
Don’t Melt Your Cache: Low-Associativity with Heat-Sink
Michael A. Bender
Stony Brook University

USA
bender@cs.stonybrook.edu

Alex Conway
Cornell Tech

USA
me@ajhconway.com

Daniel DeLayo
Stony Brook University

USA
ddelayo@cs.stonybrook.edu

Martin Farach-Colton
New York University

USA
martin@farach-colton.com

Jaehyun Han
The University

of North Carolina at Chapel Hill
USA

jaehyun@cs.unc.edu

Linfeng He
Rutgers University

USA
lh818@scarletmail.rutgers.edu

Rob Johnson
VMware Research, USA

USA
rob@robjohnson.io

Sudarsun Kannan
Rutgers

USA
sudarsun.kannan@rutgers.edu

William Kuszmaul
Carnegie Mellon University

USA
william.kuszmaul@gmail.com

Donald Porter
The University

of North Carolina at Chapel Hill
USA

porter@cs.unc.edu

Evan West
Stony Brook University

USA
etwest@cs.stonybrook.edu

ABSTRACT
Perhaps the most influential result in the theory of caches is the
following theorem due to Sleator and Tarjan: With 𝑂 (1) resource
augmentation, the basic LRU eviction policy is guaranteed to be
𝑂 (1)-competitive with the optimal offline policy.

Sleator and Tarjan’s result applies to LRU on a fully associative
cache, but does not tell us how to think about caches with low asso-
ciativity, i.e., caches where each page has only 𝑑 positions in which
it is capable of residing. This means that many modern caches cannot
directly apply the result.

It is widely believed that to implement a cache with low associa-
tivity, one should still use LRU, but restricted to the 𝑑 positions that
are eligible for eviction. However, this low-associativity version of
LRU has never been analyzed.

We show that low-associativity implementations of LRU are often
actually not constant-competitive algorithms. On the other hand, we
give randomized eviction algorithms that are constant-competitive,
and even a 𝑑-associative algorithm that, using any 𝑑 = 𝜔 (1), and
using 1+𝑜 (1) resource augmentation, is 1+𝑜 (1) competitive with the
fully-associative LRU algorithm. Combined, our algorithms suggest
a new way of thinking about the design of low-associativity caches, in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA ’25, July 28–August 1, 2025, Portland, OR, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1258-6/25/07. . . $15.00
https://doi.org/10.1145/3694906.3743303

which one intentionally designs randomized mechanisms that allow
parts of the cache which are “overheating” to naturally cool down.

CCS CONCEPTS
• Theory of computation → Design and analysis of algorithms;
Randomness, geometry and discrete structures; • Hardware; •
Computer systems organization → Architectures; • Mathematics
of computing → Probability and statistics; Discrete mathematics;

ACM Reference Format:
Michael A. Bender, Alex Conway, Daniel DeLayo, Martin Farach-Colton,
Jaehyun Han, Linfeng He, Rob Johnson, Sudarsun Kannan, William Kusz-
maul, Donald Porter, and Evan West. 2025. Don’t Melt Your Cache: Low-
Associativity with Heat-Sink. In 37th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’25), July 28–August 1, 2025, Portland,
OR, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3694906.3743303

1 INTRODUCTION
In the paging problem [18], one must maintain a cache capable of
storing up to 𝑛 pages at a time. The goal is to support a sequence
𝑥1, 𝑥2, . . . of accesses to pages. If a page 𝑥𝑖 is not in cache when ac-
cessed, then the access is said to be a cache miss, and the paging
algorithm is required to put 𝑥𝑖 in cache. This may force the algorithm
to evict another page 𝑦 from cache. The choice of which page to
evict, also known as the eviction policy, is the algorithmic knob that
distinguishes different solutions to the paging problem.

Given the sequence 𝑥1, 𝑥2, . . ., the offline optimal algorithm OPT

is any algorithm that minimizes the overall number of cache misses.
An online algorithm ALG is said to be 𝛼-competitive with OPT, using
𝛽 resource augmentation, if the total (expected) number of cache

555

https://doi.org/10.1145/3694906.3743303
https://doi.org/10.1145/3694906.3743303
https://doi.org/10.1145/3694906.3743303
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694906.3743303&domain=pdf&date_stamp=2025-07-16

Don’t Melt Your Cache: Low-Associativity with Heat-Sink SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

misses that ALG incurs using a cache of size 𝑛 is at most 𝛼 times the
total number of cache misses that OPT incurs on a cache of size 𝑛/𝛽.

The canonical solution to the online paging problem is to use LRU
eviction, which is the policy of always evicting the least recently
accessed page out of those in cache. In a seminal 1985 paper, Sleator
and Tarjan proved that LRU eviction is a provably good policy: with
resource augmentation 2, it is 2-competitive with OPT. This result
is essentially optimal in the sense that any𝑂 (1)-competitive policy
must use 1 + Ω(1) resource augmentation [18].

Sleator and Tarjan’s LRU analysis is arguably the most influen-
tial result in the theory of caching. The original paper has amassed
more than 3000 citations, from both theoreticians and practitioners.
Nearly four decades after the analysis was first performed, the LRU

policy remains the baseline policy on which almost all real-world
cache-eviction policies are based [1, 6, 19].

Caches with Low Associativity. LRU itself, however, it not im-
plementable on most modern caches. This is because most caches
[11, 13] are designed with an additional restriction known as 𝒅-way
associativity or 𝑑-associativity for short, in which each page 𝑥 has
a set of only 𝑑 positions ℎ1 (𝑥), ℎ2 (𝑥), . . . , ℎ𝑑 (𝑥) ∈ [𝑛] where it is
allowed to reside in cache. When a page 𝑥 is brought into cache, the
eviction algorithm must respect the associativity: the page𝑦 that we
evict must be one of the 𝑑 pages in positionsℎ1 (𝑥), ℎ2 (𝑥), . . . ℎ𝑑 (𝑥).

Notice that low-associativity caches come in many flavors. For
example, a natural choice is to have eachℎ𝑖 be a uniform random hash
function. As nomenclature, we will refer to ℎ1 (𝑥), ℎ2 (𝑥), . . . , ℎ𝑑 (𝑥)
as the hashes of 𝑥 . Another example is where the cache is partitioned
into 𝑛/𝑑 disjoint sets of size 𝑑, each 𝑥 is hashed to one of those sets
via some uniformly random function ℎ(𝑥) and each ℎ𝑖 maps each
page 𝑥 to the 𝑖th page of the setℎ(𝑥). The competitive ratio of an evic-
tion rule depends not only on 𝑑 but on the design of the underlying
low-associativity cache.

This paper studies the 𝒅-associative paging problem, which con-
sists of designing a 𝑑-associative cache by both specifying the hash
functionsℎ𝑖 and designing a page-eviction algorithm that respects the
associativity. Recent work [10], implements 𝑑 = Ω(log𝑛/log log𝑛)
associative first-level caches using hardware hashing. They find that
these hardware hashes have sufficiently low latency to be practical.

For 𝑑 < 𝑛, 𝑑-associative caches cannot directly implement LRU,
because LRU does not respect the 𝑑-associativity. The folklore solu-
tion, which is also the one that is widely used in the practical litera-
ture [8, 10, 17], is to use LRU but just on the 𝑑 pages that are eligible
for eviction.

Given the centrality of low-associativity caches, it is surprising
that some basic questions about low-associativity paging have not
been addressed, for example:

• For what values of 𝑑 can we design a 𝑑-associative cache for
which 𝑑-LRU has low competitive ratio with low resource aug-
mentation?

• For what values of 𝑑 is there a 𝑑-associative design that admits
an eviction rule with a low competitive ratio and low resource
augmentation?

In this paper, we address these problems and show the surprising
results that 𝑑-LRU can be a poor eviction rule (such as for 𝑑 =

𝑜 (log𝑛/log log𝑛)) but that there exist other good eviction rules, even
for 𝑑 = 2.

Competitive Analysis for low-associativity Caches. We need to
take care in how we define the competitive ratio of low-associativity
caches. Consider a cache where eachℎ𝑖 is a uniformly random hash
function. With some probability, it will not be possible to put certain
sets of pages into cache together (e.g., if𝑑 + 1 pages all have the same
𝑑 hashes as each other). When 𝑑 = 𝑂 (1), this can force a 1/poly(𝑛)
cache-miss rate even in situations where fully associative offline OPT

would not miss at all. Thus, in order to discuss competitive ratios ver-
sus fully associative OPT, we will adopt the following modified notion
of 𝛼-competitiveness: We say that an algorithm ALG is 𝛼-competitive
with OPT using 𝛽-resource augmentation (or (𝜶, 𝜷)-competitive for
short), if the miss rate 𝑟ALG for ALG on a cache of size 𝑛 and the miss
rate 𝑟OPT for OPT on a cache of size 𝑛/𝛽 satisfy

E[𝑟ALG] ≤ 𝛼𝑟OPT + 1/poly(𝑛).

In other words, we will allow for an additive error of 1/poly(𝑛) on
the miss rate when comparing ALG and OPT. (In all of our results, the
1/poly(𝑛) term will be concretely bounded by𝑂 (1/𝑛)).

Finally, we note that we will sometimes consider the competitive
ratio (and resource augmentation) of an algorithm versus OPT, but
sometimes we will also consider the competitive ratio (and resource
augmentation) versus (fully associative) LRU. Such a comparison is
meaningful because many paging algorithms, even ones with poor
performance in practice, are known to be (𝑂 (1),𝑂 (1))-competitive
with OPT. Establishing that an algorithm is (1 + 𝜀, 1 + 𝜀)-competitive
with LRU also implies that it is (𝑂 (1),𝑂 (1))-competitive with OPT,
but says something stronger: it is competitive beyond worst-case
workloads, and may therefore be a useful paging algorithm.

1.1 Results
We break the results of the paper into three parts. In part 1, we show
that LRU is actually a surprisingly poor policy for low-associativity
caches, failing to achieve a constant competitive guarantee even for
moderately large values of 𝑑 . In part 2, we show that random eviction
does much better, achieving an (𝑂 (1),𝑂 (1))-competitive guarantee
even for 𝑑 = 2. The surprising effectiveness of random eviction is
due to an interesting heat-dissipation effect in which pages naturally
migrate away from hot-spots within the cache over time. Finally, in
part 3, we show how to leverage this heat-dissipation phenomenon
further with an algorithm that we call HEAT-SINK LRU. HEAT-SINK

LRU is capable of matching (fully-associative!) LRU’s performance
up to (1 + 𝑜 (1),1 + 𝑜 (1)), even when 𝑑 is very small. Our algorithmic
techniques in Parts 2 and 3 suggest a new approach for designing
low-associativity caches: rather than prioritizing LRU-type behavior,
one should prioritize the use of randomized mechanisms through
which the hot spots in the cache can naturally dissipate their load.

