
Cooperation and Security Isolation of
Library OSes for Multi-Process Applications

Chia-Che Tsai Kumar Saurabh Arora Nehal Bandi Bhushan Jain William Jannen
Jitin John Harry A. Kalodner† Vrushali Kulkarni Daniela Oliveira† Donald E. Porter

Stony Brook University †Bowdoin College
{chitsai,karora,nbandi,bpjain,wjannen,jijjohn,vakulkarni,porter}@cs.stonybrook.edu

{hkalodne,doliveir}@bowdoin.edu

Abstract
Library OSes are a promising approach for applications to
efficiently obtain the benefits of virtual machines, including
security isolation, host platform compatibility, and migra-
tion. Library OSes refactor a traditional OS kernel into an
application library, avoiding overheads incurred by duplicate
functionality. When compared to running a single applica-
tion on an OS kernel in a VM, recent library OSes reduce
the memory footprint by an order-of-magnitude.

Previous library OS (libOS) research has focused on
single-process applications, yet many Unix applications,
such as network servers and shell scripts, span multiple pro-
cesses. Key design challenges for a multi-process libOS in-
clude management of shared state and minimal expansion of
the security isolation boundary.

This paper presents Graphene, a library OS that seam-
lessly and efficiently executes both single and multi-process
applications, generally with low memory and performance
overheads. Graphene broadens the libOS paradigm to sup-
port secure, multi-process APIs, such as copy-on-write fork,
signals, and System V IPC. Multiple libOS instances coordi-
nate over pipe-like byte streams to implement a consistent,
distributed POSIX abstraction. These coordination streams
provide a simple vantage point to enforce security isolation.

1. Introduction
Library OSes provide single-process applications with the
qualitative benefits of virtualization at a lower cost [10, 34,
42]. These benefits include security isolation of mutually un-
trusting applications, migration, and host platform compati-
bility. In a library OS, the guest OS is essentially “collapsed”
into an application library, which implements the OS system
calls and supporting data structures as library functions—
mapping high-level APIs onto a few paravirtual interfaces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

EuroSys 2014, April 13 - 16 2014, Amsterdam, Netherlands
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2704-6/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592812

to the host kernel. Recent library OSes improve efficiency
over full guest OSes by eliminating duplicated features be-
tween the guest and host kernel, such as the CPU scheduler,
or even compiling out unnecessary guest kernel APIs [34].
In total, this can reduce the memory requirements of run-
ning a single, isolated application by orders of magnitude,
and similarly increase the number of applications which can
run on a single system [34, 42].

A key drawback of recent library OSes, however, is that
they are limited to single-process applications. Yet many ap-
plications, such as network servers and shell scripts, cre-
ate multiple processes for performance scalability, fault iso-
lation, and programmer convenience. In order for the effi-
ciency benefits of library OSes to be widely applicable, espe-
cially for unmodified Unix applications, library OSes must
provide commonly-used multi-process abstractions, such as
fork, signals, System V IPC, and exit notification.

This paper describes Graphene, a novel, Linux-compat-
ible library OS. In Graphene, multiple libOS instances col-
laboratively implement POSIX abstractions, yet appear to
the application as a single, shared OS. Graphene instances
coordinate state using remote procedure calls (RPCs) over
host-provided byte streams (similar to pipes). In a distributed
POSIX implementation, placement of shared state and mes-
saging complexity are first-order performance concerns.

The Graphene design ensures security isolation of mutu-
ally distrusting, multi-process applications on the same host
system. Essential to this goal is minimally expanding the
host ABI to support multi-processing, as well as leverag-
ing RPCs as a natural point to mediate inter-libOS com-
munication. RPC coordination among Graphene instances
can be dynamically disconnected, facilitating novel sand-
boxing techniques. For instance, we develop an Apache web
server extension that, upon logging in a given user, places
the worker process’s libOS in a sandbox with access to only
that user’s data. We expect more nuanced degrees of trust are
possible in future work. The contributions of this paper are:
• Graphene, a Linux library OS, which supports real-

world, multi-process applications including a shell, web
server, and compiler, which can be efficiently check-
pointed and migrated.

• A framework for implementing multi-process APIs across
cooperating library OS instances.

• A thorough evaluation of the overheads of Graphene.
Memory footprints are an order of magnitude smaller
than KVM, and several applications perform comparably
to a Linux process.

• A thorough analysis of Graphene security isolation.
Graphene’s design gives the user and system administrator
a high degree of flexibility in isolating arbitrary groups of
unmodified application processes, while upholding the effi-
ciency and host compatibility benefits of recent library OSes.

2. Background and Overview
Recent library OSes [10, 34, 40, 42] are designed for secu-
rity and efficiency, but are limited to single-process appli-
cations. A libOS typically executes in either a paravirtual
VM [34, 40] or an OS process, called a picoprocess [18],
with an interface restricted to a narrowed set of host kernel
ABIs. These host ABIs heavily restrict effects outside of the
application’s address space; as a result, applications in a pi-
coprocess have very little opportunity to interfere with each
other, yielding security isolation comparable to a VM. Li-
brary OS efficiency comes from deduplicating features, such
as hardware management; in a VM these features typically
appear in both the guest and host kernels.

Graphene executes within a picoprocess (Figure 1), which
includes an unmodified application binary and supporting
libraries, running on a libOS instance. The libOS is im-
plemented over a host kernel ABI designed to expose very
generic abstractions that can be easily implemented on any
host OS, including virtual memory, threads, synchroniza-
tion, byte streams (similar to pipes), a file system, and
networking. Although the Graphene prototype host ker-
nel is Linux, we adapt a host ABI from Drawbridge/Bas-
cule, which has been previously implemented on Windows,
Hyper-V, and Barrelfish [9, 10, 42].

Graphene exports 43 host ABIs through a Platform Adap-
tation Layer (PAL) (Table 1). The PAL is injected into the
picoprocess by the host kernel, and translates the generic pi-
coprocess ABI into host kernel system calls. Most of these
kernel calls only affect the application-internal state; any
calls with external effects are mediated by a trusted refer-
ence monitor. All Graphene applications are launched by the
reference monitor, which installs a system call filter and in-
terposes on permitted kernel calls to ensure isolation (§3).

These PAL ABIs should be a sufficient substrate upon
which to implement guest-specific semantics, or guest OS
personality. As an example of this layering, consider the
heap memory management abstraction. Linux provides ap-
plications with a data segment—a legacy abstraction dat-
ing back to original Unix and the era of segmented mem-
ory management hardware. The primary thread’s stack is at
one end of the data segment, and the heap is at another. The
heap grows up (extended by sys brk) and the stack grows
down until they meet in the middle. In contrast, the PAL ABI
provides only three simple functions that allocate, protect,

Unmodified Applications
and Libraries

ld.
so

libpthread.so

libc.so .
Linux System

Call API
~300 Functions

131 Implemented
libLinux.so

Host ABI
43 Functions

Platform Adaptation Layer
(PAL)

50 Linux
System Calls

Host Kernel (Linux) /

User
Kernel

IPC

libdl
.so

Trusted
Reference

Monitor

Seccomp Filter AppArmor LSM

Picoprocess

Figure 1. Graphene architecture. Black components are un-
modified. We modify the four lowest application libraries:
ld.so (the ELF linker and loader), libdl.so (the dy-
namic library linker), libc.so, and libpthread.so,
to issue Linux system calls as function calls directly to
libLinux.so. Our Linux library implements the Linux
system calls using a variant of the Drawbridge ABI, which
is provided by the Platform Adaptation Layer (PAL), imple-
mented using calls to the kernel. A trusted reference monitor
ensures libOS isolation. We modify the AppArmor LSM and
add a small module for fast, bulk IPC.

or unmap regions of virtual memory with basic access per-
missions (read, write, and execute). This clean division of
labor encapsulates idiosyncratic abstractions in the library
OS, and eliminates the need for redundant hardware man-
agement code, such as duplicate low-level page management
and swapping heuristics.

At a high level, these library OS designs scoop the layer
just below the system call table out of the OS kernel and
refactor this code as an application library. The driving in-
sight is that there is a natural, functionally-narrow division
point one layer below the system call table in most OS ker-
nels. Unlike many OS interfaces, these PAL ABIs generally
minimize the amount of application state in the kernel, facil-
itating migration: a picoprocess can programmatically read
and modify its own OS state, copy the state to another pi-
coprocess, and the remote picoprocess can load a copy of
this state into the OS—analogous to hardware registers. A
picoprocess may not modify another picoprocess’s OS state.

