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Abstract
This paper introduces versioned programming, a technique
that can be used to convert pointer-based data structures into
efficient, lock-free implementations. Versioned program-
ming allows arbitrary composition of pointer modifications.
Taking linked-lists as an example, VLISTs, or versioned lists,
support features missing in other lock-free implementations,
such as double linking and atomic moves among lists.

The main idea of versioning is to allow different versions
of a nodes exist at the same time such that each thread can
pick the appropriate version and has a consistent view of
the whole data structure. We present a detailed example of
VLISTs, simple enough to include all code inline. The paper
also evaluates versioned tree implementations.

We evaluate versioned programming against several con-
currency techniques. With a modest number of writers, ver-
sioned programming outperforms read-log-update, which
locks nodes. VLIST out-perform lists with SwissTM, a high-
quality STM, showing the value of trading some programmer-
transparency for performance. Composability hurts perfor-
mance compared to a non-composable, hand-written lock-
free algorithm. Using the technique described in this pa-
per, application developers can have both the performance
scalability of sophisticated synchronization techniques with
functionality and simplicity comparable to coarse locks.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

Keywords Concurrent Programming, Lock-Free Data Struc-
tures, Versioned Programming
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1. Introduction
Software developers need better tools to write concurrent
programs for new generations of multi-core hardware. Many
programs adopt locking to share data structures safely, at a
cost to performance scalability. Lock-free data structures can
permit more concurrency and have strong progress guaran-
tees under write contention, but with restricted functionality.
Not all data structures have lock-free variants.

Existing lock-free data structures, including the state-of-
the-art Harris-Michael list [15, 26], can safely add or remove
individual items from a list, but cannot compose multiple op-
erations safely. For instance, if an application moves an item
from one list to another, the list implementation can atomi-
cally remove the item from the first list and atomically add
the item to the second list, but there will be a period during
which the item is either on both lists, or on neither list. If
the application has an invariant that requires the item to be
on exactly one list, the only safe option is to use a general-
purpose synchronization primitives, e.g., locks or transac-
tional memory. The inability to safely compose complex
list operations prevents some applications from enjoying the
performance benefits of current lock-free lists.

Our insight into the problem is that, to over-simplify
slightly, the art of designing a lock-free data structure is the
art of mapping pointer manipulations onto a single, atomic
instruction. Composing arbitrary data structure mutations
requires mapping an arbitrary number of pointer manipu-
lations onto a single atomic instruction, which is difficult
to do efficiently. Best-effort hardware transactional memory
(HTM) [1, 32] can compose multiple pointer manipulations
into one atomic operation, but current hardware transactions
can fail for a wide array of architectural and microarchitec-
tural reasons, leaving programmers with no guarantees that
a given transaction will commit, even in the absence of con-
tention. Thus, any practical lock-free data structure cannot
use HTM by rote, but must be able to fall back to software.

This paper introduces versioned programming, a tech-
nique that addresses the dilemma between functionality and
scalability. Versioned programming encapsulates the com-
plexity of manipulating an arbitrary number of pointers
while maintaining lock-free progress guarantees and good



performance scalability. Versioned programming can be
roughly thought of as an adaptation of multi-version con-
currency control (MVCC) [3, 31] or optimistic concurrency
control (OCC) [21] for use in pointer-based data structures.
The technique is simple enough to present and explain all
non-boilerplate code for a both the data structure library
and its application to a doubly-linked list implementation,
which primarily involves wrapping pointer manipulation and
adding a retry loop for writers. For generality, we also use
this technique to implement a lock-free, balanced tree.

Finally, we note that the difficulty of having both scal-
ability and ease-of-use in all cases has led to a number of
programming models that make explicit trade-offs. Read-
copy update (RCU) [25] and read-log update (RLU) [24],
make data structures scalable in special-cases, such as read-
mostly access patterns, but offer weaker progress guarantees
in the general case, such as with a non-trivial number of
writers. Software transactional memory (STM) implemen-
tations sacrifice performance for generality. Linked lists are
a long-known pathological case for TM, inducing false con-
flicts on pointers that all threads have to traverse [29]. Thus,
high-performance TM implementations often suspend the
transaction for list traversals with open nesting [28, 29] or
transactional boosting [19]. Section 4 also outlines how the
versioned programming library could use HTM internally to
improve its performance. Finally, we note that the success of
the Java Concurrency package indicates that applications can
benefit from concurrent data structures without transforming
the entire application to use transactions.

We evaluate the versioned programming for a linked list
and balanced tree on a 48-core machine; compare to RCU,
RLU, and SwissTM; and draw several insights about the
performance scalability of both versioning and alternative
approaches to constructing concurrent data structures.
• With heavy writes and modest thread counts, our ver-

sioned list, called a VLIST, is second only to a Harris-
Michael list.

• Composability has a cost for simple operations, and
a non-composable Harris-Michael list outperforms a
VLIST.

• On a list move benchmark, which exercises composabil-
ity, VLISTs outperform RLU and SwissTM at 16 or more
threads.

Thus, versioned programming strikes a good balance be-
tween functionality and performance scalability.

2. Background on lock-free lists
Because this paper uses linked-lists as a running exam-
ple, this section first reviews the Harris-Michael lock-free
list [15, 26]—the de facto lock-free list algorithm. The
Harris-Michael lock-free list is used in the Java Concurrency
Package’s ConcurrentSkipListSet and Concurrent-
SkipListMap classes.

The Harris-Michael algorithm is restricted to singly-
linked lists, and in these examples, we assume the list is
sorted by key. We assume the interface for all list implemen-
tations includes three functions: search, insert, and delete.

The search function is fairly straightforward: reader
threads simply follow a series of next pointers until they
arrive at the desired list node. The insert and delete func-
tions, therefore, must modify the list such that searches never
dereference a bad pointer value.
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Figure 1. Key steps to insert a node in a Harris-Michael list.