Part 1: The Downfall of LRU. We begin by considering the sim-
plest low-associativity caching policy: each page 𝑥 hashes to 2 in-
dependent random positions ℎ1 (𝑥), ℎ2 (𝑥) in cache, and each evic-
tion performs LRU on the two eligible positions. We call this 2-LRU.
Our first result is a lower bound: We show that 2-LRU is not (𝛼, 𝛽)-
competitive for any𝛼, 𝛽 ∈ 𝑂 (1). This is surprising, because 2-LRU has
been proposed as the gold standard for how to manage 2-associative
caches [8, 17].

One might hope to get around this lower bound by increasing the
number of hashes 𝑑 for each page. It turns out, however, that the

556

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA
Michael A. Bender, Alex Conway, Daniel DeLayo, Martin Farach-Colton, Jaehyun Han, Linfeng He, Rob Johnson, Sudarsun Kannan, William Kuszmaul, Donald Porter,

and Evan West

lower bound extends even to moderately large values of 𝑑: For any
𝑑 ∈ 𝑜 (log𝑛/log log𝑛), the lower bound holds.

In fact, the constraint that the hashes ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) are uni-
formly random is also not necessary. The lower bound continues to
hold even if we allow for arbitrary dependencies between the hashes
ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) and even if we allow for each individual ℎ𝑖 (𝑥) to
be drawn from an arbitrary distribution satisfying a mild distribu-
tional assumption that we call semi-uniformity. What this means is
that, for 𝑑 = 𝑜 (log𝑛/log log𝑛), almost all natural variations of 𝑑-
associative LRU cannot asymptotically match the performance of
fully-associative LRU.

Part 2: The Power of Randomized Choice. Our second result is
a positive one. Even though LRU performs poorly, there is another
policy, which we call 2-RANDOM, that we prove is (𝑂 (1),𝑂 (1))-
competitive with OPT. As in 2-LRU, in 2-RANDOM each page hashes
to two random positions, but rather than evicting the least recently
used of the two, 2-RANDOM simply evicts a random one.

It may seem counter-intuitive that random eviction would outper-
form LRU. However, 2-RANDOM performs well because of a heat-
dissipation phenomenon. Consider a page 𝑥 choosing between two
positions ℎ1 (𝑥), ℎ2 (𝑥). Although 𝑥 does not know it, one of these
positions ℎ1 (𝑥) is a “hot spot” (a position in cache that many pages
accessed in the near future would like to use) and the other (ℎ2 (𝑥))
is a “cold spot”. What makes random eviction powerful is that poor
decisions (such as usingℎ1 (𝑥)) do not have lasting consequences on
the state of the cache; if 𝑥 makes the wrong decision by using ℎ1 (𝑥),
then, because ℎ1 (𝑥) is a hot spot, 𝑥 will soon be evicted from ℎ1 (𝑥)
and the decision will therefore be short-lived. The next time that 𝑥
is accessed, 𝑥 will get a second chance at making a good decision.
Likewise, if 𝑥 makes a good decision by usingℎ2 (𝑥), then, because
ℎ2 (𝑥) is a cold spot, the good decision is likely to be long-lived. What
this means is that, even though 𝑥’s random choice is equally likely to
be good or bad, there is nonetheless a tendency for items to naturally
make their way into cooler regions of the hash table over time and
therefore decrease the amount of contention.

Part 3: HEAT-SINK LRU. Our final result is a 𝑑-associative algo-
rithm that we call HEAT-SINK LRU. Even with very low associativity,
HEAT-SINK LRU is able to compete with fully associative LRU up to
1 + 𝑜 (1) factors. More precisely, for any 𝜖 ∈ (0, 1), if we implement
HEAT-SINK LRU with associativity𝑑 = poly(𝜖−1), then the algorithm
is guaranteed to be (1 + 𝜖, 1 + 𝜖)-competitive with LRU. This means
that, up to low-order terms, we can get something just as good as LRU

even on caches with very low associativity.
The high-level structure of HEAT-SINK LRU is as follows (see also

Figure 1 and Section 5). Most of the cache consists of bins, each of
which has capacity 𝑑 − 2. Each page 𝑥 hashes to Bin(𝒙): a random
bin where it is capable of residing. When a new page is brought into
a bin and an old page is evicted, the eviction is performed using LRU

within the bin.
In addition to the bins, a small portion of the cache is set aside to act

as a “heat-sink”. The HEAT-SINK constitutes only a 1/poly(𝑑) frac-
tion of the cache overall, and performs evictions using 2-RANDOM.
The main challenge is how to “connect” the HEAT-SINK to the bins
so that, on one hand, the HEAT-SINK gets only a small fraction of the
pages (as it is very small) but so that, on the other hand, whenever a
bin is too “hot”, it naturally sheds its heat onto the HEAT-SINK.

½ chance
 enters x h2(x)

½ chance
 enters x h1(x)

 is inserted on a missx
 chance

 enters Bin()
1 − 1/poly(d)
x x

 chance
 enters HEAT-SINK

1/poly(d)
x

Bins (LRU)HEAT-SINK (2-RANDOM)

 slotsn /d

 binsn /(d − 2)

 slots
per bin
d−2

Figure 1: The design of HEAT-SINK LRU. The element 𝑥 may
be stored in any slot in Bin(𝑥) or in one of 2 HEAT-SINK slots.
Thus, these are the only slots we need to check on an access of
𝑥 . Eviction in the HEAT-SINK is governed by 2-RANDOM and
eviction in the bin is governed by LRU. When 𝑥 is brought into
cache, we flip a biased coin to determine if 𝑥 is to be placed in the
HEAT-SINK or Bin(𝑥). Intuitively, the HEAT-SINK dissipates the
heat of the hot (overfilled) bins.

This connection is achieved via a simple probabilistic mechanism.
Whenever a page 𝑥 is brought into cache, it flips a coin. With probabil-
ity 1− 1/poly(𝑑), the page is placed into Bin(𝑥); and with probability
1/poly(𝑑), it is placed in the HEAT-SINK. Note that these coin-flips
are not per page but instead per miss: if the same page experiences
multiple cache misses, it makes independent coin flips for each one.

The goal of the HEAT-SINK is to absorb load from any bins that are
behaving badly (i.e., too many hot pages hash to the bin). The basic
idea is that if a bin is behaving badly, then, by definition, it is incurring
many misses. Each miss flips a coin and, with some small probability,
abandons the bin for the HEAT-SINK. Over time, if a bin continues to
behave badly, then the pages that hash to the bin will slowly migrate
away from the bin and into the HEAT-SINK, releasing the pressure on
the bin. Perhaps surprisingly, this heat-dissipation mechanism is all
that one needs in order to construct a low-associativity cache that is
nearly as good as fully-associative LRU.

1.2 Prior Work on Low Associativity
Prior to our work, the known results on low associativity have focused
either on directly simulating a fully-associative algorithm using a
relatively large value of 𝑑 [2, 4]; or on settings in which the caching
algorithm is permitted to rearrange pages internally within the cache
for free (or cheaply), and where the goal is to compete with an OPT

that itself has associativity restrictions [5, 7, 15, 16].
Recent work by Bender, Das, Farach-Colton, and Tagliavini [4]

considers set-associative caches, i.e., caches in which each item
hashes to a random bucket of size 𝑑 . They show that, if 𝑑 = 𝜔 (log𝑛),
then such a cache is (𝑂 (1), 1 + 𝑜 (1))-competitive using LRU (in fact,
w.h.p., it contains all of the contents that the OPT it is being compared
against contains, at any given moment). On the other hand, when
𝑑 = 𝑜 (log𝑛), they show that no eviction policy is (𝛼, 𝛽)-competitive
for any 𝛼, 𝛽 ∈ 𝑂 (1).1

1Technically, the lower bound in [4] applies only to the LRU policy. However, the
lower bound naturally extends to any policy as follows: Suppose we repeatedly access

557

Don’t Melt Your Cache: Low-Associativity with Heat-Sink SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

A similar approach was also taken in earlier work by Bender et
al. [2], who showed how to use balls-and-bins techniques in order
to achieve a simulation result: so long as 𝑑 ≥ poly log log𝑛, it is
possible to construct a𝑑-associative cache that, with 1+𝑜 (1) resource
augmentation, perfectly mimics an arbitrary fully associative policy.
The style of balls and bins result that they use hits a fundamental
barrier at 𝑑 = poly log log𝑛, which might seem to suggest, a priori,
that one cannot hope for good results using smaller 𝑑. One of the
takeaways of the current paper is that it is possible to achieve strong
results for any 𝑑 , not by trying to directly simulate a fully-associative
caching policy, but by designing new eviction policies that work well
for low-associativity topologies.

Peserico [16] presents yet another perspective on low-associativity
caches. He allows each page 𝑥 to have an arbitrary set of pages 𝐹 (𝑥)
where it is capable of residing in cache (note that 𝐹 (𝑥) is not neces-
sarily drawn from any probability distribution). He then performs a
competitive analysis, not with a fully associative OPT (which would
be impossible in his setting), but instead with an OPT that is subject to
essentially the same associativity restrictions as the online algorithm
being designed. Additionally, so that nontrivial competitive ratios are
possible to achieve in his setting, Peserico allows for pages within
cache to be rearranged without first being evicted. Within this model,
Peserico gives nearly tight competitive ratios based on the so-called
pseudo-associativity of a cache [16]. Subsequent work by Buchbinder,
Chen, and Naor [7] considered a similar model without resource aug-
mentation, and showed how to design a randomized matroid-based
algorithm that obtains an𝑂 (log2 𝑛) competitive ratio, again against
an OPT that is subject to the same associativity constraints as the
online algorithm.

Finally, there has also been a great deal of work on companion
caches [5, 7, 15], which are generalizations of set-associative caches.
Companion caches are a combination of a set-associative cache (the
main cache) with a, typically smaller, fully associative cache (the
companion).2 As in [7, 16], the cache is permitted to rearrange pages
internally after they are brought into cache, and the goal is to be com-
petitive against an optimal offline algorithm for the specific cache
organization at hand. Such algorithms do not necessarily offer any
competitive guarantee when compared to a fully associative OPT.

2 PRELIMINARIES
Definitions. Given an access sequence 𝑥1, 𝑥2, . . . , 𝑥ℓ , a cache of

size𝑛 process the sequence as follows: each time a page 𝑥 is accessed,
it incurs a cache miss if it is not in cache. When a cache miss occurs,
𝑥 must be placed into cache, and another page may be evicted. In the
paging problem, our goal is to design an eviction policy that incurs
as few misses as possible.