2.1 Multi-Process Support in a Library OS
A key design feature of Unix is that users compose simple
utilities to create larger applications. Thus, it is unsurprising
that many popular applications for Unix or Linux require
multiple processes—an essential feature missing from cur-
rent libOS designs. The underlying design challenge is min-
imally expanding a tightly-drawn isolation boundary with-

Adopted from Drawbridge
Class ABIs Description
Memory 3 Allocate and protect virtual memory.
Scheduling 12 Threads and synchronization.
Files & 12 Files inside a chroot-style
Streams jails and byte streams among picoprocesses.
Process 2 Create a child picoprocess, and exit self.
Misc 4 Get random bits, time of day, etc.

Added by Graphene
Class ABIs Description
Segments 1 Manage x86 segment registers for TLS.
Exceptions 2 Handle hardware exceptions.
Streams 3 Share stream handles and rename files.
Bulk IPC 3 Exchange copy-on-write pages.
Sandboxes 1 Move into a new sandbox, closing handles to

other picoprocesses.

Table 1. Classes of host ABI functions adopted from Draw-
bridge [42], followed by ABIs added by Graphene.

out also exposing idiosyncratic kernel abstractions or re-
duplicating mechanisms in both the kernel and the libOS.

For example, consider the process identifier (PID) names-
pace. In current, single-process libOSes, the getpid()
system call could simply return a fixed value to each ap-
plication. This single-process design is isolated, but the li-
brary OS cannot run a shell script, which requires fork-
ing and exec-ing multiple binaries, signaling, waiting, and
other PID-based APIs.

Design Options. Multi-process support requires extensions
to the PAL ABI of recent libOS designs. Because multi-
process abstractions, such as signals or System V IPC, tend
to be idiosyncratic, an essential problem is identifying a min-
imal, host-independent substrate upon which to implement
OS-specific abstractions.

We see two primary design options: (1) implement pro-
cesses and scheduling in the library OS, and (2) treat each
libOS instance as a process, and distribute the shared POSIX
implementation across a collection of libOSes. We selected
the second option, primarily because we expected this would
impose fewer requirements on the host, maximize flexibil-
ity in mapping processes to physical resources, and facilitate
inter-process security policy enforcement.

Implementing processes inside the library OS is also
feasible using hardware MMU virtualization, similar to
Dune [11], but this reintroduces a duplicate scheduler and
memory management. Moreover, Intel and AMD have simi-
lar, but mutually incompatible MMU virtualization support,
which would complicate live migration across platforms.
None of these problems are insurmountable, and it would be
interesting in future work to compare both options.

Graphene Approach. In Graphene, multiple libOS in-
stances in multiple picoprocesses collaborate to implement
shared abstractions, such as copy-on-write fork, signals, exit
notification, and System V IPC. For instance, when process
A signals process B on Graphene, A’s libOS issues a remote
procedure call (RPC) to B’s libOS over a host-provided byte

stream (similar to a Unix pipe), and B’s libOS then calls the
appropriate signal handler.

Graphene implements all shared abstractions in the li-
bOS, and libOSes cooperatively manage these abstractions
over RPC streams. Single-process applications still service
system calls from local state, and Graphene includes opti-
mizations to place state where it is most likely to be used,
minimizing RPC overheads. The host reference monitor can
easily isolate libOSes by blocking all RPC messages, with-
out the need to understand the libOS-level details or seman-
tics of these abstractions. In our PID example, only mutually
trusting libOSes can signal each other.

PAL ABI Changes. When implementing Graphene, we
found that the Drawbridge ABI lacked 11 PAL calls essential
to running a multi-process Linux libOS, and Graphene did
not require 3 PAL calls to support checkpoint and resume.
Of the 11 new calls, 4 are required for single-process Linux
and have also been added by Bascule: rename a file, manage
segmentation hardware, and 2 for exception upcalls; 4 are
required for stream inheritance and sandboxing; and 3 new
calls are used to optimize copy-on-write fork (§5).

Comparison with microkernels. The building blocks of
Graphene are very similar to the system abstractions of a mi-
crokernel [3, 8, 14, 19, 28, 32, 33]. Unlike a multi-server mi-
crokernel system, such as GNU Hurd [22] or Mach-US [48],
which implements Unix abstractions across a set of daemons
that are shared by all processes in the system, Graphene im-
plements system abstractions as a library in the application’s
address space, and can coordinate library state among pico-
processes to implement shared abstractions. Graphene guar-
antees isolation equivalent to running an application on a
dedicated VM; this isolation could be simulated on a multi-
server microkernel by running a dedicated set of service dae-
mons for each application.

The Graphene host ABI could be described as a hybrid
microkernel, which also exposes the file system and network
of the host kernel. Similarly, we assume that picoprocesses
are provided by a legacy OS kernel, like Linux or Windows,
or by a Type 2 hypervisor. We expect that a bare metal hy-
pervisor could export a PAL, but would probably require ser-
vices from a trusted VM, such as Xen’s dom0 [7]. Arguably,
recent libOS designs might be improved by rethinking the
division of labor in the network and file system stacks, but
this is beyond the scope of this paper.

3. Enforcing Security Isolation
Graphene ensures that mutually untrusting applications can-
not interfere with each other, providing security isolation
comparable to running in separate VMs. Graphene reduces
the attack surface exposed to applications by restricting ac-
cess to the host kernel ABI and prevents access to unautho-
rized system calls, files, byte streams, and network addresses
with a reference monitor.

Graphene contributes a multi-process security model
based on the abstraction of a sandbox, or a set of mutu-
ally trusting picoprocesses. The reference monitor permits
picoprocesses within the same sandbox to communicate and
exchange RPC messages, but disallows cross-sandbox com-
munication. The current work focuses on all-or-nothing se-
curity isolation, although we expect this design could sup-
port controlled communication among mutually distrusting
libOSes in future work.

The Graphene reference monitor is implemented using
an unprivileged daemon as well as extensions to the App-
Armor LSM [1], which checks file and socket policies in
the kernel. In order for the reference monitor to restrict file
access, each application includes a manifest file [24], which
describes a chroot-like, restricted view of the local file
system (similar to Plan 9’s unioned file system views [41]),
as well as iptables-style network restrictions.

When a new picoprocess is launched by the reference
monitor, it begins execution in a new sandbox. Child pico-
processes may either inherit their parent’s sandbox, or can
be started in a separate sandbox—specified by a flag to the
picoprocess creation ABI. A parent may specify a subset of
its own file system view when creating a child, but may not
request access to new regions of the host file system. The
child may also issue a kernel call to dynamically detach from
the parent’s sandbox. The reference monitor prevents byte
stream creation across sandboxes. When a process detaches
from a sandbox—effectively splitting the sandbox—the ref-
erence monitor closes any byte streams that could bridge the
two sandboxes.

Threat Model. We assume a trustworthy host OS and ref-
erence monitor, which mediates all system calls with ef-
fects outside of a picoprocess’s address space, such as file
open or network socket creation. We assume that pico-
processes inside the same sandbox trust each other and that
all untrusted code runs in sandboxed picoprocesses. We as-
sume the adversary can run arbitrary code inside of one or
more picoprocesses within one or more sandboxes. The ad-
versary can control all code in its picoprocesses, including
libLinux and the PAL.

Graphene ensures that the adversary cannot interfere
with any victim picoprocesses in a separate sandbox. The
Graphene sandbox design ensures strict isolation: if the only
shared kernel abstractions are byte streams and files, and the
reference monitor ensures there is no writable intersection
between sandboxes, the adversary cannot interfere with any
victim picoprocess.

3.1 System Call Restriction
Unmodified Linux applications run on Graphene by issuing
system calls as library calls to libLinux. Application calls
are serviced by libLinux-internal data structures or PAL
calls. The PAL is implemented using 50 host system calls.
The host OS must block any native system call that does not

sys_open() {!
 …!
}!

Kernel	 sys_mmap() {!
 …!
}!

User	

Graphene	 picoprocess	

libc	 malloc() { !
 brk(); !
}!

main {!
 malloc();!
 jmp DkStreamOpen+4; !
 int 0x80 <brk>; // not in PAL!
}!

PAL	

brk() {!
 DkVirtualMemoryAlloc();!
}!

libLinux	

DkVirtualMemoryAlloc() { !
 int 0x80 <mmap>!
} !

seccomp	 filter	

malloc()	 int	 0x80	 <brk>	

applica6on	

jmp	 DkVirtualMemory+4	

SIGSYS	
DkStreamOpen() { !
 int 0x80 <open> !
} !

Reference	 monitor	

sigsys {!
 …!
}!

AppArmor	 LSM	
Extension	

startup	

open(“app.manifest”)!

prctl(whitelist …);!

load(“libpal.so”)!

prctl(set_seccomp
…);!

