Having an IR opens up powerful opportunities for
personalizing or making application specific modifications
of the UI itself. For example, we made a mega-ribbon for
Word in Fig. 2, which avoids cumbersome ribbon navigation
for frequently-used buttons.

3. CURRENT STATUS
The Sinter idea and the engineering that went into build­

ing the system was presented in the 2016 European Systems
Conference [1]. Since then, we have completed the imple­
mentation of a fully functional Sinter system. Furthermore,
following IRB approval we also conducted a preliminary user
study with 21 blind subjects at Lighthouse Guild. Currently,
Sinter enables to screen-read the remote Windows applica­
tion locally on a Mac with VoiceOver, and conversely, re­
mote Mac application locally on Windows with JAWS and
NVDA. Windows applications that can be accessed remotely
from Mac clients include Microsoft Word, Windows Calcu­
lator, Windows Explorer, the Windows registry editor, and
the DOS command line (command.exe) while remote Mac
applications accessed from Windows clients include Apple
Mail, HandBrake (a media ripping and transcoding utility),
Messages, Calculator, and Contacts. Fig. 2 presents snap­
shots of Windows applications accessed remotely on an Mac
client with Sinter.

A Sinter demo, which will be the first of its kind to the
accessibility community, will exercise the functionalities of
Sinter with these applications in place.

4. PRELIMINARY USER STUDY
21 blind subjects participated in a preliminary study pri­

marily primed to get an initial assessment of Sinter, and
gather additional requirements from users. Towards that
they were given tasks to calculate with a remote calculator,
and edit documents using Notepad running remotely. A Sys­
tem Usability Scale (SUS) questionnaire was administered at
the end of the study relating to usability, ease of use, learn­
ing curve, etc. Sinter averaged a SUS score of around 78
which is considered good from a usability perspective. More
importantly, a noteworthy highlight that emerged from the

Figure 2: Clockwise from the top left: Microsoft
Word, the Windows registry editor (regedit) Win­
dows Explorer, Windows Calculator, and the Win­
dows command line (cmd.exe). Word also displays
the mega ribbon on the left hand side, automatically
saving the most frequently used buttons.

study was that users very much liked the fact that they
can access remote applications using their preferred screen
reader with customized settings. This eliminates the need to
learn new screen readers or platforms, and thus allows them
to stay in their own comfort zone. They also felt Sinter had
the potential to be a game changer since it does not need a
screen reader to be installed on a remote host which is often
the situation they encounter in practice.

5. DISCUSSION
Sinter requires only two simple conversions for each OS:

one from the native accessibility API to the IR, and one from
the IR back to the native accessibility API. Our experience
with Sinter has been that, if one can reuse native libraries,
this translation can be done in a few thousand lines of code
in each direction. As a point of comparison, the NVDA Win­
dows screen reader is over 50,000 lines of code. We found
that IR transformation is a potent meta-programming tool
for making accessibility enhancements that are desirable but
missing in the original application. Their full potential re­
mains to be explored. Finally, an extensive user study exam­
ining important aspects of Sinter such as impact of platform
independence, and accessibility enhancing IR transforma­
tions is a task that we will undertake in the near future.

Acknowledgments: This research was supported in part
by NSF grants IIS-1218570, IIS-1447549, CNS-1149229, CNS­
1161541, CNS-1228839, CNS-1405641, CNS-1408695, CNS­
1526707, and VMware.

6. REFERENCES
[1] S. M. Billah, D. E. Porter, and I. V. Ramakrishnan.

Sinter: Low-bandwidth remote access for the
visually-impaired. In Proceedings of the Eleventh
European Conference on Computer Systems, pages
27:1–27:16, New York, NY, USA, 2016. ACM.

[2] Freedom Scientific. Jaws tandem quick start guide.
http://www.freedomscientific.com/JAWSHq/
JAWSTandemQuickStart. [Online; accessed
11-Jun-2016].

[3] NVDA. NVDA Remote brings free remote access to the
blind. http://nvdaremote.com/.

http:http://nvdaremote.com
http://www.freedomscientific.com/JAWSHq