A cache is said to have associativity 𝑑 if each page 𝑥 is restricted
to 𝑑 positionsℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) ∈ [𝑛]𝑑 (these are called 𝑥’s hashes),
where the tuple (ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥)) is drawn independently for each

pages 𝑥1, . . . , 𝑥𝑛/𝛽 over and over in rounds. OPT incurs 𝑛/𝛽 total cache misses. Any
𝑑-set-associative policy, with𝑑 = 𝑜 (log𝑛) , can be shown to incur an 2−𝑂 (𝑑) = 𝑛−𝑜 (1)

miss rate (indeed, a 2−𝑂 (𝑑) fraction of buckets have more than𝑑 keys that has to them,
and therefore incur at least one miss per round). By performing enough rounds, one
can straightforwardly argue that OPT is achieving asymptotically fewer misses than the
set-associative policy.
2In the hardware architecture literature, a common use of companion caches is to
implement victim caches [12].

page 𝑥 from some hash distribution 𝑃 . When 𝑥 is brought into cache,
if the caching algorithm wishes to places 𝑥 in position ℎ𝑖 (𝑥), and if
ℎ𝑖 (𝑥) is occupied, then the algorithm must evict the page currently in
that position.

Given a hash distribution 𝑃 , we define 𝑷 -LRU to be the policy that
performs evictions as follows: If, when 𝑥 is brought into cache, all
of 𝑥’s hashes are occupied, then we evict the least recently accessed
page out of the pages in those positions. If 𝑃 is the distribution that
samples each ℎ𝑖 (𝑥) independently and uniformly at random from
[𝑛], then we refer to 𝑃-LRU simply as 𝒅-LRU. We will also study the
2-RANDOM policy, which is the policy in which each page hashes
to two independent and uniformly random positions ℎ1 (𝑥), ℎ2 (𝑥);
and in which, whenever a page 𝑥 is brought into cache, it chooses a
random position out of ℎ1 (𝑥), ℎ2 (𝑥) to go to, evicting any page that
was previously there.

We will evaluate policies with competitive analysis. We say that a
policy ALG1, using 𝛽 resource augmentation, is 𝜶 -competitive with
a policy ALG2 (or that ALG1 is (𝜶, 𝜷)-competitive with ALG2, for
short) if the following is true. Consider any access sequence𝑥1, . . . , 𝑥ℓ ,
and compare the number of misses𝑀1 that ALG1 incurs on a cache
of size 𝑛 with the number𝑀2 that ALG2 incurs on a cache of size 𝑛/𝛽.
The requirement for (𝛼, 𝛽)-competitiveness is that, if𝑀2 = 𝜔 (𝑛), then

E[𝑀1] ≤ (1 + 𝛼)𝑀2 +𝑂 (ℓ/𝑛).
We remark that, in general, one cannot help having a term of the
form ℓ/poly(𝑛). This can be seen, for example, by observing that,
for 𝑑 = 𝑂 (1), there is a 1/poly(𝑛) probability that a given set of
𝑑 + 1 pages all have their hashes in a set of just 𝑑 positions, in which
case the pages cannot reside in cache together, and any sequence that
repeatedly access those pages will incur an Ω(1) miss rate.

Throughout our analyses, whenever we perform competitive anal-
ysis, ALG2 will either be the offline optimal solution OPT or the
fully-associative LRU policy.

Conventions. When performing a competitive analysis to show
that ALG1 is competitive with ALG2, our default perspective will be
that of ALG1. So, for example, if we refer to a page 𝑥 experiencing
a miss, but do not specify which algorithm we are talking about, the
default is ALG1.

In general, we will not concern ourselves with optimizing con-
stants in our analyses. In fact, in some cases where it is expositionally
helpful, we will choose constants that are (clearly) unnecessarily
large/small, as this will allow us to make it clear how the different
constants should relate to each other (i.e., which constants should be
larger/smaller than others).

3 A LOWER BOUND FOR𝑑-ASSOCIATIVE LRU
In this section, we prove a negative result on the performance of
2-LRU:

THEOREM 1. The 2-LRU policy is not (𝛼, 𝛽)-competitive for any
𝛼, 𝛽 ∈ 𝑂 (1).

In fact, what we will actually prove is a stronger result. For any
associativity 𝑑 ∈ 𝑜 (log𝑛/log log𝑛), and for any distribution 𝑃 for
hashes (ℎ1 (𝑥), ℎ2 (𝑥), . . . , ℎ𝑑 (𝑥)) ∼ 𝑃 , so long as 𝑃 satisfies a mild
distributional assumption that we call semi-uniformity, then the lower
bound continues to hold: There do not exist any constants 𝛼, 𝛽 such
that 𝑃 is (𝛼, 𝛽)-competitive.

558

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA
Michael A. Bender, Alex Conway, Daniel DeLayo, Martin Farach-Colton, Jaehyun Han, Linfeng He, Rob Johnson, Sudarsun Kannan, William Kuszmaul, Donald Porter,

and Evan West

Formally, a distribution 𝑃 over [𝑛]𝑑 is semi-uniform if: Given a
sample (ℎ1, ℎ2, . . . , ℎ𝑑) ∼ 𝑃 , an index 𝑗 ∈ [𝑑], and a position 𝑖 ∈ [𝑛],
we have that Pr[ℎ 𝑗 = 𝑖] ≤ polylog(𝑛)/𝑛. That is, each individual po-
sition 𝑖 ∈ [𝑛] has probability density forℎ 𝑗 that is at most a polylog𝑛
factor larger than the uniform distribution would have. Note that semi-
uniformity does not say anything about how the hashesℎ1, ℎ2, . . . , ℎ𝑑
relate to each other—they can have arbitrary dependencies.

The main theorem of the section is the following:

THEOREM 2. Let 𝑑 = 𝑜

(
log𝑛

log log𝑛

)
and 𝑃 be any distribution over

[𝑛]𝑑 that is semi-uniform. Let 𝐾 ≥ 1 be a parameter, and define
OPT to be the optimal caching policy on a cache of size 𝑛/log𝑛. For
any 𝐾 ≤ 𝑛, there exists an oblivious sequence of 𝐾𝑛(log𝑛)𝑂 (𝑑) =

𝐾𝑛1+𝑜 (1) accesses such that OPT incurs cost𝑂 (𝑛) and 𝑃-LRU incurs
expected cost𝜔 (𝐾𝑛).

Corollary 1. For any 𝑑 = 𝑜

(
log𝑛

log log𝑛

)
and for any semi-uniform

distribution 𝑃 over [𝑛]𝑑 , there do not exist any positive constants
𝛼, 𝛽 ∈ 𝑂 (1) such that 𝑃-LRU is (𝛼, 𝛽)-competitive.

In the rest of the section, we will prove Theorem 2. Let 𝑙 = 𝑂 (𝑛)
be a large constant multiple of 𝑛. We begin by accessing a sequence
of 𝑙 = 106𝑛 distinct pages 𝑎1, 𝑎2, . . . , 𝑎𝑙 . We refer to this part of the
access sequence as populating the cache and use 𝑡0 as the moment
after the 𝑙-th access. The effect of this population step is the following:

Lemma 1. Consider a page 𝑎 ∉ {𝑎1, 𝑎2, . . . , 𝑎𝑙 }. The probability that
all of 𝑎’s hashes ℎ1 (𝑎), . . . , ℎ𝑑 (𝑎) are occupied slots at time 𝑡0 is at
least 0.99.

PROOF. Let 𝑝𝑖 be the probability that slotsℎ1 (𝑎𝑖), . . . , ℎ𝑑 (𝑎𝑖) are
occupied conditioned on the state of the cache after accesses 1, . . . , 𝑖−1
(note that 𝑝𝑖 is a random variable!). Let 𝐽 be the largest 𝑗 such that
𝑝 𝑗 ≤ 0.999 (𝐽 is also a random variable). Since inserting pages cannot
decrease the number of occupied slots, 𝑝𝑖 is monotonically increasing
and 1−𝑝𝑖 is monotonically decreasing. It follows that, for each access
𝑎𝑖 , if we condition on 𝑖 ≤ 𝐽 , then the access increases the number of
occupied slots with probability at least 1 − 𝑝𝑖 ≥ 0.001. This means
that, if we define𝑄 to be the number of slots occupied when the 𝐽 -th
access occurs, then

E[𝑄] =
∑︁
𝑖≥1

Pr[𝑖 ≤ 𝐽] · Pr[𝑎𝑖 fills an unoccupied slot | 𝑖 ≤ 𝐽]

≥ 0.001
∑︁
𝑖≥1

Pr[𝑖 ≤ 𝐽] ≥ 0.001 · E[𝐽] .

Since𝑄 can never exceed 𝑛, it follows that E[𝐽] ≤ 1000𝑛. Thus,
by Markov’s inequality, we have that

Pr[𝐽 > 𝑙] ≤ E[𝐽]/𝑙 = E[𝐽]/(106𝑛) ≤ 0.001.

Now consider a page 𝑥 ∉ {𝑎1, 𝑎2, . . . , 𝑎𝑙 }. The probability that all
of ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) are occupied at time 𝑡0 is at least 1 − 𝑝𝑙 . And
the probability that 1 − 𝑝𝑙 < 0.999 is at most Pr[𝐽 ≥ 𝑙]. Since
𝑙 ≥ 106𝑛, this probability is at most 0.001. Therefore, the overall prob-
ability that ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) are all occupied is at least Pr[1 − 𝑝𝑙 ≤
0.999] · 0.999 ≥ 0.999 · 0.999 ≥ 0.99, as desired. □

The rest of the access sequence will access only three sets of pages
𝐻 , 𝐴, and 𝐵. The sets 𝐴 and 𝐵 are each of size 𝑛/log𝛾 𝑛 for some
sufficiently large positive constant𝛾 , and are chosen arbitrarily such

that 𝐴, 𝐵, {𝑎1, . . . , 𝑎𝑙 } are all disjoint. The set 𝐻 is constructed by
sampling each page from {𝑎1, . . . , 𝑎𝑙 } independently with probability
1/log𝛾 𝑛. Note that, with high probability in 𝑛 (probability at least,
say, 1 −𝑂 (𝑛−10)), this results in |𝐻 | ≤ 𝑂 (𝑛/log𝛾 𝑛). We will call the
elements of𝐻 heavy pages and the elements of𝐴 and 𝐵 light pages.

After populating the cache (i.e. from 𝑡0 onwards), we access pages
in the following pattern: we access𝐻 , then𝐴, then𝐻 , then 𝐵, then𝐻 ,
then𝐴, the𝐻 , then 𝐵, and so on. This is the entire access sequence.

Call a slot 𝑖 ∈ [𝑛] negligible if it is unoccupied at time 𝑡0. We
know from Lemma 1 that most pages 𝑥 ∈ 𝐴 ∪ 𝐵 do not hash to any
negligible slots. Now consider a page 𝑥 in set 𝐴 or 𝐵. Call page 𝑥
promising if it satisfies the following three conditions:

(1) All of 𝑥’s hashesℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) are non-negligible.
(2) The pages that were in slots ℎ2 (𝑥), . . . , ℎ𝑑 (𝑥) at time 𝑡0 were

all selected as heavy. Call these pages𝑌𝑥 .
(3) Every heavy page 𝑧 ∈ 𝐻 is either in𝑌𝑥 or has disjoint hashes

ℎ1 (𝑧), . . . , ℎ𝑑 (𝑧) from 𝑥’s hashesℎ1 (𝑥), . . . , ℎ𝑑 (𝑥).
The next step in our analysis is to show that each 𝑥 ∈ 𝐴 has a reason-
ably large probability of being promising.