Figure 2. System call restriction approach. The reference
monitor loads policies into the LSM at startup. A Graphene
application requests OS services in three different ways. In
the normal case (first line of main), malloc is invoked
causing the invocation of brk (libLinux) and mmap in
the PAL. In the second line, the application jumps to an
address in PAL, which is permissible. The LSM checks the
open system call. The third line invokes brk with an int
instruction, which is redirected to the libLinux function.

appear in the PAL source code. Any allowed system call with
external effects is checked by the reference monitor.

Graphene restricts the host system call table using sec-
comp [44], introduced in Linux 2.6.12. Seccomp allows a
process to create an immutable Berkeley Packet Filter (BPF)
program that specifies allowed system calls, as well as cre-
ates ptrace events on certain system calls. The filter can
also filter scalar argument values, such as only permitting
specific ioctl opcodes. If a system call is rejected, the PAL
will receive a SIGSYS signal, and can either terminate the
application or redirect the call to libLinux. Seccomp fil-
ters cannot be overridden by any picoprocess, and are always
inherited. The current Graphene filter is 79 lines of straight-
forward BPF macros. In our experience, adding more precise
argument checks has not significantly changed performance.

Unfortunately, the logic to check for allowed paths cannot
be implemented as a seccomp rule. In order to avoid the
overhead of trapping to the reference monitor on every open
or stat system call, we instead extend AppArmor [1] to
enforce file system isolation in the kernel.

In order to reduce the impact of bugs in the reference
monitor, the reference monitor itself runs with a seccomp
filter, blocking unexpected system calls.

Static Binaries. For compatibility with statically linked bi-
naries, which compile in system call instructions, we lever-
age seccomp to redirect these calls back to libLinux. For
system calls that could also be issued by the PAL, we aug-

ment our BPF rules with program counter-based filters. In
other words, an open system call with a return PC address
inside the PAL will be sent to the reference monitor for fur-
ther inspection; an open system call with any other return
PC address generates a SIGSYS and is ultimately relayed
back to libLinux. Thus, libLinux can catch and differ-
entiate application-issued system calls from those that could
also be issued by the PAL. We hasten to note this feature is
only for backward compatibility, not security.

Example. Figure 2 illustrates three possible situations.
An unmodified application first invokes the libc function
malloc, which issues a brk system call to libLinux,
which requests memory from the host via a DkVirtual-
MemoryAlloc PAL call, which ultimately issues an mmap
host system call. The mmap host system call is allowed by
seccomp because it only affects the picoprocess’s address
space. The second line of the application jumps to the PAL
instruction that issues an open system call. From a secu-
rity perspective, this is permissible, as it is isomorphic to
PAL functionality. In practice, this could cause corruption of
libLinux or application data structures, but the only harm
is to the application itself. Because this system call involves
the file system, the reference monitor LSM first checks if the
file to be opened is included in the sandbox definition (man-
ifest) before allowing the open system call in the kernel.
Finally, the application uses inline assembly to issue a brk
system call; because this system call was not issued by the
PAL, seccomp will redirect this call back to the PAL, which
then calls the libLinux implementation.

4. Guest Coordination Framework
An application executes on Graphene with the abstrac-
tion that all of its processes are running on a single OS.
Graphene libOSes service system calls from local libOS
state whenever possible, and state is coordinated across pi-
coprocesses via RPC when necessary. Within a sandbox,
Graphene picoprocesses coordinate shared state used to im-
plement multi-process abstractions, such as process iden-
tifiers, thread groups, and System V IPC and semaphores
(Table 2). Similar to previous designs [10, 42], Graphene
uses the host file system; the libOS implements file handles
and translates between POSIX and the host ABI. Identifying
the best division of labor for a libOS file system is left for
future work.

The rest of this section describes our coordination frame-
work, beginning with the coordination building blocks, and
then explains the implementation of several multi-process
abstractions. We conclude with lessons learned from opti-
mizing multi-process performance.

4.1 Coordination Building Blocks
The general problem underlying each of these coordination
APIs is namespace management. In other words, coordi-
nating picoprocesses need a consistent mapping of names,

such as a thread ID or System V message queue ID, to
the picoprocess implementing that particular item. Because
many multi-process abstractions in Linux can also be used
by single-process applications, a key design goal is to seam-
lessly transition between single-process uses, serviced en-
tirely from local libOS state, and multi-process cases, which
leverage remote procedure calls (RPCs) to coordinate ac-
cesses to shared abstractions.

Graphene creates an IPC helper thread within each pi-
coprocess, which exchanges coordination messages with the
IPC helper threads of picoprocesses within the sandbox. The
IPC helper services RPCs from other picoprocesses and is
hidden from the application. GNU Hurd has a similar helper
thread to implement signaling among a process’s parent and
immediate children [22]; Graphene generalizes this idea to
share a broader range of abstractions among any picopro-
cesses within a sandbox. To avoid deadlock among applica-
tion threads and the IPC helper thread, an application thread
may not both hold locks required by the helper thread to ser-
vice an RPC request and block on an RPC response from
another picoprocess. All RPC requests are handled from lo-
cal state and do not issue recursive RPCs.

Within a sandbox, all IPC helper threads exchange mes-
sages using a combination of a broadcast stream for global
coordination, and point-to-point streams for pairwise inter-
actions, minimizing overhead for unrelated operations. The
broadcast stream is created for the picoprocess as part of ini-
tialization. Unlike other byte-granularity streams, the broad-
cast stream sends data at the granularity of messages, to sim-
plify the handling of concurrent writes to the stream. Point-
to-point streams are simply byte streams between two pi-
coprocesses; two processes may establish a point-to-point
stream by passing handles through an intermediate stream
or over the broadcast stream. The handle-passing ABI is dis-
cussed further in Section 5. If a picoprocess leaves a sandbox
to create a new one, its broadcast stream is replaced with a
new one, connected only to the picoprocess and any children
created in the new sandbox.

One picoprocess in each sandbox serves as the leader.
The leader is responsible for subdividing each namespace
among other picoprocesses in the sandbox. For example, the
leader might allocate 50 process IDs to a picoprocess that
wishes to create children. The owner of the allocation can
then allocate process IDs to children from its local allocation
without further involving the leader. For a given identifier,
the owner is the serialization point for all updates, ensuring
serializability and consistency for that resource.

4.2 Examples and Discussion
Signals. Inside a libLinux instance, signals are imple-
mented using a combination of sigaction data structures
to track signal masks and pending signals; PAL-provided
hardware exception upcalls (e.g., for SIGSEGV); and RPCs
for cross-picoprocess signals (e.g., for SIGUSR1). If a pro-
cess signals itself, libLinux simply uses internal data

Abstraction Shared State Strategy
Fork PID namespace Batch allocations of PIDs, children generally created using local state at parent.
Signaling PID to picoprocess map Local signals call handler; remote signal delivery by RPC. Cache mapping of PID to picoprocess ID.
Exit notification Remote process status Exiting processes issue an RPC, or one synthesized if child becomes unavailable. The wait system call

blocks until notification received by IPC helper.
/proc/[pid] Process metadata Read over RPC.
Message Queues Key mapping, queue

contents
Mappings managed by a leader, contents stored in various picoprocesses. When possible, send messages
asynchronously, and migrate queues to the consumer.

Semaphores Key mapping, count. Mappings managed by leader, migrate ownership to picoprocess most frequently acquiring the semaphore.

Table 2. Multi-process abstractions implemented in Graphene, coordinated state, and implementation strategies.

structures to call the appropriate signal handler directly.
Graphene implements all three of Linux’s signaling names-
paces: process, process group, and thread IDs.

Figure 3 illustrates two sandboxes with picoprocesses
collaborating to implement a process ID (PID) namespace.
Because PIDs and signals are a libOS abstraction, picopro-
cesses in each sandbox can have overlapping PIDs, and can-
not signal each other. Picoprocesses in different sandboxes
cannot exchange RPC messages or otherwise communicate.

If picoprocess 1 (PID 1) sends a SIGUSR1 to picopro-
cess 2 (PID 2), illustrated in Figure 3, the kill call to
libLinux will check its cached mapping of PIDs to point-
to-point streams. If libLinux cannot find a mapping, it
may begin by sending a query to the leader to find the owner
of PID 2, and then establish a coordination stream to pico-
process 2. Once this stream is established, picoprocess 1 can
send a signal RPC to picoprocess 2 (PID 2). When picopro-
cess 2 receives this RPC, libLinux will then query its lo-
cal sigaction structure and mark SIGUSR1 as pending.
The next time picoprocess 2 makes a libLinux call, the
SIGUSR1 handler will be called upon return. Also in Fig-
ure 3, picoprocess 4 (PID 2) waits on picoprocess 3 termi-
nation (in the same sandbox with PID 1). When picoprocess
3 terminates, it invokes the library implementation of exit,
which issues an exitnotify RPC to picoprocess 4.