The implementation of insert is illustrated in Figure 1.
The list is first traversed to identify where to insert the node.
The new list node, for key 80 in the Figure, is allocated
and populated with an appropriate next pointer. Finally,
the next pointer of the previous node (70) is set with an
atomic compare-and-swap (CAS) instruction. If the CAS
fails, the insert must be retried. This CAS ensures that no
other node was inserted after node 70 in the list, but there
is another race condition that requires additional effort to
prevent. As node 80 is being inserted into the list, another
thread could delete node 70 from the list (Figure 2). For this
reason, a number of lock-free linked list algorithms require
a double-compare-and-swap (DCAS) instruction, which has
not been implemented on a processor since the Motorola 68k
for performance reasons [14, 23].
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Figure 2. Insertion race condition with a single CAS.

Therefore, the challenging part of this and other lock-free
list algorithms is implementing delete such that concur-
rent operations work correctly. The key insight of Harris’s
original algorithm is separating logical deletion from phys-
ical deletion, as illustrated in Figure 3. Logical deletion is
performed by setting the next pointer of a deleted node (70)
to a numerically distinct value that still allows traversal. For
example, if list nodes are word-aligned, one could set the low
bit of the pointer to indicate logical deletion. This allows a
reader or inserter to continue traversing the list, as well as
reliably test for logical deletion.
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Figure 3. Key steps to delete a node from an HM list.

After a node is logically deleted, it is physically removed
from the list by changing the next pointer of the previous



node with a CAS operation. Again, whether a reader is
traversing the list before or after the CAS, it can safely
traverse the list and filter out any logically deleted nodes.

The final issue is determining when the memory for a
deleted list node can be reclaimed safely. Note that even af-
ter physical deletion, a thread may still refer to this node
for some time. Harris’s original algorithm proposed refer-
ence counting garbage collection; Michael refined the algo-
rithm to incorporate other strategies including hazard point-
ers [27], which explicitly track active object references by
readers. In either approach, a deleted list node must persist
until there is no potential thread reading the node.

Limitations. The Harris-Michael algorithm is elegant in its
simplicity, but functionally limited. Concurrent insertions
and removals are handled safely, but programmers cannot
compose larger operations, such as moving an item from one
list to another. Another issue is that Harris-Michael lists are
singly-linked; doubly-linked lists require a general-purpose
synchronization mechanism.

RCU and RLU lists. Read-copy update (RCU) linked
lists [25] allow limited composition with a Harris-Michael-
like design. RCU is designed to improve the scalability of
read-mostly data structures. RCU eliminates read locking,
but serializes writers with locks. RCU linked lists inherit
many of the limitations discussed above: no support for
doubly-linked lists, and the inability to move an embedded
list node to another list until there are no potential readers.

Read-Log-Update (RLU) [24] is a extension of RCU that
simplifies the effort to use RCU, allows multiple writers
and composition of operations. We note that there are some
structural similarities between RLU and versioned program-
ming, which were developed independently and concur-
rently. One major difference is that RLU uses locks, which
lead to weaker progress guarantees and lower performance
under contention. Any lock-based approach, including RLU,
will inherit an unsavory trade-off between complexity and
performance in how fine or coarse to make the locks. A key
contribution of versioned programming is making such a de-
sign lock-free and improving performance with larger thread
counts and write contention.

3. Overview
This section presents the intuition of versioned program-
ming in a lock-free linked list, called a VLIST, or versioned
list. The versioning design applies multi-version concur-
rency control [3], common in databases and even a few
STMs [4], to the pointers in a data structure. Making this
versioning technique suitable for use in a stand-alone data
structure is a key contribution of this paper.

In a nutshell, VLISTs work as follows. Each node in
a VLIST contains multiple versions of its contents, called
slots, organized into a simple list sorted from most recent
to oldest. Slots are versioned according to a monotonically
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Figure 4. Two threads with different epoch reading a list,
and one speculatively deleting node B. Each thread sees a
view of the list appropriate to the point in logical time in
which it is serialized. The reader with epoch 4 sees Node B
with key 20, and the reader with epoch 3 does not.

increasing epoch, or logical timestamp. Each write critical
section increases the epoch. Unrelated data structures may
have different epoch counters; an epoch counter must be
shared among data structures that require safe composition,
such as atomically moving an item from one list to another.
In a doubly-linked list, each slot includes the previous and
next pointers, as well as the epoch.

Threads pick an epoch to use while traversing the list—
generally the most recent epoch at the start of a critical
region—and see a consistent view of the list’s state at that
point. As a reader traverses each list node, it walks each
node’s internal list of slots, and selects the most recent slot
that is not newer than the thread’s epoch.

Figure 4 illustrates a VLIST. One reader attempts to read
the list at epoch 3. The reader starts at the list head, node A,
and gets the most recent slot as of epoch 3. The slot indicates
only node A is present in the list at epoch 3. Another reader
tries to read the list at epoch 4 and selects the slot with epoch
4. The slot shows that node B is added to the list at epoch 4.
Therefore, the reader is able to see node B.

Writers insert speculative slots into list nodes, which are
ignored by readers until the writer adds an update record to a
shared log of updates. Speculative slots allow writers to de-
tect unsafe, concurrent writes from other threads. The update
record log creates a total order for all list modifications, and
also linearizes (or commits) an arbitrarily large set of consis-
tent updates with a single atomic compare-and-swap (CAS)
instruction. Disjoint nodes can be modified concurrently, and
can be serially added to the log in quick succession.

In Figure 4, the top slot of each node is a speculative
deletion of node B from the list. This update record can be
applied with a single CAS to the end of the update log.

The VLIST implementation efficiently garbage collects
deleted nodes, old slots and out-of-date records using a



quiescence-based reclamation scheme [25], which ensures
that no internal data structures are reclaimed concurrently
with access by a thread. As with any lock-free, dynamic
data structure, versioned data structures require a lock-free
memory allocator for end-to-end lock-freedom. Petrank et
al. [30] prove that the composition of an otherwise lock-free
data structure with a lock-free allocator will be lock-free,
and thus these issues can be treated as orthogonal.

4. Versioned list algorithm
This section details the VLIST design. We begin this section
with an intuitive overview of the algorithm, followed by a
detailed description of the reader and writer code in lists
sorted by keys, and conclude the section with a discussion of
certain design issues. Because the algorithm is so simple, we
include all non-boilerplate code in the text as figures, using
the C syntax of our prototype implementation. We do omit
the implementation of move, which is pattern-matched from
insert and remove, and available in the released code at
https://github.com/oscarlab/versioning.