Lemma 2. For each 𝑥 ∈ 𝐴∪𝐵, Pr[𝑥 is promising] ≥ 1/(log𝑛)𝑂 (𝑑) .

PROOF. For convenience, we associate the three conditions above
(that determine whether 𝑥 is promising) with the events𝐶1,𝐶2, and
𝐶3 respectively.

By Lemma 1, the probability that any ofℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) are neg-
ligible is at most 0.01. That is, Pr[𝐶1] ≥ 0.99. Moreover, if the slots
are non-negligible, then each page stored in slots ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥)
independently has a 1/polylog𝑛 chance of being selected as heavy.
Thus, Pr[𝐶2 | 𝐶1] ≥ 1/(log𝑛)𝑂 (𝑑) , which implies that

Pr[𝐶1 ∧𝐶2] ≥ 0.99/(log𝑛)𝑂 (𝑑) = 1/(log𝑛)𝑂 (𝑑) .

Next we wish to analyze Pr[𝐶3 | 𝐶1 ∧ 𝐶2]. For any outcome of
ℎ(𝑥) = (ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥)), the number 𝑄 of pages in {𝑎1, . . . , 𝑎𝑙 }
that collide with at least one of 𝑥’s hashes satisfies

E[𝑄 | ℎ(𝑥)] =
∑︁
𝑖∈[𝑙]

∑︁
𝑗∈[𝑑]

∑︁
𝑘∈[𝑑]

Pr[ℎ 𝑗 (𝑎𝑖) = ℎ𝑘 (𝑥)]

= 𝑙 · 𝑑2 · polylog𝑛
𝑛

≤ polylog𝑛,

where the second-to-final step makes use of semi-uniformity. More-
over, since𝑄 | ℎ(𝑥) is a sum of independent indicator random vari-
ables, we can apply a Chernoff bound to deduce that,

Pr[𝑄 ≤ polylog𝑛 | ℎ(𝑥)] ≥ 1 − 1/𝑛2 .

As this is true for any value of ℎ(𝑥), we can remove the conditional
to get that

Pr[𝑄 ≤ polylog𝑛] ≥ 1 − 1/𝑛2 .

Combining this with the fact that Pr[𝐶1 ∧𝐶2] ≥ 1/(log𝑛)𝑂 (𝑑) , we
can conclude that

Pr[(𝑄 ≤ polylog𝑛) ∧𝐶1 ∧𝐶2] ≥ 1/(log𝑛)𝑂 (𝑑) − 1/𝑛2

≥ 1/(log𝑛)𝑂 (𝑑)

where the final step makes use of the fact that 𝑑 = 𝑜 (log𝑛/log log𝑛).
Finally, if we condition on (𝑄 ≤ polylog𝑛) ∧𝐶1 ∧𝐶2, the probability

559

Don’t Melt Your Cache: Low-Associativity with Heat-Sink SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

that any of the𝑄 − |𝑌𝑥 | pages 𝑧 ∈ 𝐻 \ 𝑌𝑥 satisfyingℎ(𝑧) ∩ ℎ(𝑥) ≠ ∅
are selected in𝐻 is at most

polylog𝑛
log𝛾 𝑛

≤ 0.1,

where the final step uses of the fact that𝛾 is a sufficiently large positive
constant. This means that

Pr[𝐶3 | (𝑄 ≤ polylog𝑛) ∧𝐶1 ∧𝐶2] ≥ 0.9,

which implies that

Pr[𝐶3,𝐶2,𝐶1] ≥ 0.9 · Pr[(𝑄 ≤ polylog𝑛) ∧𝐶2 ∧𝐶1]

≥ 0.9/(log𝑛)𝑂 (𝑑) = 1/(log𝑛)𝑂 (𝑑) .

□

Call two light pages 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 a happy pair if:
(1) Both 𝑎 and 𝑏 are promising.
(2) ℎ1 (𝑎) = ℎ1 (𝑏).
(3) Every light page𝑧 ∉ {𝑎, 𝑏} has disjoint hashesℎ1 (𝑧), . . . , ℎ𝑑 (𝑧)

from 𝑎’s and𝑏’s hashesℎ1 (𝑎), . . . , ℎ𝑑 (𝑎) andℎ1 (𝑏), . . . , ℎ𝑑 (𝑏).
The final technical lemma that we need to prove is to show that

there are (in expectation) many happy pairs. Before we can do this,
we will need to prove the following helper lemma:

Lemma 3. Let 𝑥 be a page and condition on an arbitrary outcome
forℎ1 (𝑥), ℎ2 (𝑥), . . . , ℎ𝑑 (𝑥). Let𝐶 be a set of𝑂 (𝑛/log𝛾 𝑛) pages with
𝑥 ∉ 𝐶. The probability that there exists a page 𝑐 ∈ 𝐶 with hashes
ℎ1 (𝑐), . . . , ℎ𝑑 (𝑐) that collide withℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) is at most 0.01.

PROOF. Since distribution 𝑃 is semi-uniform, we can union bound
the probability that a page 𝑐 ∈ 𝐶 has hashes which collide with
ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) to be at most 𝑑 polylog𝑛/𝑛. By a union bound over
all𝑂 (𝑛/log𝛾 𝑛) pages in𝐶, the probability that any page collides with
𝑥 is at most

𝑛

log𝛾 𝑛
· 𝑑 polylog𝑛

𝑛
.

Recalling that𝛾 is sufficiently large, we can conclude that the log𝛾 𝑛
term dominates, so that the overall probability is at most, say, 0.01. □

We can now prove that every pair of light pages 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵
has a reasonably large probability of being a happy pair.

Lemma 4. Given two light pages 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, then

Pr[(𝑎, 𝑏) is a happy pair] ≥ 1
𝑛 · (log𝑛)𝑂 (𝑑) .

PROOF. Let 𝑝𝑎 and 𝑝𝑏 be the indicator random variables for the
events that 𝑎 and 𝑏 are promising, respectively. Let 𝑞𝑎,𝑏 be the indi-
cator random variable for the event thatℎ1 (𝑎) = ℎ1 (𝑏). Let𝐶1 be the
event that 𝑝𝑎𝑝𝑏 = 1, let 𝐶2 be the event 𝑞𝑎,𝑏 = 1, and let 𝐶3 be the
event that every light page 𝑧 ∉ {𝑎, 𝑏} has disjoint hashes from 𝑎 and
𝑏. The pair (𝑎, 𝑏) is happy if all of𝐶1,𝐶2,𝐶3 happen concurrently.

Recall from Lemma 2 that the probability that a given 𝑥 ∈ 𝐴 ∪ 𝐵
is promising is greater than or equal to 1

(log𝑛)𝑂 (𝑑) . Thus, we have that

E[𝑝𝑎] = E[𝑝𝑏] ≥ 1
(log𝑛)𝑂 (𝑑) .

Unfortunately, 𝑝𝑎 and 𝑝𝑏 are not independent. Nonetheless, with
a careful argument, we can still lower bound Pr[𝐶1] = E[𝑝𝑎𝑝𝑏].

We begin by considering some fixed outcome for 𝑆 (𝑡0), the state
of the cache (and therefore the distribution of heavy pages) at time 𝑡0.
Let 𝑝𝑎 | 𝑆 (𝑡0) and 𝑝𝑏 | 𝑆 (𝑡0) be the conditional values of 𝑝𝑎 , 𝑝𝑏 , and
𝑞𝑎,𝑏 given 𝑆 (𝑡0). Recall that 𝑝𝑎 and 𝑝𝑏 rely on the three conditions
from the definition of promising; these conditions are determined by
𝑆 (𝑡0) and the 𝑑-tuple of hashes for the potentially promising page.
As the 𝑑-tuples for 𝑎 and 𝑏 are independent from each other (and
even independent of 𝑆 (𝑡0)), we have for any 𝑆 (𝑡0) that the conditional
random variables 𝑝𝑎 | 𝑆 (𝑡0) and 𝑝𝑏 | 𝑆 (𝑡0) are independent.

Since 𝑝𝑎 and 𝑝𝑏 when conditioned on 𝑆 (𝑡0) are independent,

Pr[(𝑝𝑎 | 𝑆 (𝑡0)) ∧ (𝑝𝑏 | 𝑆 (𝑡0))] = E[(𝑝𝑎 | 𝑆 (𝑡0))2] .
By convexity (and, specifically, by Jensen’s inequality),

E𝑆 (𝑡0) [(𝑝𝑎 | 𝑆 (𝑡0))2] ≥ E𝑆 (𝑡0) [𝑝𝑎 | 𝑆 (𝑡0)]2

≥
(

1
(log𝑛)𝑂 (𝑑)

)2
=

1
(log𝑛)𝑂 (𝑑) .

It follows that

Pr[𝐶1] = E[𝑝𝑎𝑝𝑏] = E𝑆 (𝑡0) [Pr[(𝑝𝑎 | 𝑆 (𝑡0)) ∧ (𝑝𝑏 | 𝑆 (𝑡0))]]

≥ 1
(log𝑛)𝑂 (𝑑) .

Next we argue that Pr[𝐶1 ∧ 𝐶2] ≥ 1
𝑛 Pr[𝐶1]. To do so, we will

need the following standard claim:

Claim 1. Let 𝑥,𝑦 be iid random variables over [𝑛]. Then Pr[𝑥 =

𝑦] ≥ 1/𝑛.

PROOF. Let 𝑞𝑖 = Pr[𝑥 = 𝑖] = Pr[𝑦 = 𝑖]. From the Cauchy-
Schwarz Inequality

©­«
∑︁
𝑖∈[𝑛]

𝑞𝑖
ª®¬
2

≤ ©­«
∑︁
𝑖∈[𝑛]

𝑞2𝑖
ª®¬ ©­«

∑︁
𝑖∈[𝑛]

1ª®¬ .
It follows that

(∑𝑖∈[𝑛] 𝑞𝑖)2

𝑛
≤

∑︁
𝑖∈[𝑛]

𝑞2𝑖 .

Since the sum of the probabilities must be equal to 1 (i.e.
∑
𝑖∈[𝑛] 𝑞𝑖 =

1), it follows that ∑︁
𝑖∈[𝑛]

𝑞2𝑖 ≥ 1/𝑛,

which completes the proof. □

If we condition on any outcome of 𝑆 (𝑡0) and on 𝑝𝑎 and 𝑝𝑏 being
1, then the conditional distributions for 𝑎 and𝑏 are iid. It follows from
Claim 1 that

Pr[𝑞𝑎,𝑏 = 1 | 𝑝𝑎 = 1, 𝑝𝑏 = 1, 𝑆 (𝑡0)] ≥ 1/𝑛.
This means that

Pr[𝑞𝑎,𝑏𝑝𝑎𝑝𝑏 = 1 | 𝑆 (𝑡0)] ≥
1
𝑛
· Pr[𝑝𝑎𝑝𝑏 = 1 | 𝑆 (𝑡0)] .