The Graphene libLinux signal semantics closely match
Linux behavior, which delivers signals upon return from a
system call or an interrupt or trap handler (PAL upcall). The
libc signal handling code is unmodified on Graphene. If
an application has a signal pending for too long, e.g., the
application is in a CPU-intensive loop, libLinux can use
a PAL function to interrupt the thread.

System V IPC. System V IPC maps an application-specified
key onto a unique identifier. All System V IPC abstractions,
including message queues and semaphores, are then refer-
enced by this identifier (ID). Similar to PIDs, the leader
divides the ID space among the picoprocesses, so that any
picoprocess can allocate an ID from local state. The leader
also dynamically allocates keys to picoprocesses.

Message Queues. In Graphene, the owner of a queue ID
is responsible for storing the messages written to the queue;
all message sends and receives must go through the owning
picoprocess. In our initial implementation, any sends to or
receives from a remote queue were several orders of mag-

Host Kernel

(3) RPC(signal) (4) RPC(sighand)

stream1

PAL

libLinux

Application

IPC Helper

(6) sighandler()

PAL

libLinux

Application
(1) kill(2,sig)

(5) handle_sig()(2) send_sig()

PID : Stream
1 : 1
2 : self

PID : Stream
1 : self
2 : 2

Picoprocess 1 Picoprocess 2

(3) RPC(exitnotify) (4) RPC(waitexit)

stream2

PAL

libLinux

Application

IPC Helper

(6) wait()

PAL

libLinux

Application
(1) exit()

(5) handle_exit()(2) send_exit()

PID : Stream
1 : 1
2 : self

PID : Stream
1 : self
2 : 2

Picoprocess 3 Picoprocess 4

Sandbox 1 Sandbox 2

Figure 3. Two pairs of Graphene picoprocesses in differ-
ent sandboxes coordinate signaling and process ID manage-
ment. The location of each PID is tracked in libLinux;
Picoprocess 1 signals picoprocess 2 by sending a signal RPC
over stream 1, and the signal is ultimately delivered using a
library implementation of the sigaction interface. Pico-
process 4 waits on an exitnotify RPC from picoprocess
3 over stream 2.

nitude slower than an access to a local queue. This led to
two essential optimizations. First, sending to a remote mes-
sage queue was made asynchronous. In the common case,
the sender can simply assume the send succeeded, as the ex-
istence and location of the queue have already been deter-
mined. The only risk of failure arises when another process
deletes the queue. When a queue is deleted, the owner sends
a deletion notification to all other picoprocesses that previ-
ously accessed the queue. If a pending message was sent
concurrently with the deletion notification (i.e., there is an
application-level race condition), the message is treated as
if it were sent after the deletion and thus dropped. The sec-
ond optimization migrates queue ownership from the pro-
ducer to the consumer, which must read queue contents syn-
chronously.

Because non-concurrent processes can share a message
queue, our implementation also uses a common file naming
scheme to serialize message queues to disk. If a picoprocess
which owns a message queue exits, any pending messages
are serialized to a file, and the receiving process may request
ownership of the queue from the leader.

Semaphores. IPC semaphores follow a similar pattern to
message queues, where ownership of a given semaphore is

migrated to the picoprocess that most frequently acquires the
semaphore. Most of the overhead in the Apache benchmark
(§6.3) is attributable to semaphore overheads, and, in ongo-
ing work, we will likely optimize this by using shared mem-
ory to reduce semaphore latency.

Shared Memory. The Graphene host ABI does not cur-
rently permit shared memory among picoprocesses. We ex-
pect that a host ABI and existing support for coordinating
System V IDs would be sufficient to implement this, with the
caveat that the host must be able to handle sandbox discon-
nection gracefully, perhaps converting the pages to copy-on-
write. Thus far we have avoided the use of shared memory
in the libLinux implementation, both to maximize flexi-
bility in placement of picoprocesses, potentially on different
physical machines, and as a rough mechanism to keep all
coordination requests explicit.

Shared File Descriptors. Open handle descriptors in the
Graphene host ABI do not include a seek pointer; Unix-
style seek behavior is implemented in the library OS. The
default Linux behavior is that children copy the open handles
and file seek cursors, but subsequent cursor movements are
not shared between parent and child. None of our target
applications have required a shared seek cursor, and it is
not currently implemented, but would be a straightforward
extension to current RPC mechanisms.

Failure and Disconnection Tolerance. Graphene is de-
signed to tolerate disconnection of collaborating libOS in-
stances, either because of crashes or blocked RPCs. In gen-
eral, Graphene makes these disconnections isomorphic to
a reasonable application behavior, although there may be
some edge cases that cannot be made completely transpar-
ent to the application.

In the absence of crashes, placing shared state in a given
picoprocess introduces the risk that an errant application
will corrupt shared libOS state. The microkernel approach
of moving all shared state into a separate server process is
more resilient to this problem. Anecdotally, Graphene’s per-
formance optimization of migrating ownership to the pro-
cess that most heavily uses a given shared abstraction also
improves the likelihood that only the corrupted process will
be affected. Making Graphene resilient to arbitrary memory
corruption of any picoprocess is left for future work.

Leader Recovery. The Graphene prototype does not cur-
rently implement leader recovery, but the design makes re-
covery straightforward. If a leader failure is detected, by
timeout or an RPC channel disconnection, a simple consen-
sus algorithm over the broadcast channel is sufficient to elect
a new leader, such as selecting the picoprocess with the low-
est process ID. Assuming that all picoprocesses in the sand-
box are trusted, leader state can be reconstructed by querying
each picoprocess in the sandbox.

4.3 Lessons Learned
The current coordination design is the product of several it-
erations, which began with a fairly simple RPC-based imple-
mentation. This subsection summarizes the design principles
that have emerged from this process.

Service requests from local state whenever possible.
Sending RPC messages over Linux pipes is expensive; this is
unsurprising, given the long history of work on reducing IPC
overhead in microkernels [14, 32]. We expect that Graphene
performance could be improved on a microkernel with a
more optimized IPC substrate, such as L4 [19, 28, 33]; we
take a complementary approach of avoiding IPC if possible.

An example of this principle is migrating message queues
to the “consumer” when a clear producer/consumer pat-
tern is detected, or migrating semaphores to the most fre-
quent requester. In these situations, synchronous RPC re-
quests can be replaced with local function calls, improving
performance substantially. For instance, migrating owner-
ship of message queues reduced overhead for message re-
ceive by a factor of 10×.

Lazy discovery and caching improve performance. No li-
brary OS keeps a complete replica of all distributed state,
avoiding substantial overheads to pass messages replicating
irrelevant state. Instead, Graphene incurs the overhead of
discovering the owner of a name on the first use, and amor-
tizes this cost over subsequent uses. Part of this overhead is
potentially establishing a point-to-point stream, which can
then be cached for subsequent use. For instance, the first
time a process sends a signal, the helper thread must fig-
ure out whether the process id exists, to which picoprocess
it maps, and establish a point-to-point stream to the picopro-
cess. If they exchange a second signal, the mapping is cached
and reused, amortizing this setup cost. For instance, the first
signal a process sends to a new processes takes ˜2ms, but
subsequent signals take only ˜55 µs.

Batched allocation of names minimizes leader workload.
In order to keep the leader off of the critical path of opera-
tions like fork, the leader typically allocates larger blocks
of names, such as process IDs or System V queue IDs. In
the case of fork, if a picoprocess creates a child, it will
request a batch of PIDs from the leader (50 by default). Sub-
sequent child PID allocations will be made from the same
batch without consulting the leader. Collaborating processes
also cache the owner of a range of PIDs, avoiding leader
queries for adjacent queries.

Make RPCs asynchronous whenever possible. For oper-
ations that must write to state in another picoprocess, the
Graphene design strives to cache enough information in
the sender to evaluate whether the operation will succeed,
thereby obviating the need to block on the response. This
principle is applied to lower the overheads of sending mes-
sages to a remote queue.

Component Lines (% Changed)
glibc 606 0.07%
libLinux 31,112
PAL 11,644
Linux kernel IPC module 1,131
AppArmor LSM isolation extensions 888 16.63%
Reference monitor 3,568

Table 3. Lines of code written or changed to produce
Graphene. Applications and other libraries are unchanged.

5. Implementation Details
Linux host PAL. The majority of PAL calls are simple
wrappers for similar Linux system calls, adding less than
100 LoC on average for translation between PAL and Linux
abstractions. The largest PAL calls are for exception han-
dling, synchronization, and picoprocess creation, which re-
quire multiple system calls and range from 500–800 LoC
each. Creating a new picoprocesses internally requires a
vfork and exec of a clean application instance, and would
be more efficiently implemented in the kernel. Finally, the
other major PAL components are an ELF loader (2 kLoC),
headers (800 LoC), and internal support code (2.3 kLoC).