Versioned list nodes. As illustrated in Figure 4, each node
in a VLIST list stores multiple versions of the data struc-
ture’s pointers. Each VLIST node includes an internal list of
slots, which include different addresses the next and previ-
ous pointers have pointed to over the life of the node. Slots
are sorted in reverse chronological order, and valid slots are
assigned a logical timestamp, or epoch. Invalid slots, which
represent a failed speculation, are ignored, as are uncommit-
ted speculative slots.

When a thread begins traversal of a VLIST, the thread
reads the most recently committed epoch value and stores
this as the thread epoch. Intuitively, a forward traversal of a
VLIST would start at the head node, read the most recent slot
from the head node with an epoch equal to or older than the
thread epoch, dereference the next node pointer, and repeat
this process until the thread arrived back at the head node.

Optimistic writers. The VLIST algorithm is optimistic,
in that it allows concurrent writers to speculatively update
nodes in the list. Writers allocate slots to nodes for specu-
lative modifications, which are ignored by readers until the
entire operation is validated for safety, and then linearized.
Pending modifications are logged in an update record, and
update records are applied to an ordered log with a single,
atomic compare-and-swap. These update records primarily
serve the purpose of consolidating updates across a range of
nodes to a single linearization point; these update records are
eventually garbage collected and replaced with epoch values
in the slots (described further in §4.2). Deleted nodes, obso-
lete slots, and update records are garbage collected using a
quiescence-based reclamation scheme [25].

When a writer is ready to commit its modifications, the
writer compares its update record to all update records added
after the writer began its critical region. The writer compares
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Figure 5. Three concurrent, speculative writers in a VLIST.
Thread 1 is speculatively adding slots to nodes A and B,
Thread 2 is adding slots to B and C, and Thread 3 is adding
a slots to C and D. All slot addition proceeds in parallel, but
updates are linearized by a CAS on the tail of the update
record log. Before adding a record, intervening records must
be checked: Thread 2 will observe a conflict with Thread 1
and retry, whereas Threads 1 and 3 will commit. Readers
ignore speculative or discarded entries until they are com-
mitted and assigned an epoch value.

the list of nodes has modified to the list in each intervening
record in order to detect any conflicting updates to the same
node. If the writer detects conflicts, it marks all speculative
slots as invalid (reserved epoch value 1), and retries.

If there are no conflicting updates between reading the
list and applying updates, the writer adds its update record
to the tail of the update log with an atomic compare-and-
swap (CAS) of the last entry’s next pointer. This is the
linearization point of the VLIST algorithm. If the CAS fails,
the writer continues walking the update record list until it
detects a conflict, or the CAS succeeds.

If the list nodes are uncontended, multiple write critical
sections can execute in parallel and then commit in quick
succession, described in detail in Section 4.2. If two writers
conflict, one has to retry its modifications.

https://github.com/oscarlab/versioning


1 s t r u c t v l i s t s l o t {
2 u i n t 6 4 t epoch ;
3 s t r u c t v l i s t n o d e ∗prev , ∗n e x t ;
4 s t r u c t v l i s t s l o t ∗ s l o t n e x t ;
5 s t r u c t u p d a t e r e c o r d ∗p t ;
6 } ;
7 s t r u c t v l i s t n o d e {
8 i n t v a l u e ;
9 s t r u c t v l i s t s l o t ∗ s l o t s ;

10 } ;
11 s t r u c t u p d a t e r e c o r d {
12 u i n t 6 4 t epoch ;
13 i n t c o u n t ;
14 s t r u c t v l i s t h e a d ∗heads [ VLIST ENTRIES PER TASK ] ;
15 s t r u c t s l o t t ∗ s l o t s [ VLIST ENTRIES PER TASK ] ;
16 s t r u c t u p d a t e r e c o r d ∗ r e c n e x t ;
17 } ;
18 s t r u c t v l i s t i n f o {
19 u i n t 6 4 t epoch ;
20 s t r u c t u p d a t e r e c o r d ∗ rec , ∗new rec ;
21 } ;

Figure 6. VLIST data types. The vlist node represents a
node in the list, and includes a list of vlist slot struc-
tures. An update record stores modifications, and is
added to the log using an atomic CAS. A vlist info
structure stores per-thread bookkeeping for the algorithm.

Figure 5 illustrates three concurrent writer threads. Each
thread adds speculative slots to different nodes in parallel.
Once the thread is ready to commit, it checks for intervening
update records in the log and checks for an intersection with
the set of written nodes. In this example, suppose Thread
1 adds its record first. Thread 3 has no conflict and can
commit; Thread 2 conflicts with Thread 1 on Node B and
must abandon its modifications and retry.

VLISTS are lock-free. Readers can always make progress,
and at least one writer can always make progress. A failed
or delayed writer cannot obstruct other writers, because all
speculative modifications are ignored.

Explicit critical sections. In order to operate on a VLIST,
a thread must manipulate the list in an explicit read or write
critical region. We primarily envision use of VLISTs encap-
sulated within a library, similar to the Java concurrent list
libraries, but extended with atomic move and other func-
tions that require composition. Most of this section describes
the algorithm using library-internal, low-level operations,
which could also be exposed to a sophisticated application
developer who understands how to compensate for side ef-
fects outside of the list on a retry.

4.1 List Readers
The types used in all of the VLIST examples are listed in Fig-
ure 6. The vlist info structure stores per-thread book-
keeping, a vlist node is a list node, which contains an in-
ternal list of vlist slot structures. An update record
stores modifications by a writer, which are committed with a
CAS to the tail of the update record list. VLISTs reserve
two epochs. INACTIVE EPOCH indicates pending or failed
updates that are ignored by readers, and INDIRECT EPOCH

1 i n t s e a r c h ( s t r u c t v l i s t n o d e ∗head , i n t key ) {
2 r e a d c s e n t e r ( ) ;
3 f o r ( c u r r = r e a d s l o t ( head)−>n e x t ;
4 c u r r != head ; c u r r = r e a d s l o t ( c u r r )−>n e x t )
5 i f ( c u r r−>key >= key )
6 break
7 r e t = ( cur−>key == key )
8 r e a d c s e x i t ( ) ;
9 re turn r e t ;

10 }
11 s t r u c t s l o t t ∗ r e a d s l o t ( s t r u c t v l i s t n o d e ∗node ) {
12 f o r ( i t s l o t = node−>s l o t s ; i t s l o t != NULL;
13 i t s l o t = i t s l o t −>s l o t n e x t ) {
14 i f ( i t s l o t −>epoch == INDIRECT EPOCH )
15 s l o t e p o c h = i t s l o t −>pt−>epoch ;
16 e l s e
17 s l o t e p o c h = i t s l o t −>epoch ;
18 i f ( s l o t e p o c h != INACTIVE EPOCH &&
19 s l o t e p o c h <= t h r e a d−>epoch )
20 break ;
21 }

Figure 7. A VLIST search implementation.

requires readers to read the epoch from update record.
The value VLIST ENTRIES PER TASK sets a config-
urable upper bound on the number of modifications that can
be composed in one update record.