Taking an expected value over 𝑆 (𝑡0), it follows that

Pr[𝑞𝑎,𝑏𝑝𝑎𝑝𝑏 = 1] ≥ 1
𝑛
· Pr[𝑝𝑎𝑝𝑏 = 1],

meaning that Pr[𝐶1 ∧𝐶2] ≥ 1
𝑛 Pr[𝐶1].

Now condition on𝐶1 and𝐶2. By Lemma 3, even if we condition
on arbitrary outcomes for 𝑆 (𝑡0) and for the hashes for 𝑎 and 𝑏 (which

560

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA
Michael A. Bender, Alex Conway, Daniel DeLayo, Martin Farach-Colton, Jaehyun Han, Linfeng He, Rob Johnson, Sudarsun Kannan, William Kuszmaul, Donald Porter,

and Evan West

is stronger than conditioning on𝐶1 and𝐶2), the probability that any
light page 𝑐 ∉ {𝑎, 𝑏} collides with either 𝑎 or 𝑏 is at most 0.02. Thus
Pr[𝐶3 | 𝐶1,𝐶2] ≥ 0.98.

Putting the pieces together,

Pr[(𝑎, 𝑏) is happy pair] ≥ Pr[𝐶3 | 𝐶1,𝐶2] · Pr[𝐶1 ∧𝐶2]

≥ 0.98 · 1
𝑛(log𝑛)𝑂 (𝑑) =

1
𝑛 · (log𝑛)𝑂 (𝑑) .

□

Having lower-bounded the probability of a given pair (𝑎, 𝑏) ∈ 𝐴×𝐵
being happy, we can now complete the proof of Theorem 2.

PROOF OF THEOREM 2. Recall that, after populating the cache,
we access pages in the following pattern: we access all of 𝐻 , 𝐴, 𝐻 ,
𝐵,𝐻 ,𝐴,𝐻 , 𝐵, etc. By design, heavy pages are never evicted from the
cache by light pages. This means that each happy pair contends for
their first hash slot. So, if (𝑎, 𝑏) are happy, then each access to 𝑎 will
evict 𝑏 and each access to 𝑏 will evict 𝑎. Critically, this implies that
every access to 𝑎 or 𝑏 is a miss. By Lemma 4, the expected number of
happy pairs is Θ(𝑛2

polylog𝑛) ·
1

𝑛 · (log𝑛)𝑂 (𝑑) = 𝑛

(log𝑛)𝑂 (𝑑) . Since each
page can be a member of at most one happy pair, it follows that the
expected number of pages in𝐴 that are a happy pair is

𝑛

(log𝑛)𝑂 (𝑑) ≥ |𝐴|
(log𝑛)𝑂 (𝑑) .

This implies the expected miss rate for𝑃-LRU is at least 1/(log𝑛)𝑂 (𝑑)

each time that it accesses𝐻,𝐴,𝐻, 𝐵.
Recall that |𝐴|, |𝐵 | = 𝑛/log𝛾 𝑛 and that, with probability at least

1 −𝑂 (𝑛−10), we have |𝐻 | ≤ 𝑂 (𝑛/log𝛾 𝑛). It follows that, with prob-
ability 1 − 𝑂 (𝑛−10), the set of accessed pages after 𝑡0 is of size
𝑂 (𝑛/log𝛾 𝑛) ≤ 𝑛/log𝑛, and thus that OPT can store all the pages
in cache simultaneously. This means that, with high probability in
𝑛, OPT incurs a total of𝑂 (𝑛) cache misses. That is, with probability
𝑂 (𝑛−10), OPT’s misses are bounded only by the access length. Since
the total length of the access sequence𝐾𝑛1+𝑜 (1) is bounded by𝑂 (𝑛3),
it follows that OPT’s overall expected number of misses is𝑂 (𝑛).

On the other hand, after 𝑡0, 𝑃-LRU incurs misses on a 1
(log𝑛)𝑂 (𝑑)

expected fraction of the remaining accesses. It follows that within
𝐾𝑛(log𝑛)𝑂 (𝑑) = 𝐾𝑛1+𝑜 (1) accesses 𝑃-LRU incurs 𝜔 (𝐾𝑛) expected
misses. This completes the proof of Theorem 2.

□

4 AN UPPER BOUND FOR 2-RANDOM
In this section, we prove that the 2-RANDOM policy (with an associa-
tivity of only 2!) is (𝑂 (1),𝑂 (1))-competitive. In the previous section,
we found that 𝑑-LRU with associativity 𝑑 ∈ 𝑜 (log𝑛/log log𝑛) is not
(𝑂 (1),𝑂 (1))-competitive (Corollary 1). That is, surprisingly, trying
to make informed eviction decisions with𝑑-LRU is worse than making
random choices even when choosing between only 2 slots.

Recall that the 2-RANDOM policy maps each page 𝑥 to two uni-
formly random and independent hashes ℎ1 (𝑥), ℎ2 (𝑥) ∈ [𝑛]. More-
over, when an item 𝑥 is brought into cache, the policy simply selects
a random 𝑖 ∈ {1, 2}, places 𝑥 in position ℎ𝑖 (𝑥), and evicts any page
that previously resided there.

THEOREM 3. There exist positive constants 𝛼, 𝛽 such that, with
𝛽 resource augmentation, 2-RANDOM is 𝛼-competitive with OPT.

Throughout the section, we will define OPT to be the (offline) opti-
mal caching policy on a cache of size𝑛/𝛽. We will break OPT’s access
sequence into phases, where in each phase OPT incurs 2𝑛/𝛽 cache
misses. We will then establish Theorem 3 by arguing that, within the
same phase, 2-RANDOM incurs𝑂 (𝑛) cache misses.

Consider some phase, and let 𝑆 be the set of pages accessed during
it. As OPT incurs𝑛/𝛽 cache misses and initially has at most𝑛/𝛽 pages
in cache, we know that |𝑆 | ≤ 2𝑛/𝛽.

The first issue that we must consider is whether 2-RANDOM is even
capable of storing all of 𝑆 in cache at once. For this, we make use of
the following standard technical lemma about orientations of random
graphs (see, e.g., . [9, Theorem 4]).

Lemma 5. Let𝐺 be a random (multi) graph on 𝑛 vertices with 𝑛/𝛽
edges (sampled uniformly) for some constant 𝛽 > 2. Then, with prob-
ability 1 −𝑂 (1/𝑛), it is possible to assign each edge to one of its two
vertices so that each vertex is assigned at most one edge in total.

Later in the paper, it will also be helpful to have the following
corollary:

Corollary 2. Let 𝐺 be a random (multi) graph on 𝑛 vertices with
𝑛/𝛽 edges (sampled uniformly) for some (potentially super-constant)
𝛽 > 2. Then, with probability 1 −𝑂 (1/(𝛽𝑛)), it is possible to assign
each edge to one of its two vertices so that each vertex is assigned at
most on edge in total.

PROOF. The interesting case is 𝛽 = 𝜔 (1). Suppose we were to
generate 𝑟 = ⌊𝛽/3⌋ random edge sets 𝐸1, 𝐸2, . . . , 𝐸𝑟 , each with 𝑛/𝛽
random edges. Each has some probability 1 − 𝑝 of being orientable
for some 𝑝, and the probability that their union 𝐸 =

⋃
𝐸𝑖 is orientable

is at most (1 − 𝑝)𝑟 . On the other hand, we have by Lemma 5 that 𝐸 is
orientable with probability at least 1 −𝑂 (1/𝑛). Thus (1 − 𝑝)𝑟 ≥ 1 −
𝑂 (1/𝑛), implying that 𝑝 ≤ 𝑂 (1/(𝑟𝑛)) = 𝑂 (1/(𝛽𝑛)), as desired. □

Having established that 2-RANDOM is capable of storing 𝑆 , we
can now turn to the interesting part of the analysis: assuming that
2-RANDOM is capable of storing 𝑆 , how many cache misses should
we expect it to incur during the current phase?

For this, we will need one more lemma about random graphs:

Lemma 6. Consider a set of 𝑛/(4𝑒2) pages, each of which hashes to
two random positions in cache. Let𝐺 be the (multi) graph on𝑛 vertices,
where edge (𝑗, 𝑘) indicates that some page satisfies {ℎ1 (𝑥), ℎ2 (𝑥)} =
{ 𝑗, 𝑘}. For any given page 𝑥 , the size 𝑖 of the connected component
𝐶 that contains the edge {ℎ1 (𝑥), ℎ2 (𝑥)} satisfies

Pr[|𝐶𝑥 | ≥ 𝑖] ≤
1

4𝑖−2

for all 𝑖 ≥ 3.

PROOF. For a component𝐶 to be size 𝑖, three necessary conditions
are:

(1) The component𝐶 consists of 𝑖 positions.
(2) Both of 𝑥’s hashes are in the component.
(3) 𝑖 − 2 other pages 𝑅 also need to have all of their hashes in𝐶

There are
(𝑛

4𝑒2
𝑖−2

)
options for 𝑅 and

(𝑛
𝑖

)
options for𝐶. For any given

option, the probability that all of the hashes for 𝑅 and 𝑥 are in 𝐶 is
(𝑖𝑛)

2(𝑖−1) . Thus,

561

Don’t Melt Your Cache: Low-Associativity with Heat-Sink SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

Pr[|𝐶𝑥 | ≥ 𝑖] ≤
(𝑛
4𝑒2
𝑖 − 2

)
·
(
𝑛

𝑖

)
·
(
𝑖

𝑛

)2(𝑖−1)
Using the identity

(𝑚
𝑖

)
= (𝑚 · (𝑚−1) · · · (𝑚−𝑖+1))/𝑖! ≤ 𝑚𝑖/𝑖!, we get

Pr[|𝐶𝑥 | ≥ 𝑖] ≤
(𝑛/4𝑒2)𝑖−2
(𝑖 − 2)! · 𝑛

𝑖

𝑖!
·
(
𝑖

𝑛

)2(𝑖−1)
,

which implies that

Pr[|𝐶𝑥 | ≥ 𝑖] ≤
1

(4𝑒2)𝑖−2
· 𝑖

2𝑖−2

(𝑖!)2
.

Next, using the identity that 𝑖! ≥ (𝑖/𝑒)𝑖 (i.e., Stirling’s bound), we
can conclude that

Pr[|𝐶𝑥 | ≥ 𝑖] ≤
𝑒2𝑖

𝑒2𝑖−24𝑖−2
· 𝑖

2𝑖−2

𝑖2𝑖
=

𝑒2

4𝑖−2
· 1
𝑖2
.