Implementing Linux Personality. The Graphene lib-
Linux.so implements a subset of the Linux system call
API (currently 131 calls) using only the PAL ABI to interact
with the host. We note that Linux exports a very long tail of
infrequently used calls. A rough analysis of this tail indicates
roughly 100 additional calls that can be implemented with
the existing PAL ABI and coordination framework, less than
10 administrative calls that will not make sense to expose to
an application, such as loading a kernel module or rebooting
the system, and roughly 54 that will require PAL extensions
to meaningfully implement, such as controlling scheduling,
NUMA placement, I/O privilege, and shared memory. In the
last category of system calls, the degree to which actual host
details should be exported versus emulated is debatable.

Each time we have tested Graphene with a new ap-
plication, the number of extra system calls required has
dropped—most recently we only added 4 calls to support
the Apache web server. Thus, we believe Graphene imple-
ments a representative sample of Linux calls.

In order to use libLinux.so, we modified 606 lines
of glibc to replace system instructions with function calls
into libLinux.so, and to cooperatively manage thread-
local storage with libLinux.so (Table 3).

Implementing fork by (ab)using checkpoints. Copy-on-
write fork presented a particular challenge. As with a virtual
machine, each new picoprocess is created in a “clean” state;
fork is implemented in the libOS.

Graphene implements file Unix-style fork by leveraging
portions of the checkpoint and migration code, which can
programmatically save and restore OS state (e.g., file han-
dles, and memory mappings). Rather than writing the check-
point to a file, we developed an efficient bulk IPC mech-

anism to permit copy-on-write sharing of memory pages
among processes. Bulk IPC is a performance optimization
over sending each byte of the parent address space over a
stream, although libLinux can also implement fork over
a stream. Bulk IPC adds 3 calls to the host ABI, and the
host reference monitor only permits bulk IPC among pico-
processes within a sandbox.

Using our bulk IPC mechanism, the sender (parent) can
request that the host kernel copy a series of pages, which
need not be virtually contiguous, into the receiver’s ad-
dress space. The receiver (child) specifies where these pages
should be mapped. In both sender and receiver, the pages
are marked copy-on-write. This bulk IPC mechanism sends
pages out-of-band on a byte stream and guests also use the
stream to send control messages indicating how many pages
are being sent and how they should be interpreted.

Our IPC module is 1,131 lines of code (Table 3), runs on
multiple versions of Linux (2.6 and 3 series kernels), and
does not require Linux kernel changes or recompilation.

Inheriting file handles. Graphene adds two PAL ABI func-
tions that transfer stream handles out-of-band over previ-
ously established byte streams within a sandbox. Handle
passing facilitates inheritance and general-purpose RPC.

Synchronization. Perhaps surprisingly, implementing Linux
synchronization appears substantially easier than Windows
synchronization, as libLinux did not require all of the
various synchronization ABIs provided by Drawbridge. We
believe the reason for this is that Linux has consolidated
all user-level synchronization primitives to use futexes [21],
which are essentially kernel-level wait queues.

6. Evaluation
This section evaluates Graphene’s multi-process coordina-
tion, security, cross-host migration, memory footprint, and
performance. We drive this evaluation with a selection of
real-world applications that leverage multiple processes in
Graphene, as well as with microbenchmarks and stress tests.
We organize the evaluation around the following questions:
1. How do Graphene’s startup and migration costs compare

to running an application in a dedicated VM?
2. Given that RAM is often the limiting factor in VMs per

system, how does Graphene’s memory footprint compare
to other virtualization techniques?

3. What are the performance overheads of Graphene relative
to a native Linux process or VM?

4. What additional overheads are added by the reference
monitor?

5. How do Graphene’s overheads scale with the number of
processes in a sandbox?

6. Does the Graphene reference monitor enforce security
isolation comparable to running the application in a VM?

7. What fraction of recent Linux vulnerabilities would
Graphene prevent?

Test Linux KVM Graphene
Start-up 208 µs 3.3 s 15K× 641 µs 3.1×
Checkpoint N/A 0.987 s 416 µs
Resume N/A 1.146 s 1387 µs
Checkpoint size N/A 105 MB 376 KB

Table 4. Startup, checkpoint, and resume times for a native
Linux process, a KVM virtual machine, and a Graphene
picoprocess, where appropriate. Lower is better. Overheads
are relative to Linux.

Except for scalability measurements, all measurements
were collected on a Dell Optiplex 790 with a 4-core 3.40
GHz Intel Core i7 CPU, 4 GB RAM, and a 250GB, 7200
RPM ATA disk. Our host system runs Ubuntu 12.04 server
with host Linux kernel version 3.5, which includes KVM on
QEMU version 1.0. Each KVM Guest is deployed with 4
virtual CPU with EPT, 2GB RAM, a 30GB virtual disk im-
age, Virtio enabled for network and disk, bridged connection
with TAP, and runs the same Ubuntu and Linux kernel im-
age. We note that recent library OSes are either not openly
available or cannot execute unmodified Linux binaries. Un-
less otherwise noted, Graphene measurements include the
reference monitor.

6.1 Process Migration and Application Startup
Graphene supports migration of an application from a pi-
coprocess on one machine to a picoprocess on another ma-
chine by checkpointing the application, copying the check-
point over the network, and then resuming the checkpoint.
Table 4 shows the time to start up a process, VM, or pico-
process; as well as the checkpoint and resume time for KVM
and Graphene. Migration across machines is a function of
network bandwidth, so we report checkpoint size instead.

Graphene shows dramatically faster initialization times
than a VM. This is not surprising, since Graphene is sub-
stantially smaller than an OS kernel. Similarly, checkpoint-
ing and restoring a 4 MB application on Graphene is 1–4 ×
faster than checkpointing or restoring a KVM guest.

6.2 Memory Footprint
We begin by measuring the minimal memory footprint of
a simple “hello world” program on Linux (352 KB) and
Graphene (1.4 MB). Thus, one would expect roughly 1 MB
of extra memory usage for any single-picoprocess applica-
tion. Because of copy-on-write sharing, however, the incre-
mental cost of adding additional “hello world” children is
only about 790 KB per process.

Figure 4 lists memory overheads of a diverse set of un-
modified applications, including a make -j 4 of Gra-
phene’s libLinux using the gcc compiler (v4.4.5), the
lighttpd web server (v1.4.30) with 4 threads, the Apache
web server (v2.4.3) with 4 processes, and the Bash shell
(v4.1) executing the shell script test (multi.sh) from the
Unixbench suite (v5.1.3) [2]. We measure memory utiliza-
tion based on the maximum kernel-reported resident set size

0

50

100

150

200

make -j4
libLinux

lighttpd
4-thread

apache
4-proc

bash
unixbench

M
em

or
y

U
sa

ge
(M

B
)

Linux

89

6 6 14

Graphene

102

11 11
31

KVM
156 156 156 153

Figure 4. Memory usage of applications on Linux,
Graphene, and KVM, in MB. Lower is better.

of each process or VM. For most applications, memory us-
age was fairly constant across inputs, so we only display
representative examples.

We found that the memory footprints of compilation were
a function of the size of the source base, even on Linux; we
select compile of libLinux as a representative example.
Graphene adds less than 15% overhead in all cases.

Unixbench on Graphene uses substantially more mem-
ory at a given time than native Linux—more than double.
In these samples, however, Graphene also had 3–4× as
many processes running; this is because Unixbench sim-
ply spawns all of the tasks in the background, rather than
executing them sequentially. Because Graphene processes
execute more slowly (attributable to a slower fork—§6.3),
a given sample will include more picoprocesses, pushing to-
tal memory usage higher. Thus, we expect that further tuning
fork performance will lower sampled memory usage.

Across all workloads, Graphene’s memory footprint is
3–20 times smaller than KVM. For all tests, we used a
minimal KVM disk image, generated using debootstrap
1.0.39ubuntu0.3 and supplemented only by packages re-
quired to obtain, compile, and run the experiments. In order
to make memory footprint measurements as fair as possible
to KVM, we used both the virtio balloon driver and kernel
same page merging (KSM) [6]. We also reduced the RAM
allocated to the VM to the smallest size without harming
performance—128MB. We note that memory measured in-
cludes memory used by QEMU for VM device emulation,
adding a few dozen MB.

If the smallest usable Linux VM consumes about 150
MB of RAM, our measurements indicate that one could run
anywhere from 12–188 libOSes within the same footprint.