Figure 7 shows a VLIST search implementation. Com-
pared to another linked list, the implementation is very
straightforward, except that the critical section is demar-
cated with read cs enter() and read cs end(), and
that dereferences of the next pointer are first wrapped with
the read slot() helper function.

The read slot function walks the internal list of slots
associated with each list node. These slots are sorted from
most recent to oldest. Line 18 skips speculative entries in
the list. If read slot encounters a slot with an indirect
epoch (the epoch is not known until the update record is
committed), the epoch is read from the update record (Line
15). The key invariant in this search is that the reader needs
to see the most-recently created slot with an epoch less
than or equal to the thread’s epoch (Line 19)—ensuring a
consistent traversal of the list.

INVARIANT 4.1. The list of slots in a node are sorted in re-
verse epoch order (newest, or highest values, first), exclud-
ing failed speculative writes, which are ignored.

Starting and Ending Read Critical Sections. The primary
task to start a read critical section (read cs enter(), in
Figure 8), is to walk the list of update records starting
from the last observed record, until the tail is reached. Thus,
a reader traverses the structure using the latest epoch value.

Ending a critical section simply involves calling the qui-
escence library, which we adopt from Hart et al. [16]. Each
thread announce a quiescent state after certain number of op-
erations, which helps other threads decide whether they can
safely free objects in free lists.



1 s t a t i c i n l i n e void s e t t h r e a d e p o c h ( void ) {
2 n e x t = t h r e a d−>r e c ;
3 epoch = next−>epoch ;
4 whi le ( n e x t = next−>r e c n e x t ) {
5 epoch ++;
6 i f ( nex t−>epoch == INACTIVE EPOCH )
7 next−>epoch = epoch ;
8 t h r e a d−>r e c = n e x t ;
9 }

10 t h r e a d−>epoch = epoch ;
11 }
12 s t a t i c i n l i n e void r e a d c s e n t e r ( void ) {
13 s e t t h r e a d e p o c h ( ) ;
14 }
15 s t a t i c i n l i n e void r e a d c s e x i t ( void ) {
16 /∗ Quiesce ∗ /
17 }
18 s t a t i c i n l i n e void w r i t e c s e n t e r ( void ) {
19 s e t t h r e a d e p o c h ( ) ;
20 t h r e a d−>new rec = n e w r e c o r d ( ) ;
21 t h r e a d−>new rec−>epoch = INACTIVE EPOCH ;
22 }
23 s t a t i c i n t w r i t e c s e x i t ( void ) {
24 r e t = 0 ; new rec = t h r e a d−>new rec ;
25 epoch = t h r e a d−>r e c + 1 ;
26 i f ( new rec−>c o u n t > 0) {
27 whi le ( t r u e ) {
28 f o r ( c u r s o r = t h r e a d−>r e c ; c u r s o r ;
29 c u r s o r = c u r s o r−>r e c n e x t ) {
30 f o r ( i = 0 ; i < c u r s o r−>c o u n t ; i ++)
31 f o r ( j = 0 ; j < new rec−>c o u n t ; j ++)
32 i f ( new rec−>heads [ i ] == c u r s o r−>heads [ j ] ) {
33 r e t = 1 ; goto o u t ;
34 }
35 epoch += 1 ; t h r e a d−>r e c = c u r s o r ;
36 }
37 i f (CAS(& t h r e a d−>rec−>r e c n e x t , NULL, new rec ) ) {
38 new rec−>epoch = epoch ;
39 f o r ( i = 0 ; i < new rec−>c o u n t ; i ++)
40 new rec−>s l o t s [ i ]−>epoch = epoch ;
41 break ;
42 }
43 }
44 } e l s e f r e e r e c o r d ( new rec ) ;
45 o u t :
46 i f ( r e t == 1) {
47 f o r ( i = 0 ; i < new rec−>c o u n t ; i ++)
48 new rec−>s l o t s [ i ]−>epoch = INACTIVE EPOCH ;
49 f r e e r e c o r d l a t e r ( new rec ) ;
50 w r i t e c s e n t e r ( ) ;
51 } e l s e
52 /∗ Quiesce ∗ /
53 re turn r e t ;
54 }

Figure 8. VLIST reader/writer helper functions.

4.2 List Writers
The primary differences between a write critical section and
a read critical section is that a writer must log its changes,
and, at the end of the critical section, either commit the
changes or retry.

Figure 9 shows an implementation of the insert()
and delete() functions using VLISTs. As with readers,
the code has explicit critical section delimiters (write -
cs enter() and write cs exit()), and all next and
prev pointer modifications use a helper function add slot.

The helper function add slot() serves two purposes.
First, it creates a speculative slot for pending modifications.
At Line 53, there is an atomic CAS to the head of the node-
internal slot list, ensuring that all speculative updates are
applied to the list node. The second purpose of this helper

1 i n t i n s e r t ( s t r u c t v l i s t n o d e ∗head , long key ) {
2 newnode = new node ( key ) ;
3 w r i t e c s e n t e r ( ) ;
4 do {
5 f o r ( p r ev = head , p r e v s l o t = r e a d s l o t ( head ) ;
6 ( c u r r = p r e v s l o t−>n e x t ) != head ;
7 p rev = c u r r , p r e v s l o t = r e a d s l o t ( p r ev ) )
8 i f ( c u r r−>key >= key ) break ;
9 i f ( c u r r != head && c u r r−>key != key ) {