Since 𝑖 ≥ 3,

Pr[|𝐶𝑥 | ≥ 𝑖] ≤
1

4𝑖−2
,

as desired.
□

We want to show that, for a given𝑦 ∈ 𝑆 , the expected number of
times that𝑦 gets evicted (during the current phase) is𝑂 (1). We will
begin by making a weaker claim: if𝑦 is contained in a connected com-
ponent𝐶 of some size 𝑟 , then the number of misses that𝑦 incurs during
the phase is bounded above by a geometric random variable with mean
2𝑟 . The high-level idea here is that bad choices for where to put the
pages in𝐶 are temporary (as the pages will promptly get evicted), but
good choices are forever (as the pages will never get evicted again).
In particular, if all of the pages in 𝐶 happen to at some point place
themselves into cache in a way that is compatible with each other,
then they will experience no more misses for the rest of the phase.

Lemma 7. Let 𝐸 be the event that 2-RANDOM is capable of storing
all of 𝑆 and condition on 𝐸. Let𝐺 be the (multi) graph on 𝑛 vertices
with edges (ℎ1 (𝑥), ℎ2 (𝑥)) for each 𝑥 ∈ 𝑆 . Let𝑦 ∈ 𝑆 , and condition on
𝑦’s edge {ℎ1 (𝑦), ℎ2 (𝑦)} being in a connected component𝐶 of some
size |𝐶 | = 𝑟 . Then the number𝑀 of misses that 2-RANDOM incurs on
𝑦 during the phase satisfies

Pr[𝑀 > 𝑖] ≤ (1 − 2−|𝐶 |)𝑖 = (1 − 1/2𝑟)𝑖 .

PROOF. Let 𝐶 = {𝑐1, 𝑐2, . . .} be the set of pages whose edges
form 𝑦’s connected component in𝐺 . Because we are conditioning
on 𝐸, there exists at least one injection (i.e., valid configuration)
𝑓 : 𝐶 → [𝑛] such that each 𝑐𝑖 satisfies 𝑓 (𝑐𝑖) ∈ {ℎ1 (𝑐1), ℎ2 (𝑐2)}.
We’re going to split our analysis into mini-phases: We begin a mini-
phase whenever some 𝑐 ∈ 𝐶 gets placed into a position that is not 𝑓 (𝑐).

Critically, we have two properties:
• Each page 𝑐 ∈ 𝐶 experiences at most one miss per mini-phase.

This is because, if 𝑐 misses and goes to 𝑓 (𝑐), and then some 𝑐′

later evicts 𝑐, then 𝑐′ must have triggered a new phase.
• Each mini-phase has probability at least 1/2 |𝐶 | of being the

last one. In particular, if we consider some mini-phase, and
let𝐶′ ⊆ 𝐶 be the subset of𝐶 that gets accessed between the
start of the mini-phase and the rest of the full phase, then we
can make the following argument. If, for each page 𝑐 ∈ 𝐶′, the

next time that 𝑐 experiences a miss, 𝑐 is placed in position 𝑓 (𝑐),
then all of the pages 𝑐 ∈ 𝐶′ will get placed into cache together.
From this point forward, none of the pages will get evicted
during the rest of the phase, so none of them will incur any
additional misses. The probability of every 𝑐 ∈ 𝐶′ choosing
𝑓 (𝑐) is at least 1/2 |𝐶′ | ≥ 1/2 |𝐶 | .

It follows that the number of misses𝑀 that𝑦 incurs is bounded by

Pr[𝑀 > 𝑖] ≤ (1 − 2−|𝐶 |)𝑖 = (1 − 1/2𝑟)𝑖 .

□

Combining Lemmas 6 and 7, we can now bound the expected
number of misses that any𝑦 ∈ 𝑆 incurs during the current phase.

Lemma 8. Let 𝐸 be the event that 2-RANDOM is capable of storing
all of 𝑆 . For a given 𝑦 ∈ 𝑆 , let𝑀 be the number of times that 𝑦 gets
evicted during the current phase. Then E[𝑀 | 𝐸] = 𝑂 (1).

PROOF. By Lemma 6, we can bound E[𝑀 | 𝐸] by

E[𝑀 | 𝐸] =
∑︁
𝑖≥0

Pr[𝑀 > 𝑖 | 𝐸] ≤
∑︁
𝑖≥0
E

[(
1 − 2−|𝐶 |

)𝑖
| 𝐸

]
≤ E

[∑︁
𝑖≥0

(
1 − 2−|𝐶 |

)𝑖
| 𝐸

]
= E

[
2 |𝐶 | | 𝐸

]
.

Recall that |𝑆 | ≤ 2𝑛/𝛽. Supposing 𝛽 ≥ 8𝑒2, it follows from Lemma
6 that Pr[|𝐶 | ≥ 𝑖] ≤ 1/4𝑖−2 for all 𝑖 ≥ 3. Since 𝐸 occurs with proba-
bility more than 1/2, this implies that Pr[|𝐶 | ≥ 𝑖 | 𝐸] ≤ 2/4𝑖−2. This
means that

E
[
2 |𝐶 | | 𝐸

]
≤
∑︁
𝑗

2𝑗 Pr[|𝐶 | = 𝑗 | 𝐸]

≤ 𝑂 (1) +
∑︁
𝑗≥3

2𝑗 · 2
4𝑗−2

.

Critically, the 2𝑗 term is dominated by the 4𝑗−2 term, so the entire
sum evaluates to𝑂 (1), as desired.

It is worth remarking that, in the calculation of E[2 |𝐶 |], given that
|𝐶 | itself is a geometric random variable, there is a risk that the expec-
tation could be infinite. It is only because of the fact that |𝐶 | has a geo-
metric ratio less than 1/2 that the expectation comes out to𝑂 (1). □

Putting the pieces together, we can prove Theorem 3.

PROOF OF THEOREM 3. Consider an access sequence in which
OPT incurs𝑀OPT = 𝜔 (𝑛) misses, 𝑥1, 𝑥2, . . . , 𝑥ℓ . Break the sequence
into phases in which OPT incurs 𝑛/𝛽 misses (or fewer for the final
phase), and let 𝑆 be the set of items accessed during a given phase.
Since OPT incurs 𝑛/𝛽 misses, we know that |𝑆 | = 𝑂 (𝑛). By Lemma 5,
we have with probability 1−𝑂 (1/𝑛) that the pages𝑆 can be placed into
cache together; and conditioned on this, we have by Lemma 8 that the
expected number of misses during the phase is𝑂 (|𝑆 |) = 𝑂 (𝑛). If there
are 𝑞 phases overall, and if ℓ is the total number of accesses overall,
then it follows that 2-RANDOM expects to incur a total of at most
𝑂 (ℓ/𝑛)+𝑂 (𝑞𝑛) misses. Since OPT incurs at least (𝑞−1)·𝛽/𝑛, and since
𝑞 > 1, it follows that 2-RANDOM is𝑂 (1)-competitive with OPT. □

562

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA
Michael A. Bender, Alex Conway, Daniel DeLayo, Martin Farach-Colton, Jaehyun Han, Linfeng He, Rob Johnson, Sudarsun Kannan, William Kuszmaul, Donald Porter,

and Evan West

5 HEAT-SINK LRU: AS GOOD
AS LRU, BUT WITH LOW ASSOCIATIVITY

We now present and analyze HEAT-SINK LRU. Recall that our goal
is to be (1 +𝑂 (𝜖), 1 +𝑂 (𝜖)) competitive with fully-associative LRU

for some parameter 𝜖. As a small abuse of notation, we will define
HEAT-SINK LRU on a cache of size (1 + 𝜖)𝑛 (rather than 𝑛) and com-
pare to LRU on a cache of size (1 − 2𝜖)𝑛. Of course, up to a change of
parameters, this is equivalent to having HEAT-SINK LRU on a cache
of size 𝑛 and LRU on a cache of size (1 − Θ(𝜖))𝑛.

We define HEAT-SINK LRU as the following policy:

• Construct 𝑛
𝑏

bins of size 𝑏 = 𝜖−3 each. Map each page 𝑥 to a
random bin Bin(𝑥).

• Allocate 𝑛/𝑑 additional slots to implement what we will call
the HEAT-SINK.

• When we incur a miss on a page 𝑥 , we flip a biased coin: With
probability 𝑝 = 1

poly d , we place 𝑥 in the HEAT-SINK, and
otherwise we place 𝑥 into Bin(𝑥).

• Misses that are routed to bin 𝑗 implement evictions by per-
forming LRU on the bin, and misses that are routed to the
HEAT-SINK implement evictions by performing 2-RANDOM

on the HEAT-SINK.

Note that, overall, the total associativity is 𝑑 = 𝑏 + 2 = 𝑂 (𝜖−3).3 We
will prove the following theorem:

THEOREM 4 (HEAT-SINK LRU). Let𝜖 ∈ (0, 1) satisfy𝜖−1 = 𝑛𝑜 (1) .
HEAT-SINK LRU is an𝑂 (𝜖−3)-associative replacement algorithm on
a cache of size (1 + 𝜖)𝑛 that is (1 +𝑂 (𝜖))-competitive with LRU on
a cache of size (1 − 2𝜖)𝑛.

Of course, by a change of variables (so that HEAT-SINK LRU is on
a cache of size 𝑛 and so that 𝜖 is adjusted by a constant factor), this
implies:

Corollary 3. Let 𝜖 ∈ (0, 1). There exists an 𝑂 (𝜖−3)-associative
replacement algorithm that is (1 + 𝜖, 1 + 𝜖)-competitive with LRU.

The rest of the section will be spent proving Theorem 4. Through-
out, we will assume without loss of generality that 𝜖 is at most a small
positive constant.

To prove Theorem 4, we will break the access sequence into phases,
where in each phase OPT incurs 𝜖𝑛 cache misses (although in the final
phase it may incur fewer). We will spend most of the analysis focusing
on one such phase𝑊 = [𝑡0, 𝑡1], spanning time 𝑡0 to 𝑡1 (where time is
measured in terms of the number of accesses that have occurred so far).
Let𝐴 be the set of pages resident in LRU’s cache at the beginning of
𝑊 , and let 𝐵 be the set of pages that LRU misses on during the window.

As part of our analysis, we will use an accounting argument in
which pages sometimes receive bonus points that HEAT-SINK LRU

can use to pay for the next time that it misses on that page. The rules
for how bonus points are awarded is that, for each page 𝑥 , it gets a
bonus point whenever LRU misses on 𝑥 but HEAT-SINK LRU hits; and
whenever HEAT-SINK LRU misses on 𝑥 and decides to send 𝑥 to the
HEAT-SINK.

Call a bin 𝑗 cool if |{𝑥 ∈ 𝐴 ∪ 𝐵 | Bin(𝑥) = 𝑗}| ≤ 𝑏, and hot
otherwise. Similarly, call a page 𝑥 ∈ 𝐴 ∪ 𝐵 cool if Bin(𝑥) is cool and

3In fact, the same analysis would work even if we were to reduce𝑏 to 𝜖−2 polylog𝜖−1,
for some appropriate polylog, resulting in𝑑 = 𝑂 (𝜖−2 polylog𝜖−1) .

hot if Bin(𝑥) is hot. We begin by arguing that HEAT-SINK LRU can
always use bonus points to pay misses on cool pages.