6.3 Application performance
Table 5 lists execution time of our unmodified application
benchmarks (detailed in §6.2). All applications create mul-
tiple processes, except for lighttpd, which only creates mul-
tiple threads. Each data point is the average of at least six
runs, and 95% confidence intervals are listed in the table.

We exercise gcc/make with inputs of varying sizes:
bzip2 (v1.0.6, 5KLoC, 13 files), Graphene’s libLinux

Execution time (s), +/- Conf. Interval, % Overhead
gcc/make Linux KVM Graphene + RM
bzip2 2.57 .00 2.70 .00 5 % 2.70 .00 5 %
bzip2 -j4 1.00 .00 1.09 .00 9 % 1.08 .02 8 %
libLinux 7.23 .00 7.55 .00 4 % 8.64 .00 20 %
libLinux -j4 1.95 .00 2.03 .00 4 % 2.54 .00 30 %
gcc 24.74 .02 26.80 .02 8 % 31.84 .00 29 %

Ap. Bnch Avg Throughput (MB/s), +/- Conf. Interval, % Overhead
Apache Linux KVM Graphene + RM
25 conc 5.73 .25 4.84 .03 18 % 4.02 .00 43 %
50 conc 5.57 .28 4.80 .06 16 % 4.01 .00 39 %
100 conc 5.87 .20 4.80 .03 22 % 3.98 .00 47 %
lighttpd Linux KVM Graphene + RM
25 conc 6.66 .01 6.46 .03 3 % 5.65 .00 18 %
50 conc 6.65 .13 6.41 .02 4 % 4.79 .00 39 %
100 conc 6.69 .01 6.39 .03 5 % 4.56 .01 47 %

Execution Time (s), +/- Conf. Interval, % Overhead
bash Linux KVM Graphene + RM
Unix utils 0.87 .00 1.10 .01 26 % 2.01 .00 134 %
Unixbench 0.55 .00 0.55 .00 0 % 1.49 .00 192 %

Table 5. Application benchmark execution times in a native
Linux process, a process inside a KVM virtual machine, and
a Graphene picoprocess with reference monitoring (+RM).

(31 KLoC, 78 files) and gcc (v3.5.0, 551 KLoC, collected
as a single source file). We benchmark Apache (4 preforked
workers) and lighttpd (4 threads) with ApacheBench, which
issues 25, 50, and 100 concurrent requests to download a 100
byte file 50,000 times. We exercised Bash with 300 iterations
of the Unixbench benchmark [2], as well as 300 iterations
of a simple shell script benchmark that runs 6 common shell
script commands (cp, rm, ls, cat, date, and echo).

Compilation workloads incur overheads ranging from
5–30%. Parallel compilation on both Graphene and Linux
yields comparable speedups over sequential, but the per-
cent overhead increases for parallel Graphene. For instance,
make -j4 libLinux speeds up 3.7× on Linux and
3.4× on Graphene. The compilation overheads are primar-
ily from the reference monitor—nearly all for bzip2 and gcc,
and half for libLinux. In the case of both Bash workloads,
the key bottleneck is the fork system call. Profiling indi-
cates that half of the time in libLinux is spent on fork
in both benchmarks. The trend is exacerbated in Unixbench,
which creates all of the processes at the beginning and waits
for them all to complete; because Graphene cannot create
children as quickly as native, this leads to load imbalance
throughout the rest of the benchmark.

With the reference monitor disabled, lighttpd has equiv-
alent throughput to a native Linux process; as discussed in
the next subsection, these overheads come from checking
paths in the monitor. The Apache web server loses about half
of its throughput relative to lighttpd on Graphene. The pri-
mary bottleneck in Apache relative to lighttpd is System V
semaphores, and the remaining overheads are attributable to
more time spent waiting for input. The overheads for both
lighttpd and Apache on KVM are primarily attributable to
bridged networking.

Test Linux Graphene Graphene + RM
µs +/- µs +/- %O µs +/- %O

syscall 0.04 .0 0.01 .0 -75 0.01 .0 -75
read 0.09 .0 0.12 .0 33 0.12 .0 33
write 0.11 .0 0.11 .0 0 0.11 .0 0
open/close 0.85 .1 3.53 .2 315 5.09 .0 499
select tcp 10.87 .0 17.02 .0 56 17.44 .0 60
sig install 0.11 .0 0.20 .0 82 0.20 .0 82
sigusr1 0.79 .0 0.33 .0 -58 0.33 .0 -58
AF UNIX 4.71 .1 5.71 .0 19 6.37 .1 32

fork+exit 67 0 463 4 587 490 3 626
fork+exec 231 1 764 5 237 800 6 253
fork+sh 576 8 1,720 10 199 1,775 11 208

Table 6. LMBench comparison among native Linux pro-
cesses and Graphene picoprocesses, both without and with
the reference monitor (+RM). Execution time is in microsec-
onds, and lower is better. Overheads are relative to Linux;
negative overheads indicate improved performance.

6.4 Microbenchmarks
In order to understand the overheads of individual system
calls, Table 6 lists a representative sample of tests from the
LMbench suite, version 2.5 [36]. Each row reports a mean
and 95% confidence interval; we use the default number of
iterations for each test case. To measure the marginal cost of
the reference monitor, we report numbers with and without
the reference monitor.

In general, calls that can be serviced inside the library
are faster than native, whereas calls that require translation
to a native call incur overheads typically under 100%. For
instance, the self-signaling test (sig overhead) just calls the
signal handler as a function, which is almost twice as fast as
the Linux kernel implementation.

The most expensive system calls occur when libLinux
inadvertently duplicates work with the host kernel. For in-
stance, many of the file path and handle management calls
duplicate some of the effort of the host file system, leading
to a 1–3× slower implementation than native. As the worst
example, fork+exit is ˜5.9× slower than Linux. Profil-
ing indicates that about one sixth of this overhead is in pro-
cess creation, which takes additional work to create a clean
picoprocess on Linux; we expect this overhead could be re-
duced with a kernel-level implementation of the process cre-
ation ABI, rather than emulating this behavior on clone.
Another half of the overhead comes from the libLinux
checkpointing code (commensurate with the data in Table 4),
which includes a substantial amount of serialization effort
which might be reduced by checkpointing the data structures
in place. A more competitive fork will require host support
and additional libLinux tuning.

We also measure the overhead of isolating a Graphene pi-
coprocess inside the reference monitor. Because most filter-
ing rules can be statically loaded into the kernel, the cost of
filtering is negligible with few exceptions. Only calls that in-
volve path traversals, such as open and exec, result in sub-
stantial overheads relative to Graphene. An efficient imple-

Test Linux Graphene
µs +/- µs +/-

msgget in process 3320 0.7 2823 0.3 -15 %
(create) inter process 3336 0.5 2879 3.6 -14 %

persistent N/A 10015 0.7 202 %
msgget in process 3245 0.5 137 0.0 -96 %

inter process 3272 3.4 8362 2.4 156 %
persistent N/A 9386 0.4 189 %

msgsnd in process 149 0.2 443 0.2 191 %
inter process 153 0.3 761 1.1 397 %
persistent N/A 471 0.8 216 %

msgrcv in process 149 0.1 237 0.2 60 %
inter process 153 0.1 779 2.2 409 %
persistent N/A 979 0.6 561 %

Table 7. Microbenchmark comparison for System V mes-
sage queues between a native Linux process and Graphene
picoprocesses. Execution time is in microseconds, and lower
is better. Overheads are relative to Linux, and negative over-
heads indicate improved performance.

mentation of an environment similar to FreeBSD jails [49]
would make all reference monitoring overheads negligible.

System V IPC. Table 7 lists microbenchmarks which exer-
cise each System V message queue function, within one pi-
coprocess (in process), across two concurrent picoprocesses
(inter process), and across two non-concurrent picoprocesses
(persistent). Linux comparisons for persistent are missing,
since message queues survive processes in kernel memory.

In-process queue creation and lookup are faster than
Linux. In-process send and receive overheads are higher
because of locking on the internal data structures; the cur-
rent implementation acquires and releases four fine-grained
locks, two of which could be elided by using RCU to elimi-
nate locking for the readers [35]. Most of the costs of persist-
ing message queue contents are also attributable to locking.

Although inter-process send and receive still induce sub-
stantial overhead, the optimizations discussed in §4.3 re-
duced overheads compared to a naive implementation by a
factor of ten. The optimizations of asynchronous sending
and migrating ownership of queues when a producer/con-
sumer pattern were detected were particularly helpful.