10 r e t = 1 ;
11 c u r r s l o t = r e a d s l o t ( c u r r ) ;
12 a d d s l o t ( prev , p r e v s l o t−>prev , newnode ) ;
13 a d d s l o t ( newnode , prev , c u r r ) ;
14 a d d s l o t ( c u r r , newnode , c u r r s l o t −>n e x t ) ;
15 } e l s e r e t = 0 ;
16 } whi le ( w r i t e c s e x i t ( ) ) ;
17 i f ( ! r e t ) f r e e n o d e l a t e r ( newnode ) ;
18 re turn r e t ;
19 }
20 i n t d e l e t e ( s t r u c t v l i s t n o d e ∗head , long key ) {
21 w r i t e c s e n t e r ( ) ;
22 do {
23 f o r ( p r ev = head , p r e v s l o t = r e a d s l o t ( head ) ;
24 ( c u r r = p r e v s l o t−>n e x t ) != head ;
25 p rev = c u r r , p r e v s l o t = r e a d s l o t ( p r ev ) )
26 i f ( c u r r−>key >= key ) break ;
27 i f ( c u r r != head && c u r r−>key == key ) {
28 r e t = 1 ;
29 c u r r s l o t = r e a d s l o t ( c u r r ) ; n e x t = c u r r s l o t −>n e x t ;
30 n e x t s l o t = r e a d s l o t ( n e x t ) ;
31 a d d s l o t ( prev , p r e v s l o t−>prev , n e x t ) ;
32 a d d s l o t ( c u r r , c u r r , c u r r ) ;
33 a d d s l o t ( nex t , prev , n e x t s l o t−>n e x t ) ;
34 } e l s e r e t = 0 ;
35 } whi le ( w r i t e c s e x i t ( ) ) ;
36 i f ( r e t ) f r e e n o d e l a t e r ( c u r r ) ;
37 re turn r e t ;
38 }
39 void a d d s l o t ( s t r u c t v l i s t n o d e ∗head ,
40 s t r u c t v l i s t n o d e ∗prev ,
41 s t r u c t v l i s t n o d e ∗n e x t ) {
42 r e c = t h r e a d−>new rec ;
43 s l o t = n e w s l o t ( ) ;
44 s l o t−>epoch = INDIRECT EPOCH ;
45 s l o t−>p rev = prev ;
46 s l o t−>n e x t = n e x t ;
47 s l o t−>p t = r e c ;
48 rec−>heads [ rec−>c o u n t ] = head ;
49 rec−>s l o t s [ rec−>c o u n t ++] = s l o t ;
50 do {
51 o l d = head−>s l o t s ;
52 s l o t−>s l o t n e x t = o l d ;
53 } whi le ( ! CAS(&( head−>s l o t s ) , o ld , s l o t ) ) ;
54 }

Figure 9. A VLIST insert implementation.

is to log this to the thread’s new rec update record, so that
these updates can be either invalidated or committed at the
end of the critical section.

The write cs enter() function is listed in Figure 8,
and it is identical to read cs enter except that it also
allocates a new update record for the thread.

The primary complication with writing is ensuring that
updates are committed safely. Figure 8 includes code for
write cs exit(). The first step in ending a write critical
region is to detect conflicting updates. The loop beginning at
Line 28 compares the set of list nodes with pending modifi-
cations to any updates since the critical section started. If any
intervening update record wrote to any of the same nodes,
the commit fails.



If a critical section fails, the speculative slots are marked
as invalid (Line 48). If there are no conflicting updates, the
writer attempts to add its own update record to the end of the
log using an atomic CAS (Line 37). This is the linearization
point of the algorithm. If the CAS fails, the thread continues
walking forward on the list to search for conflicts, and then
retries the CAS. If the CAS succeeds, the thread assigns the
next epoch value to its update record.

After the CAS, the writer does some bookkeeping, pri-
marily to remove now-obviated indirection and facilitate
garbage collection. First, the writer stores the current epoch
value in its committed update record. We also note that in
Line 6, a thread may assist a committing writer that has lin-
earized its update record, but has not stored an epoch value.
Because the epoch value is determined by the position in the
list, multiple updates will be idempotent.

In order to optimize future list searches, the writer also
propagates its epoch to all modified slots (Line 40). Note
that, when a reader observes any slots with the reserved
epoch value INDIRECT EPOCH, it reads the epoch value
from the update record (Figure 7, Line 15) If the update
record’s epoch is the reserved value INACTIVE EPOCH, the
slot is assumed speculative and ignored.

INVARIANT 4.2. A thread may not begin a critical section
with a given epoch value unless the epoch value is stored in
an update record in the log.

This invariant prevents threads from overlooking recently-
committed slots, when executing concurrently with post-
commit clean-up operations.

Programmers can write their own composed operations
like move by guarding the critical section with existing
enter and exit functions, calling read slot() to tra-
verse the list and using add slot() to modify pointers.
Garbage Collection. As the global epoch clock advances,
older slots and update records will not be read by threads
with a higher epoch. Thus, the memory for obviated slots
and update records must be reclaimed.

In order to reclaim an object safely, the algorithm must
ensure that no threads are currently accessing the object. In
order to detect whether a thread can be accessing a slot,
VLIST adopts a quiescence-based scheme, similar to read-
copy-update (RCU) [25]

At a high-level, quiescence-based memory reclamation
first logically deletes items by placing them on a pending
free list. In VLIST, when one writer commits a slot to a node,
no future reader would access slots further down the slot list.
Thus, these obviated slots can be added to a pending free
list. For update records, old update records are also added to
a pending free list once a new update record is committed.

Items on the pending free lists are physically freed once
no threads can possibly access the data—generally leverag-
ing some application-wide invariant. In the case of VLIST,
we use the explicit critical section begin and end to iden-

tify when no threads could access to-be-freed slots. In other
words, after each thread has exited a critical region, any slots
on the pending free lists will never be accessed again. More
formally, our quiescence library assures this invariant:

INVARIANT 4.3. If an object o is added to a pending free list
at time t, object o is only returned to the memory allocator
if all threads have entered and exited a critical section after
time t.