Lemma 9. Let 𝑗 be a cool bin and let 𝑥 ∈ 𝐴 ∪ 𝐵 satisfy Bin(𝑥) = 𝑗 .
Each access to 𝑥 during 𝑊 either is a miss for LRU, is a hit for
HEAT-SINK LRU, or is paid for by a bonus point.

PROOF. Let𝐴 𝑗 = {𝑥 ∈ 𝐴 | Bin(𝑥) = 𝑗} and similarly 𝐵 𝑗 = {𝑥 ∈
𝐵 | Bin(𝑥) = 𝑗}. By construction, 𝑥 ∈ 𝐴 𝑗 ∪ 𝐵 𝑗 .

We begin by considering the first access to 𝑥 during𝑊 . If 𝑥 ∈
𝐵 𝑗 \𝐴 𝑗 , then the first access to 𝑥 during window𝑊 is a miss for LRU.
On the other hand, if 𝑥 ∈ 𝐴 𝑗 , we can analyze the first access to 𝑥 with
three cases:

(1) At time 𝑡0, HEAT-SINK LRU has 𝑥 in bin 𝑗 . The fact that 𝑥 ∈ 𝐴 𝑗

means that, at time 𝑡0, the only bin- 𝑗 pages to have been ac-
cessed more recently than 𝑥 are also in𝐴 𝑗 . Thus, at all points
in time during𝑊 , the only bin- 𝑗 pages to have been accessed
more recently than𝑥 are in𝐴 𝑗 ∪𝐵 𝑗 . Since | (𝐴 𝑗 ∪𝐵 𝑗)\{𝑥}| < 𝑏,
we have during all of𝑊 that 𝑥 is always among the 𝑏 most
recently accessed bin- 𝑗 pages. This means HEAT-SINK LRU

will not evict 𝑥 at any point during window𝑊 , which implies
that 𝑥 will not experience any misses

(2) At time 𝑡0, HEAT-SINK LRU has 𝑥 is in the HEAT-SINK. Then,
𝑥 has a bonus point that will pay for 𝑥’s first miss in𝑊 .

(3) At time 𝑡0, the HEAT-SINK does not have 𝑥 is either in bin 𝑗 nor
the HEAT-SINK. The fact that 𝑥 is not in bin 𝑗 but is among the
most recent |𝐴 𝑗 | ≤ 𝑏 accessed bin- 𝑗 items (at time 𝑡0) means
that, last time 𝑥 was accessed (before time 𝑡0), HEAT-SINK

LRU must have placed 𝑥 in the HEAT-SINK. (Indeed, if 𝑥 had
been placed in bin 𝑗 , then the LRU policy within the bin would
ensure that it is still there at time 𝑡0). It follows that 𝑥 has a
bonus point that it can use to pay for its first miss during𝑊 .

Having proven the lemma for the first access to 𝑥 in𝑊 , now con-
sider the 𝑖-th access for some 𝑖 > 1. If, after the (𝑖 − 1)-th access for
HEAT-SINK LRU, 𝑥 resided in the heat sink, then 𝑥 is guaranteed to
have a bonus point that it can use to pay for any miss it experiences
on its 𝑖-th access. Otherwise, it must be that after the (𝑖 − 1)-th access
for HEAT-SINK LRU, 𝑥 was in bin 𝑗 . In this case, 𝑥 will remain among
the |𝐴 𝑗 ∪ 𝐵 𝑗 | ≤ 𝑏 most recently accessed pages for bin 𝑗 for the
rest of window𝑊 . This means that bin 𝑗 will not evict 𝑥 , and that 𝑥
experiences a hit on its 𝑖-th access. □

Later in the section, Lemma 9 will allow for us to bound the misses
on cool bins with a simple charging argument. The more difficult chal-
lenge is how to handle hot bins. Intuitively, HEAT-SINK LRU dissipates
the “heat” from the hot bins by routing a portion of their pages (or
heat) to the HEAT-SINK. At a high level, our analysis of hot bins will be
broken into three pieces. We will argue that: (1) cool bins do not con-
tribute very much to the HEAT-SINK, meaning that the HEAT-SINK can
focus most of its capacity on handling misses from hot bins; (2) the to-
tal number of distinct hot pages is small enough that HEAT-SINK could,
in principle, store all of them simultaneously; and (3) hot bins are able
to shed their “heat” (i.e., overload) to the HEAT-SINK quickly enough
that the cache misses incurred along the way are tolerable. Combining
these with the fact that HEAT-SINK is implemented using 2-RANDOM,
we will be able to obtain a bound of the form 𝜖𝜔 (1)𝑛 on the the total
expected number of misses that HEAT-SINK LRU incurs on hot pages.

563

Don’t Melt Your Cache: Low-Associativity with Heat-Sink SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

We begin by arguing that cool bins do not contribute very much to
the HEAT-SINK during𝑊 .

Lemma 10. Let 𝑘 be the number of number of distinct cool pages 𝑥
such that there is at least one miss for𝑥 during𝑊 in which HEAT-SINK

LRU routes 𝑥 to the heat sink. With probability 1 − 𝑛−𝜔 (1) , we have
𝑘 ∈ 𝑂 (𝑑2𝑛).

PROOF. Consider a page 𝑥 that hashes to a cool bin and that is
accessed at least once during𝑊 . The first time that HEAT-SINK LRU

incurs a miss on𝑥 during𝑊 ,𝑥 will enter the heat sink with probability
𝜖2. If 𝑥 does not enter the heat sink at that point, then it must be placed
in bin 𝑗 = Bin(𝑥). This means that 𝑥 will not experience any more
misses, since, for the rest of𝑊 , 𝑥 will be among the most recent 𝑏
items accessed for bin 𝑗 and will therefore not get evicted.

Therefore, the only way that 𝑥 can ever make it into the heat sink
during𝑊 is if it gets placed into the heat sink during its first miss.
There are deterministically at most 𝑛 pages that hash to cool bins, and
each independently has probability poly𝑑 ≤ 𝑑2 of being placed into
the heat sink on their first miss in𝑊 . The number of pages from cool
bins that get placed into the HEAT-SINK during𝑊 is therefore a sum
of independent indicator random variables with mean at most𝑑2𝑛. By
a Chernoff bound, this sum guaranteed to be𝑂 (𝑑2𝑛) with probability
at least 1 − 𝑛−𝜔 (1) . □

Next we bound the total number of hot pages.

Lemma 11. With probability 1 − 𝑛−𝜔 (1) , the total number𝑄 of hot
pages 𝑥 ∈ 𝐴 ∪ 𝐵 is 𝜖𝜔 (1)𝑛.

PROOF. We begin by bounding E[𝑄] = ∑
𝑥∈𝐴∪𝐵 Pr[𝑥 is hot]. In

order for 𝑥 ∈ 𝐴∪𝐵 to be hot, at least𝑏 − 1 other balls from𝐴∪𝐵 must
hash toBin(𝑥). The expected number of other balls that hash to the bin
is at most (|𝐴| + |𝐵 |)/(𝑛/𝑏) ≤ ((1− 2𝜖)𝑛 +𝜖𝑛)/(𝑛/𝑏) ≤ (1−𝜖)𝑏. As
𝑏 = 𝜖−3, the only way for the bin to receive at least𝑏 − 1 other balls is
if a sum of independent 0-1 random variables with mean ≤ 𝜖−3 − 𝜖−2
takes a value at least 𝜖−3 − 1. By a Chernoff bound, this occurs with
probability at most 𝜖𝜔 (1) . Thus, we have that Pr[𝑥 is hot] ≤ 𝜖𝜔 (1) ,
which implies that

E[𝑄] ≤ |𝐴 ∪ 𝐵 | · 𝜖𝜔 (1) ≤ 𝜖𝜔 (1)𝑛.

Having bounded E[𝑄], we next show that, with very high proba-
bility,𝑄 is not too far from its mean. We apply McDiarmid’s inequal-
ity [14], which says that for any real-valued function 𝑓 (𝑋1, . . . , 𝑋𝑛)
on 𝑛 independent random variables, if changing a given𝑋𝑖 is guaran-
teed to change 𝑓 by at most Δ, then Pr[|𝑓 − E[𝑓] | ≥ 𝑘Δ] ≤ 𝑒−Ω (𝑘2) .
Given the pages𝐴 ∪ 𝐵, we create the function 𝑓 that takes as input the
bin-hashes of the pages in𝐴 ∪ 𝐵 and returns the total number of hot
pages. Changing a single input to 𝑓 (𝐴∪𝐵) (i.e. a single page’s bin hash
value) can change the number of hot pages by at most𝑏 (the worst case
is that the input change toggles the hot/cool state of a bin with𝑏 pages).
We can therefore apply McDiarmid’s Inequality to conclude that

Pr
[
𝑓 (𝐴 ∪ 𝐵) − E[𝑓 (𝐴 ∪ 𝐵)] > 𝑘𝑏

√︁
|𝐴 ∪ 𝐵 |

]
≤ 𝑒−Ω (𝑘2) .

Recalling that |𝐴 ∪ 𝐵 | ≤ 𝑂 (𝑛), that E[𝑓 (𝐴 ∪ 𝐵)] ≤ 𝜖𝜔 (1)𝑛, and that
𝑏 = 𝑛𝑜 (1) gives

Pr
[
𝑓 (𝑎, 𝑏) > 𝜖𝜔 (1)𝑛 + 𝑘𝑛1/2+𝑜 (1)

]
≤ 𝑒−Ω (𝑘2) .

Setting 𝑘 to be, say log𝑛, completes the proof of the lemma. □

Lemmas 10 and 11 combine to imply that the total number of
distinct pages (both hot and cool) that incur misses on the heat sink
during𝑊 is quite small (much smaller than the capacity of the heat
sink). This, in turn, allows us to employ our analysis of 2-RANDOM

in order to conclude that each individual hot page should only expect
to incur a constant number of misses on the heat sink during𝑊 .

Lemma 12. There is a random event 𝐸 that occurs with probability
1 −𝑂 (1/𝑛), and conditioned on which the following is true:

• Using HEAT-SINK LRU, and for a given hot page 𝑥 , the ex-
pected number of times that 𝑥 is routed to the heat sink during
𝑊 is𝑂 (1).

• There are at most 𝜖𝜔 (1)𝑛 hot pages.
Moreover, the event 𝐸 is independent of the coin flips used by hot
pages to decide whether to go to the heat sink during misses.