6.5 Scalability
We compare the scalability of Graphene’s RPC substrate
with the scalability of Linux pipes, using a microbenchmark
that compares the cost of ping-ponging a no-op RPC within a
sandbox. For this experiment, we used a 48-core SuperMicro
SuperServer, with four 12-core AMD Opteron 6172 chips
running at 2.1 GHz and 64 GB of RAM. The performance
of Graphene closely matches Linux (Figure 5), indicating
that the Graphene RPC mechanism doesn’t introduce any
scalability bottlenecks above the scalability of IPC on the
host OS (Linux). The relative performance differences are
more variable above 24 cores, which we believe are the result
of host-level scheduling. We hasten to note that these are
worst-case stress tests; based on our application behaviors

0

500

1000

1500

2000

2500

3000

4 8 12 16 20 24 28 32 36 40 44 48

T
hr

ou
gh

pu
t(

K
B

/s
ec

)

Number of Processes

Linux pipes
Graphene Host RPC

Figure 5. Scalability of Linux pipes and Graphene RPC on
a 48 core machine. Pairs of processes concurrently exchange
10,000 1-byte messages.

as well as tuning experience, we expect RPC messages to be
infrequent and to scale further in practice.

6.6 Security
Demonstrating security is always challenging, as it requires
exploring all possible attacks. We instead offer statistics that
indicate an overall reduction in attack surface, and qualita-
tive validation where appropriate. Graphene runs substantial
Linux applications using less than 15% of the Linux sys-
tem call table—reducing this attack surface. We wrote sev-
eral tests that attempt to issue illegal system calls with in-
line assembly; we validate that all system calls are redirected
to libLinux, and that signals and other IPC cannot cross
sandbox boundaries.

Isolation Experiments. This subsection tests whether
Graphene meets its goal of providing equivalent isolation
to a VM. We conducted an evaluation of the security of the
isolation mechanisms in Graphene and analyzed whether
a malicious Graphene picoprocess could (i) fork a non-
Graphene process, (ii) kill processes from another sandbox
or a non Graphene process, (iii) access files not prescribed
in its Manifest, and (iv) discover secrets from picoprocesses
in other sandboxes or from non-Graphene process through
side-channels via the /proc file system. The first three at-
tacks use inline assembly to directly issue a system call,
and are blocked by the reference monitor; the fourth creates
an attack similar to Memento [25] and is frustrated by the
fact that /proc is implemented within libLinux and the
system /proc is inaccessible from Graphene.

Analysis of Linux Vulnerabilities. Graphene restricts pico-
processes to 15% of the system call table. To evaluate the im-
pact on system security, we manually analyzed all reported
Linux vulnerabilities from 2011–2013 (a total of 291 vulner-
abilities) [50]. We categorized these exploits by kernel com-
ponent, listed in Table 8. Roughly half of these vulnerabili-
ties required a system call which Graphene blocks in order
to exploit the system. Graphene would only allow 5 of the
relevant vulnerabilities through its system call filtering and
reference monitor. The remaining half of the vulnerabilities

Category Total Prevented by Graphene
System call 118 113 96%
Network 73 30 41%
File system 33 2 6%
Drivers 37 0
VM subsystem 15 0
Application vulnerabilities 2 2 100%
Kernel other 13 0
Total 291 147 51%

Table 8. Manual analysis of Linux vulnerabilities from
2011-2013 and Graphene’s prevention.

were entirely within the kernel or modules, such as bugs in
the virtual memory subsystem.

Despite the fact that our primary security goal is isola-
tion, these results indicate that moving the system call table
into the application has the potential to substantially reduce
exploitable system vulnerabilities.

New Opportunities. To explore new use cases of the
Graphene sandboxing model, we modified the Apache mod -
auth basic.so module to call the new library OS func-
tion sandbox create after user authentication. The work-
er process that services the user request executes in a sepa-
rate sandbox with file system access restricted to only data
required for that user. Similarly, this worker’s libOS can-
not coordinate shared OS abstractions with other worker
processes, limiting the risk to other users if this process is
exploited. We see interesting opportunities to expand this
model in future work.

7. Related Work
This section surveys related work on library OSes, dis-
tributed OSes, and migration and isolation of a process.

7.1 Previous Library OSes
This work extends previous library OSes [10, 18, 34, 40, 42],
which focused on single-process applications, to support co-
ordination abstractions required for multi-process applica-
tions, such as shell scripts.

Bascule [10] implements a Linux library OS on a variant
of the Drawbridge ABI, but does not include support for
multi-process abstractions such as signals or copy-on-write
fork. The Bascule Linux library OS also implements fewer
Linux system calls than Graphene, missing features such as
signals. Bascule demonstrates a complementary facility to
Graphene’s multi-process support: composable library OS
extensions, such as speculation and record/replay. OSv is a
recent open-source, single-process library OS to support a
managed language runtime, such as Java, on a bare-metal
hypervisor [40].

A number of recent projects have provided a minimal,
isolated environment for web applications to download and
execute native code [18, 23, 37, 52, 53]. The term “picopro-
cess” is adopted from some of these designs, and they share
the goal of pushing system complexity out of the kernel and

into the application. Unlike a library OS, these systems gen-
erally sacrifice the ability to execute unmodified application
code, eliminate common UNIX multi-process functionality
(e.g., fork), or both.

The term library OS also refers to an older genera-
tion of research focused on tailoring hardware management
heuristics to individual application needs [4, 5, 15, 26, 30],
whereas newer library OSes, including Graphene, focus on
providing application compatibility across different hosts
without dragging along an entire legacy OS. A common
thread among all libOSes is moving functionality from the
kernel into applications and reducing the TCB size or attack
surface. Kaashoek et al. [26] identify multi-processing as
a problem for an Exokernel libOS, and implemented some
shared OS abstractions. The Exokernel’s sharing designs
rely on shared memory rather than byte streams, and would
not work on recent libOSes, nor will they facilitate dynami-
cally sandboxing two processes.

User Mode Linux [17] (UML) executes a Linux kernel
inside a process by replacing architecture-specific code with
code that uses Linux host system calls. UML is best de-
scribed as an alternative approach to paravirtualization [7],
and, unlike a library OS, does not deduplicate functionality.

7.2 Distributed Coordination APIs
Distributed operating systems, such as LOCUS [20, 51],
Amoeba [16, 38] and Athena [13] required a consistent
namespace for process identifiers and other IPC abstractions
across physical machines. Like microkernels, these systems
generally centralize all management in a single, system-wide
service. Rote adoption of a central name service does not
meet our goals of security isolation and host independence.

Several aspects of the Graphene host kernel ABI are sim-
ilar to the Plan 9 design [41], including the unioned view of
the host file system and the inter-picoprocess byte stream.
Plan 9 demonstrates how to implement this host kernel ABI,
whereas Graphene uses a similar ABI to encapsulate multi-
process coordination in the libOS.

Barrelfish [9] argues that multi-core scaling is best served
by replicating shared kernel abstractions at every core, and
using message passing to coordinate updates at each replica,
as opposed to using cache coherence to update a shared data
structure. Barrelfish is a new OS; in contrast, Cerberus [47]
applies similar ideas to coordinate abstractions across mul-
tiple Linux VMs running on Xen. In order for a library OS
to provide multi-process abstractions, Graphene must solve
some similar problems, but innovates by replicating addi-
tional classes of coordination abstractions, such as System
V IPC, and facilitates dynamic sandboxing. The focus of
this paper is not on multi-core scalability, but on security
isolation and compatibility with legacy, multi-process appli-
cations. That said, we expect that systems like Barrelfish [9]
could leverage our implementation techniques to efficiently
construct higher-level OS abstractions, such as System V
IPC and signals.

L3 introduced a “clans and chiefs” model of IPC redi-
rection, in which IPC to a non-sibling process was validated
by a the parent (“chief”) before a message could leave the
clan [31]. Although this model was abandoned as cumber-
some for general-purpose access control [19], the Graphene
sandbox design observes that a stricter variation is a natural
fit for security isolation among multi-process applications.

7.3 Legacy OS support for migration and isolation
Researchers have added checkpoint and migration support
to Linux [29] by serializing kernel data structures to a file
and reloading them later. This introduces several challenges,
including security concerns of loading data structures into
the OS kernel from a potentially untrusted source. In con-
trast, Graphene checkpoint/restore requires little more than
a guest memory dump.

OS-based virtualization, such as Linux VServer [46],
containers [12], and Solaris Zones [43], implement secu-
rity isolation by maintaining multiple copies of kernel data
structures, such as the process tree, in the host kernel’s ad-
dress space. In order to facilitate sandboxing, Linux has
added support for launching single processes with isolated
views of namespaces, including process IDs and network
interfaces [27]. FreeBSD jails apply a similar approach to
augment an isolated chroot environment with other iso-
lated namespaces, including the network and hostname [49].
Similarly, Zap [39] migrates groups of process, called a
Pod, which includes a thin layer virtualizing system resource
names. In these approaches, all guests must use the same OS
API, and the host kernel still exposes hundreds of system
calls to all guests. Library OSes move these data structures
into the guest, enabling a range of personalities to run on a
single guest and limiting the attack surface of the host.