4.3 Design and implementation issues
Shared State. All VLISTs in an application share a single
epoch counter and list of committed update records. How-
ever, there is no single, shared pointer or integer which must
be updated, reducing cache contention. The VLIST algorithm
also relies on a quiescence-based memory reclamation li-
brary, which must detect when all threads have quiesced,
commonly through a per-thread data structure.
Epoch Wrap-Around. Epochs in the prototype implemen-
tation are represented with 64-bit integers. There is a theo-
retical possibility, unlikely in practice, that a particularly old
slot could persist across a wrap-around of the epoch counter.
If an extremely efficient machine were able to process one
trillion write critical sections per second (cf. current cores
process at most 4 billion instructions/second), a wrap-around
would occur after 5.8×1014 years.
Debugging. An interesting property of programming with
a concurrent, versioned data structure is that concurrency
errors are often easier to debug. In debugging the typical
concurrency error on a traditional data structure, it is hard
to reconstruct the state at the instant something went wrong.
In VLISTs, the necessary state is likely to persist, as each list
node stores a full history of versions. Moreover, a common
failure mode of earlier versions of the VLIST implementation
was for all threads to hang when trying to allocate a slot.
This fail-stop mode combined with the old versions greatly
simplified the task of reconstructing error behavior.
Application to other data structures. Any pointer-based
data structure can be versioned by creating slots to track
modifications. We also implemented versioned binary search
trees and red-black trees. However, additional caution should
be applied to balanced trees. During rebalancing, a writer
can modify a node that it has modified before in the critical
region. Thus, the writer should traverse its pending update
record before allocating a new slot during rebalancing. Also,
since writers need to maintain invariants of red-black tree, in
some cases, speculative slots should be inserted to maintain
color of nodes, even if the operation does not modify the
nodes.
Integration with HTM. One way to view current best-
effort HTM [1, 32] is providing the abstraction of large, but
bounded, compare-and-swap. We expect that the VLIST de-
sign could easily leverage HTM to improve its performance,
which we leave for future work. Specifically, we expect that
adding speculative slots could be replaced with a hardware



transaction to add slots to each node atomically, along with
an update record or a simple version counter. We expect the
update log would have better coherence behavior, and the
would eliminate post-commit bookkeeping.

5. Correctness
This section outlines correctness arguments for the VLIST
algorithm, a full proof is omitted for space. To show correct-
ness, we must establish the following:
1. Readers must see a consistent view of the data structure.

Note that writers initially traverse the lists as readers to
construct a set of pending updates.
(a) Any bookkeeping to be garbage collected can only be

(physically) freed when no thread can reference it.
2. A writer’s updates are serializable.
3. At least one thread will always make progress (lock-

freedom). Specifically:
(a) All readers make progress.
(b) At least one writer makes progress.

THEOREM 5.1. Readers observe a consistent view of lists.

When a reader begins a list traversal, it selects an epoch
value (e) reflecting state committed to all lists. As each list
node is traversed, any invalid, uncommitted, or newer slots
(with epoch e’ > e) will be ignored (Figure 7, Lines 18–
19). Because of Invariant 4.1, and the fact that read slot
stops at the first slot it observes with epoch value less than or
equal to the thread’s epoch (Figure 7, Line 19), The reader
will observe a view of the list equivalent to the value at the
point epoch e was committed.

LEMMA 5.2. Slots are only garbage collected after all read-
ers would read a more recent slot.

A slot s is only added to the pending free list if a more
recent slot s’ exists. Future reader and writer threads will ob-
tain the most recent epoch (e.g., Figure 7, Line 19), and will
ignore this slot. Thus, only concurrent readers may need to
read a slot on the pending free list. Invariant 4.3, provided by
the garbage collection library, assures that pending slots will
only be reclaimed after all concurrent readers have exited.

LEMMA 5.3. If writer A begins at epoch e1, writer B begins
at e2, both writers execute concurrently, and both writers
add a speculative slot to node n, only one writer may commit
at epoch e3 >e1,e2. The other will retry and may commit at
epoch e4 >e3.

This is assured by the conflict detection logic in write-
cs exit() (Figure 8, Lines 28), which checks all update

records between the record associated with the beginning
of a critical section and the end of the log. If any record
includes a slot insert for the same node, a conflict is raised
and the writer must retry.

THEOREM 5.4. The updates applied to all lists by a writing
thread are serializable.
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Figure 11. Move benchmark between two 1K-node list. Y-
axis is operations per millisecond.

All potential writes are stored in speculative slots, which
are atomically added to nodes (Figure 9, Line 53); thus, slot
updates cannot be lost. Lemma 5.3 ensures that writes to
a list node which would violate isolation must be retried.
The fact that we are using a doubly-linked list ensures that
checking the intersection of writes is sufficient to detect any
violations of serializability, as any changes to a node also
affects the previous and next neighbors—sufficient to detect
any adjacent modification of the list structure.

Speculative slots are published to the rest of the system
by a single, atomic CAS operation on the update record at
the end of the log (Figure 8, Line 37), ensuring a total global
ordering of updates, which is consistent with a sequential
order. After this CAS succeeds, future critical sections will
stop ignoring the newly added slots as speculative, as ex-
plained in §4.2.

THEOREM 5.5. All readers will make progress.

This follows from the fact that, at no point in the algo-
rithm is a reader obstructed by another thread.

THEOREM 5.6. At least one writer can always make progress.

The only point at which writer A can retry part of the
algorithm is if writer A detects an intervening, conflicting
update record from writer B. Thus, during the execution of
writer A’s critical section, at least one writer (B) committed
updates to the list.

Thus, VLISTs are lock-free. We note that, like any lock-
free algorithm, a writer may starve (e.g., writer A above).

6. Evaluation
We evaluate the performance of versioned programming us-
ing linked-list and tree implementations in C. We compare to
several competing approaches to implementing concurrent
data structures. All measurements were taken on a 48-core
SuperMicro SuperServer, with four 12-core AMD Opteron
6172 chips running at 2.1 GHz and 64 GB of RAM.
List benchmark details. We modify the benchmarking
framework used by Read-Log-Update [24]; and compare to
the Harris-Michael algorithm, RCU, RLU and SwissTM.
For a fair comparison, we disable double-linking, which the
other algorithms do not implement. The framework tests the
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Figure 10. 10, 50 and 100 percent write microbenchmark on an 1K-node list. Y-axis is operations per millisecond.
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Figure 12. 10, 50 and 100 percent write microbenchmark on an 100K-node tree. Y-axis is operations per millisecond.

performance of a list implementation under mixes of read
and write operations, and reports operations per millisecond.