PROOF. We know from Lemma 11 that, with probability 1 −
1/𝑛𝜔 (1) , the number of hot pages is at most 𝜖𝜔 (1)𝑛. We also know
from Lemma 10 that, with probability 1−1/𝑛𝜔 (1) , the total number of
distinct cool pages that get sent to the heat sink during𝑊 is𝑂 (𝜖2𝑛). It
follows that, with probability 1− 1/𝑛𝜔 (1) , the total number of distinct
pages that get sent to the heat sink during𝑊 is 𝑂 (𝜖2𝑛). Condition
on these events (which occur together with probability 1 − 1/𝑛𝜔 (1))
and further condition on the event that these hot pages are capable of
residing simultaneously in the heat sink (this occurs with probability
1 −𝑂 (1/𝑛) by Corollary 2 applied to a graph of size 𝜖𝑛 nodes with
𝑂 (𝜖2𝑛) edges). Then, we can apply Lemma 8 to deduce that each
hot page is placed into the heat sink at most𝑂 (1) expected times in
𝑊 . As the events that we have conditioned on are independent of the
heat-sink-coin-flips used by the hot pages, the proof of the lemma is
complete. □

As an immediate corollary of the previous lemma (and condition-
ing on the event𝐸 from the lemma), the total expected number of times
that hot pages experience misses and get sent to the heat sink (during
𝑊) is 𝜖𝜔 (1)𝑛. On the other hand, each time that a page experiences a
miss, it has an 𝜖2 probability of being sent to the heat sink. Using this
fact, we can recover a bound on the total expected number of times
that hot pages experience misses during𝑊 (regardless of whether
they are sent to the heat sink).

Lemma 13. Conditioned on the random event 𝐸 from Lemma 12, the
expected number of misses that HEAT-SINK LRU incurs on hot pages
during𝑊 is 𝜖𝜔 (1)𝑛.

PROOF. Recall that, conditioned on 𝐸, there are at most 𝜖𝜔 (1)𝑛
hot pages, each of which expects to be sent to the heat sink 𝑂 (1)
times. Let 𝐽 be the total number of times that HEAT-SINK LRU incurs
misses on these hot pages, and let𝐾 be the total number of times that
HEAT-SINK LRU incurs misses on these hot pages and flips a coin that
sends the hot page to the heat sink. Since conditioning on 𝐸 does not
reveal anything about the coin flips used for sending hot pages to the
heat sink, we have that E[𝐾] = E[𝐽] · 𝜖−2. We have already shown
that E[𝐽] = 𝜖𝜔 (1)𝑛, and it follows that E[𝐾] ≤ 𝜖𝜔 (1)𝑛 as well. □

At this point, we are ready to put all of the pieces together. During
each phase, we will use Lemma 13 to analyze the misses incurred
by hot pages. Combining this with Lemma 9, we can perform an
accounting argument that proves Theorem 4.

564

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA
Michael A. Bender, Alex Conway, Daniel DeLayo, Martin Farach-Colton, Jaehyun Han, Linfeng He, Rob Johnson, Sudarsun Kannan, William Kuszmaul, Donald Porter,

and Evan West

PROOF OF THEOREM 4. Across all time, let 𝑐0,1 the the number
of accesses on which HEAT-SINK LRU misses but LRU hits; let 𝑐0,0 be
the number of accesses on which both miss; and let 𝑐1,0 be the number
of accesses on which HEAT-SINK LRU hits but LRU misses. Finally,
let 𝑝 be the total number of bonus points that are awarded, and let ℓ
be the overall length of the access sequence.

First observe that

E[𝑝] = 𝜖2E[𝑐0,1] + E[𝑐1,0],
because, in order for a bonus point to be created, either LRU misses
and HEAT-SINK LRU hits (this happens 𝑐1,0 times); or LRU hits, HEAT-
SINK LRU misses, and we flip a coin that sends the missed page page
to the HEAT-SINK (this happens 𝜖2E[𝑐0,1] expected times).

Let𝐶hot be the total number of misses that HEAT-SINK LRU incurs
on hot pages (i.e., pages that are hot during the phase in which the
miss occurs), and let 𝐿LRU be the total cost incurred by LRU. If there
are 𝑞 phases overall, then we can apply Lemma 13 to each phase to
bound E[𝐶hot] ≤ 𝜖𝜔 (1)𝑛 · 𝑞 + 𝑂 (ℓ/𝑛). On the other hand, by def-
inition, 𝐶LRU ≥ (𝑞 − 1) · 𝜖𝑛 = Ω(𝑞𝜖𝑛). It follows that E[𝐶Hot] ≤
𝜖𝜔 (1)𝐶LRU +𝑂 (ℓ/𝑛).

On the other hand, Lemma 9 tells us that the total number of misses
that HEAT-SINK LRU incurs on cool pages is at most 𝑝 +𝑐0,0. It follows
that the total number of misses𝐶 incurred by HEAT-SINK LRU satisfies

E[𝐶] ≤ 𝜖𝜔 (1)𝐶LRU + E[𝑝] + 𝑐0,0 .
Plugging in our expression for E[𝑝], we get that

E[𝐶] ≤ 𝜖𝜔 (1)𝐶LRU + 𝜖2E[𝑐0,1] + E[𝑐1,0] + E[𝑐0,0] +𝑂 (ℓ/𝑛)

≤ 𝜖𝜔 (1)𝐶LRU + 𝜖2E[𝐶] +𝐶LRU +𝑂 (ℓ/𝑛)
Pulling the E[𝐶] terms to one side, it follows that

E[𝐶] ≤ 𝜖𝜔 (1)𝐶LRU + (1 + 𝜖2)𝐶LRU +𝑂 (ℓ/𝑛),
which completes the proof. □

6 CONCLUSION
LRU with low-associativity, which is commonly used in hardware
caches, does not asymptotically match the performance of fully-
associative LRU. By using randomness instead of LRU (such as with
the policy 2-RANDOM), low-associativity caching algorithms can
match the asymptotic performance of fully associative LRU.

We mix low-associativity LRU with 2-RANDOM to obtain HEAT-
SINK LRU, an even better although more complex caching procedure.
It makes decisions informed by the relative recency of pages and uses
randomness to dissipate the “heat” when many pages contend for the
same slot. We prove that HEAT-SINK LRU performs within a small
constant factor of fully associative LRU.

Our algorithms suggest a new way of thinking about the design
of low-associativity caches. That is, allowing even small amounts of
randomness can cause “overheating” parts of the cache to naturally
cool down and obtain asymptotically better performance.

Future work could determine whether semi-uniformity is necessary
for the LRU lower bound. That is, whether or not the lower bound holds
for all possible implementations of low-associativity LRU. We also
leave to future work experiments determining how HEAT-SINK LRU

and similar policies perform on real-world workloads or in hardware.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CCF-2423105, CCF-
2420942, CCF-2247576, and CCF-2230742.

Michael Bender was supported in part by the John L. Hennessy
Chaired Professorship.

Martín Farach-Colton was supported in part by the Leonard J.
Shustek professorship.

William Kuszmaul was partially supported by a Harvard Rabin
Postdoctoral Fellowship and by a Harvard FODSI fellowship under
NSF grant DMS-2023528.

Evan West was supported in part by NSF under Grant NRT-HDR
2125295.

REFERENCES
[1] Andreas Abel and Jan Reineke. Reverse engineering of cache replacement policies

in intel microprocessors and their evaluation. pages 141–142. IEEE, 3 2014.
[2] Michael A. Bender, Abhishek Bhattacharjee, Alex Conway, Martín Farach-Colton,

Rob Johnson, Sudarsun Kannan, William Kuszmaul, Nirjhar Mukherjee, Don
Porter, Guido Tagliavini, Janet Vorobyeva, and Evan West. Paging and the
address-translation problem. In Proceedings of the 33rd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 105–117, New York,
NY, USA, 2021. Association for Computing Machinery.

[3] Michael A. Bender, Richard Cole, Erik D. Demaine, and Martin Farach-Colton.
Scanning and traversing: Maintaining data for traversals in a memory hierarchy. In
ESA, volume 2461 of Lecture Notes in Computer Science, pages 139–151. Springer,
2002.

[4] Michael A. Bender, Rathish Das, Martín Farach-Colton, and Guido Tagliavini. An
associativity threshold phenomenon in set-associative caches, 2023.

[5] Mark Brehob, Richard Enbody, Eric Torng, and Stephen Wagner. On-line restricted
caching. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 374–383, USA, 2001. Society for Industrial and Applied
Mathematics.

[6] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisenbarth.
Reload+refresh: abusing cache replacement policies to perform stealthy cache
attacks. USENIX Association, 2020.

[7] Niv Buchbinder, Shahar Chen, and Joseph (Seffi) Naor. Competitive algorithms for
restricted caching and matroid caching. In Andreas S. Schulz and Dorothea Wagner,
editors, Proceedings of the 22nd Annual European Symposium on Algorithms
(ESA), pages 209–221, Berlin, Heidelberg, September 2014. Springer-Verlag.

[8] A. Djordjalian. Minimally-skewed-associative caches. pages 100–107. IEEE
Comput. Soc, 2002.

[9] Michael Drmota and Reinhard Kutzelnigg. A precise analysis of cuckoo hashing.
ACM Transactions on Algorithms, 8:1–36, 4 2012.

[10] Krishnan Gosakan, Jaehyun Han, William Kuszmaul, Ibrahim N. Mubarek, Nirjhar
Mukherjee, Karthik Sriram, Guido Tagliavini, Evan West, Michael A. Bender,
Abhishek Bhattacharjee, Alex Conway, Martin Farach-Colton, Jayneel Gandhi,
Rob Johnson, Sudarsun Kannan, and Donald E. Porter. Mosaic pages: Big tlb
reach with small pages. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3, ASPLOS 2023, page 433–448, New York, NY, USA, 2023. Association
for Computing Machinery.

[11] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich,
and Rodolfo Pellizzoni. A survey on cache management mechanisms for real-time
embedded systems. ACM Computing Surveys, 48:1–36, 11 2015.

[12] Norman P. Jouppi. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. ACM SIGARCH Computer
Architecture News, 18, 1990.

[13] Swadhesh Kumar and P K Singh. An overview of modern cache memory and
performance analysis of replacement policies. pages 210–214. IEEE, 3 2016.

[14] Colin McDiarmid. On the method of bounded differences, pages 148–188.
Cambridge University Press, 8 1989.

[15] M. Mendel and Steven S. Seiden. Online companion caching. Theoretical
Computer Science, 324(2–3):183–200, September 2004.

[16] Enoch Peserico. Online paging with arbitrary associativity. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
555–564, USA, 2003. Society for Industrial and Applied Mathematics.

[17] André Seznec. A case for two-way skewed-associative caches. ACM SIGARCH
Computer Architecture News, 21:169–178, 5 1993.

[18] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28:202–208, 2 1985.

[19] Wenjie Xiong and Jakub Szefer. Leaking information through cache lru states.
pages 139–152. IEEE, 2 2020.

565

	Abstract
	1 Introduction
	1.1 Results
	1.2 Prior Work on Low Associativity

	2 Preliminaries
	3 A Lower Bound for d-Associative LRU
	4 An Upper Bound for 2-RANDOM
	5 Heat-Sink LRU: As Good as LRU, But With Low Associativity
	6 Conclusion
	References