Shuttle [45] permits selective violations of strict isola-
tion to communicate with host services under OS-based
virtualization. For example, collaborating applications may
communicate using the Windows Common Object Model
(COM); Shuttle develops a model to permit access to the
host COM service. Rather than attempting to secure host
services, Graphene moves these services out of the host and
into collaborating guests.

8. Conclusion
Graphene extends library OS designs to include multi-
process APIs required by common applications, such as a
shell or web server. Graphene demonstrates efficient, selec-
tive coordination of shared state across multiple library OS
instances—maintaining host independence. Applications on
Graphene enjoy both strong security isolation with accept-
able performance and low memory overheads.

Acknowledgements
We thank the anonymous reviewers, Vyas Sekar, and our
shepherd, Bryan Ford, for insightful comments on ear-

lier drafts of this paper. Anchal Agarwal, Amit Arya, Im-
ran Brown, Gurpreet Chadha, Naveen Kalaskar, Manikan-
tan Subramanian, and Sourabh Yerfule contributed to the
Graphene prototype implementation. This research was sup-
ported in part by NSF grants CNS-1149730, CNS-1149229,
CNS-1161541, CNS-1228839, and the Office of the Vice
President for Research at Stony Brook University.

References
[1] AppArmor. http://wiki.apparmor.net/index.

php/Main_Page.

[2] Byte unixbench. http://code.google.com/p/
byte-unixbench/.

[3] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian,
and M. Young. MACH: a new kernel foundation for UNIX
development. Technical report, Carnegie Mellon University,
1986.

[4] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva, D. Grove,
K. Kawachiya, O. Krieger, B. Rosenburg, E. Van Hensbergen,
and R. W. Wisniewski. Libra: A library operating system for
a JVM in a virtualized execution environment. In VEE, pages
44–54, 2007.

[5] T. Anderson. The case for application-specific operating sys-
tems. In Workshop on Workstation Operating Systems, 1992.

[6] A. Archangeli, I. Eidus, and C. Wright. Increasing memory
density by using KSM. In Linux Symposium, pages 19–28,
2009.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP, pages 164–177, 2003.

[8] R. Baron, R. Rashid, E. Siegel, A. Tevanian, and M. Young.
Mach-1: An operating environment for large-scale multipro-
cessor applications. 2(4):65–67, July 1985.

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: a new OS architecture for scalable multicore sys-
tems. In SOSP, pages 29–44, 2009.

[10] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R. Lorch,
B. Bond, R. Olinsky, and G. C. Hunt. Composing OS exten-
sions safely and efficiently with Bascule. In EuroSys, 2013.

[11] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières,
and C. Kozyrakis. Dune: safe user-level access to privileged
CPU features. In OSDI, pages 335–348, 2012.

[12] S. Bhattiprolu, E. W. Biederman, S. Hallyn, and D. Lezcano.
Virtual servers and checkpoint/restart in mainstream Linux.
OSR, 42:104–113, July 2008.

[13] G. A. Champine, D. E. Geer, Jr., and W. N. Ruh. Project
Athena as a Distributed Computer System. IEEE Computer,
23(9):40–51, Sept. 1990.

[14] J. B. Chen and B. N. Bershad. The impact of operating system
structure on memory system performance. In SOSP, pages
120–133, 1993.

[15] D. R. Cheriton and K. J. Duda. A caching model of operating
system kernel functionality. In OSDI, 1994.

[16] D. R. Cheriton and T. P. Mann. Decentralizing a global
naming service for improved performance and fault tolerance.
TOCS, 7(2):147–183, May 1989.

[17] J. Dike. User Mode Linux. Prentice Hall, 2006.

[18] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging
legacy code to deploy desktop applications on the web. In
OSDI, 2008.

[19] K. Elphinstone and G. Heiser. From L3 to seL4: What have
we learnt in 20 years of L4 microkernels? In SOSP, 2013.

[20] B. D. Fleisch. Distributed System V IPC in LOCUS: a de-
sign and implementation retrospective. SIGCOMM Comput.
Commun. Rev., 16(3):386–396, Aug. 1986.

[21] H. Franke, R. Russel, and M. Kirkwood. Fuss, futexes and
furwocks: Fast userlevel locking in Linux. In Ottawa Linux
Symposium, 2002.

[22] Free Software Foundation. GNU Hurd. http://www.
gnu.org/software/hurd/hurd.html.

[23] J. Howell, B. Parno, and J. R. Douceur. How to run POSIX
apps in a minimal picoprocess. In USENIX ATC, pages 321–
332, 2013.

[24] G. C. Hunt and J. R. Larus. Singularity: Rethinking the
software stack. SIGOPS Oper. Syst. Rev., 41(2), 2007.

[25] S. Jana and V. Shmatikov. Memento: Learning secrets from
process footprints. In IEEE S&P, pages 143–157, 2012.

[26] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño,
R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie. Application performance and flexibility
on exokernel systems. In SOSP, pages 52–65, 1997.

[27] M. Kerrisk. User namespaces progress. Linux Weekly News,
2012.

[28] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. sel4: Formal veri-
fication of an OS kernel. In SOSP, pages 207–220, 2009.

[29] O. Laaden and S. E. Hallyn. Linux-CR: Transparent applica-
tion checkpoint-restart in Linux. In Linux Symposium, 2010.

[30] I. Leslie, D. Mcauley, R. Black, T. Roscoe, P. Barham, D. Ev-
ers, R. Fairbairns, and E. Hyden. The design and implementa-
tion of an operating system to support distributed multimedia
applications. IEEE JSAC, pages 1280–1297, 1996.

[31] J. Liedtke. Clans & chiefs. In Architektur von Rechensyste-
men, 12. GI/ITG-Fachtagung, pages 294–305, 1992.

[32] J. Liedtke. Improving IPC by Kernel Design. In SOSP, pages
175–188, 1993.

[33] J. Liedtke. On micro-kernel construction. In SOSP, pages
237–250, 1995.

[34] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft. Uniker-
nels: Library operating systems for the cloud. In ASPLOS,
2013.

[35] P. E. McKenney. Exploiting Deferred Destruction: An Anal-
ysis of Read-Copy Update Techniques in Operating System
Kernels. PhD thesis, 2004.

[36] L. McVoy and C. Staelin. lmbench: Portable tools for perfor-
mance analysis. In USENIX ATC, pages 23–23, 1996.

[37] J. Mickens and M. Dhawan. Atlantis: robust, extensible ex-
ecution environments for web applications. In SOSP, pages
217–231, 2011.

[38] S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van
Renesse, and H. van Staveren. Amoeba: A distributed operat-
ing system for the 1990s. IEEE Computer, 23(5):44–53, May
1990.

[39] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and
implementation of Zap: A system for migrating computing
environments. In SOSP, pages 361–376, 2002.

[40] OSV. OSv—designed for the cloud. osv.io.

[41] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan
9 from Bell Labs. In In Proceedings of the Summer 1990
UKUUG Conference, pages 1–9, 1990.

[42] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. Hunt. Rethinking the library OS from the top down. In
ASPLOS, pages 291–304, 2011.

[43] D. Price and A. Tucker. Solaris Zones: Operating system
support for consolidating commercial workloads. In LISA,
pages 241–254, 2004.

[44] SECure COMPuting with Filters (seccomp). http:
//kernel.ubuntu.com/git?p=ubuntu/ubuntu-
precise.git;a=blob;f=Documentation/prctl/
seccomp_filter.txt;hb=HEAD, 2012.

[45] Z. Shan, X. Wang, T.-c. Chiueh, and X. Meng. Facilitating
inter-application interactions for os-level virtualization. In
VEE, pages 75–86, 2012.

[46] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peter-
son. Container-based operating system virtualization: A scal-
able, high-performance alternative to hypervisors. In EuroSys,
2007.

[47] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang. A case
for scaling applications to many-core with OS clustering. In
EuroSys, 2011.

[48] J. M. Stevenson and D. P. Julin. Mach-US: UNIX on generic
OS object servers. In USENIX Technical Conference, 1995.

[49] M. Stokely and C. Lee. The FreeBSD Handbook, 3rd Edition,
Vol 1: Users’s Guide, 2003.

[50] Linux Kernel Security Vulnerabilities
(http://www.cvedetails.com). http://www.
cvedetails.com/, 2013.

[51] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The
LOCUS distributed operating system. In SOSP, pages 49–70,
1983.

[52] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury,
and H. Venter. The multi-principal OS construction of the
Gazelle web browser. In USENIX Security, pages 417–432,
2009.

[53] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In IEEE
S&P, 2009.