We apply quiescent-state based reclamation (QSBR) as
garbage collection for Harris-Michael algorithm. QSBR is
cheaper than hazard pointers [27][13] used in the original
RLU framework. The RCU implementation is from [2]. We
disable RLU deferring [24], which can cause some updates
to hang for a long time. SwissTM [10] (release 2011-08-05)
is a high-quality STM with a epoch-based conflict detection
mechanism similar to versioned programming.

We exercise each list implementation with a sorted list
of 1000 initial nodes drawn from a 2000 integer range. The
microbenchmark measures the total number of operations
completed over roughly a one-second period and reports
the average operations per millisecond and we run each
setting five times. We vary the fraction of read versus write
operations to exercise the major type of behavior each list
would likely encounter.
List insert/remove performance. Figures 10 reports the
performance of 10 percent write, 50 percent write and 100
percent write test cases. We selected a range of write levels to
show that versioning can do well for read-mostly structures,
but can also perform well with higher contention.

The Harris-Michael algorithm with QSBR exhibits the
best overall performance for this benchmark. Unlike VLIST,
Harris-Michael lists do not support composition of opera-
tions. Thus, each thread can commit updates independently,
and there is only contentino when threads try to CAS the
same next pointer.

RCU write performance is limited by the lock granularity.
In this benchmark, we use a lock per list, which causes se-
rialiation around the single lock. RLU performs better than
RCU via finer-grained synchronization for writers. However,
as number of threads increases, RLU quickly reaches a bot-
tleneck to wait for a quiescent state to apply updates to lists.

VLIST eventually stops scaling at high thread counts.
When there are enough rapidly-writing threads, every update
is competing to update the update record list, which becomes
a hot spot which incurs a lot of coherence misses. Nonethe-
less, the performance does not degrade under this level of
contention, as is common in many lock implementations.
Also, since there is another layer of indirection (from node
to slot), single-threaded performance is often worse. We ex-
pect the single-threaded performance could be improved by
compressing a “cold” slot into the main node when a node
remains stable for a relatively long period.

SwissTM does even worse in the single-threaded sce-
nario, and we observe many read validation failures with
multiple threads.

List move performance. Note that the previous compar-
isons used only single inserts, deletions, or searches, on a
singly-linked list, putting the VLIST algorithm at a relative
disadvantage, as it incurs overheads to provide composabil-
ity. Thus, Figure 11 shows an additional microbenchmark
that measures the performance of moving elements between
two 1000-element lists, protected by RLU, SwissTM and
VLISTs. Other lock-free algorithms cannot safely execute
this microbenchmark.

As expected, the VLIST algorithm substantially outper-
forms RLU at 16 threads and higher, and has strictly better
performance scalability than SwissTM. This improvement
is attributable to VLIST’s ability to avoid conflicts on list
elements during the search phase, and only detect conflicts
while moving elements.
Tree insert/remove performance. We use versioned pro-
gramming to implement a binary search tree VTREE and a
red-black tree VRBTREE, which we compare to a SwissTM
red-black tree, RCU-based self-balancing bonsai tree [7] and
a binary search tree described in RLU [24]. The benchmark



does read and write to a tree initialized with 100K nodes.
Note, although VTREE and RLU tree do not rebalance, the
penalty is small because the insertions are random.

Figure 12 shows the tree performance. With higher writer
counts, VTREE improves performance over RLU, commen-
surate with previous results. Bonsai trees are relatively ex-
pensive, as they must build a new tree for each write opera-
tion, which requires a global lock. SwissTM performs well
on the tree benchmark, as contention is relatively low; the
VRBTREE curve has a similar shape, but higher overall costs.

7. Related Work
Valois [36] is credited with the first practical lock-free de-
sign for a singly-linked list. Harris [15] describes a simpler
approach which was further refined by Michael [26], mak-
ing it compatible with several lock-free memory manage-
ment methods, including hazard pointers [27]. Fomitchev
and Ruppert [12] further refine the worst-case amortized cost
of operations. Sundell and Tsigas [35] approximate double-
linking by marking previous pointers unreliable.

Liu et al. [22] explore bounded staleness and a versioned
consensus protocol (similar in some respects to versioned
programming), to ensure scalable performance in read-
mostly reader-writer locks (prwlock). Prwlock can be seen
as an improvement to RCU/RLU, and will probably yield the
most benefit for read-mostly data structures, whereas ver-
sioned programming improves performance with modest-
to-high write ratios.
Universal constructions. The earliest algorithms for lock-
free linked lists were Herlihy’s universal constructions [17,
18]. Universal constructions can turn any sequential algo-
rithm into a parallel algorithm with certain properties, such
as wait-freedom [6]. These constructions are useful for rea-
soning about asymptotic behavior and writing proofs, but
generality often comes at a substantial performance cost and
these are rarely used in deployed software.

Dang and Tsigas [8] demonstrate that some compositions
of lock-free data structures can violate lock-freedom.
DCAS-based algorithms. The Motorola 68k architecture
provided a double word compare-and-swap (DCAS) instruc-
tion, but has performance and implementation issues that
have prevented adoption on any ISA since. Several research
operating systems in the early 90s used this instruction to
implement lock-free linked lists [14, 23]. Cederman and Tsi-
gas [5] implemented a lock-free move by combining remove
and insert in a single DCAS operation. Best-effort hardware
transactional memory might revive these algorithms, as it
it becomes part of commodity systems [1]. In order to be
widely deployed on commodity systems, algorithms gener-
ally rely on a single-word CAS.
Software Transactional Memory (STM) provides atomic
and isolated updates to arbitrary memory locations [9, 10].
While some STM implementations are obstruction-free [20],

most use two-phase locking and simply encapsulate the
locking complexity [9, 10].

Several STM implementations, including TL2 [9], Tiny-
STM [11], SwissTM [10], and others [37], use a global ver-
sion clock to detect conflicts. A transaction records the clock
value when it begins, and if it sees more recent versions, it
aborts. Several papers have developed sophisticated (and or-
thogonal) techniques to avoid needless rollback by extend-
ing the range of acceptable timestamp values, with addi-
tional bookkeeping [34] and relaxed consistency [33]. In
some respects, VLISTs can be seen as a specialization and
extension of these global clock techniques. VLISTs innovate
in their degree of progress guarantees—to our knowledge,
no STM based on a global version clock is also lock-free.
STMs generally keep only one shared, visible version of
each object; readers that observe an old version must abort
and restart. In most cases, reader progress is not guaranteed
unless they “upgrade” to write mode. SwissTM and its pre-
decessors keep multiple old versions to ameliorate this issue,
but cannot guarantee a requested version will be available. In
contrast, VLISTs ensure that old versions are not overwritten
until all potential readers have completed.

JVSTM [4] keeps the entire history for an object, so read-
ers always have a consistent view of object versions. JVSTM
uses dynamic analysis in the JVM to garbage collect inacces-
sible versions. Although JVSTM provides the programmer
with guarantees closest to VLISTs, versioned programming
has lighter runtime requirements.
Concurrent Trees. Lock-free trees are hard to write because
delete operations can race with deletion (similar to lists in
§2), as well as with rebalancing the tree. Most concurrent
trees relax balancing constraints and use locking to serialize
writers, but avoid locking readers [2, 7, 24].

8. Conclusion
Lock-free data structures are hard to implement, and this pa-
per presents a practical toolkit to turn sequential implemen-
tations into lock-free implementations. The API for version-
ing is simple, as is the implementation, making it suitable
for use as a drop-in replacement for popular concurrency
packages. This work improves performance over other, lock-
based frameworks under modest write contention or thread
counts, and can expand the reach of data structures that
can be made lock-free. Our code is available at https:
//github.com/oscarlab/versioning.
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[10] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching
transactional memory. In Proceedings of the ACM SIGPLAN
conference on Programming language design and implemen-
tation (PLDI), pages 155–165, 2009.

[11] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tun-
ing of word-based software transactional memory. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 237–246,
2008.

[12] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip
lists. In Proceedings of the ACM symposium on Principles of
distributed computing (PODC), pages 50–59, 2004.

[13] K. Fraser. Practical lock-freedom. PhD thesis, University of
Cambridge Computer Laboratory, 2004.

[14] M. Greenwald and D. Cheriton. The synergy between non-
blocking synchronization and operating system structure. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 123–136, 1996.

[15] T. L. Harris. A pragmatic implementation of non-blocking
linked-lists. In Proceedings of the International Conference
on Distributed Computing (DISC), pages 300–314. Springer-
Verlag, 2001.

[16] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Per-
formance of memory reclamation for lockless synchroniza-
tion. J. Parallel Distrib. Comput., 67(12):1270–1285, 2007.

[17] M. Herlihy. Wait-free synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, 1991.

[18] M. Herlihy. A methodology for implementing highly con-
current data objects. ACM Trans. Program. Lang. Syst.,
15(5):745–770, 1993.

[19] M. Herlihy and E. Koskinen. Transactional boosting: A
methodology for highly-concurrent transactional objects. In
PPoPP, 2008.

[20] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer. Software transactional memory for dynamic-sized
data structures. In Proceedings of the ACM symposium on
Principles of distributed computing (PODC), 2003.

[21] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Trans. Database Syst., 6(2):213–
226, June 1981.

[22] R. Liu, H. Zhang, and H. Chen. Scalable read-mostly synchro-
nization using passive reader-writer locks. In Proceedings of
the USENIX Annual Technical Conference, pages 219–230,
Philadelphia, PA, June 2014. USENIX Association.

[23] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel.
SIGOPS Oper. Syst. Rev., 26(2):8, 1992.

[24] A. Matveev, N. Shavit, P. Felber, and P. Marlier. Read-log-
update: A lightweight synchronization mechanism for con-
current programming. In Proceedings of the ACM SIGOPS
Symposium on Operating Systems Principles (SOSP), 2015.

[25] P. E. McKenney. Exploiting Deferred Destruction: An Anal-
ysis of Read-Copy Update Techniques in Operating System
Kernels. PhD thesis, Oregon Health and Science University,
2004.

[26] M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the ACM sympo-
sium on Parallelism in algorithms and architectures (SPAA),
pages 73–82, 2002.

[27] M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Trans. Parallel Distrib. Syst.,
15(6):491–504, 2004.

[28] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, and D. A. Wood. Supporting nested
transactional memory in LogTM. In Proceedings of the
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2006.

[29] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L.
Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman. Open
nesting in software transactional memory. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 68–78, 2007.

[30] E. Petrank, M. Musuvathi, and B. Steesngaard. Progress guar-
antee for parallel programs via bounded lock-freedom. In Pro-
ceedings of the ACM SIGPLAN conference on Programming
language design and implementation (PLDI), pages 144–154,
2009.

http://developer.amd.com/assets/45432-ASF_Spec_2.1.pdf
http://developer.amd.com/assets/45432-ASF_Spec_2.1.pdf


[31] D. P. Reed. Naming and Synchronization in a Decentralized
Computer System. PhD thesis, Massachusetts Institute of
Technology, 1978.

[32] J. Reinders. Transactional synchroniza-
tion in haswell. http://software.
intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell,
2012.

[33] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm
with eager validation. In Proceedings of the International
Conference on Distributed Computing (DISC), pages 284–
298, 2006.

[34] T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation for soft-
ware transactional memory. In Proceedings of the ACM SIG-
PLAN Workshop on Transactional Computing (TRANSACT),

2006.

[35] H. Sundell and P. Tsigas. Lock-free and practical dou-
bly linked list-based deques using single-word compare-and-
swap. In Proceedings of the International Conference on Prin-
ciples of Distributed Systems (OPODIS), 2005.

[36] J. D. Valois. Lock-free linked lists using compare-and-swap.
In Proceedings of the ACM symposium on Principles of dis-
tributed computing (PODC), pages 214–222, New York, NY,
USA, 1995. ACM.

[37] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-
Tabatabai. Code generation and optimization for transactional
memory constructs in an unmanaged language. In Proceed-
ings of the International Symposium on Code Generation and
Optimization (CGO), pages 34–48, 2007.

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell

	Introduction
	Background on lock-free lists
	Overview
	Versioned list algorithm
	List Readers
	List Writers
	Design and implementation issues

	Correctness
	Evaluation
	Related Work
	Conclusion

