
System transactions synchronize

access to system resources

• Atomic and isolated access to files, memory allocation, etc.

• Users wrap system calls inside a transaction

• Simple API. Only three new system calls:

• sys_xbegin, sys_xend, sys_xabort

• TOCTTOU can be solved deterministically with transactions

• Similar in spirit to Quicksilver, TABS, Locus

•Different semantics and implementation 

Operating System Transactions

Donald E. Porter, Indrajit Roy, and Emmett Witchel

The University of Texas at Austin

tx@cs.utexas.edu 

Secure sandboxing is hard to achieve

Problem Statement Results
• We have implemented system transactions in Linux 2.6.22.6

• Affectionately called „TxOS’

___________________________________________________________________________________________

Solving TOCTTOU

• Tsafrir: user-level path resolution, probabilistic guarantees

• Performance decreases with length of file name

• TxOS uses transactions, deterministic guarantees

• Performance indistinguishable from Linux

• Performance independent of file name length

___________________________________________________________________________________________

Integration with Software Transactional Memory

• Open Problem: supporting system calls in TM

• Sys. calls violate isolation: results visible to other threads

• Solved using system transactions

• Experiment compares performance to locks in a web server

• Transactions provide better scalability than locks.

‘foo

’

Victim (Tx A)

‘foo

’

Victim (Tx A)

‘foo

’

Victim (Tx A)

Committed

‘foo

’

‘foo

’

Design

Version kernel data, detect conflicts and commit

• Transactions work on private copies of objects

• Lazy version management and eager conflict detection

• Locks held only to make copies and while committing

• Conflicts from non transactional threads are also detected

• At commit time atomically copy modifications to stable objects

Example

Victim      Attacker 

if(access(’foo’)) {

symlink(’secret’,’foo’); 

fd=open(’foo’);  

... 

}

• No deterministic solution without changing API

• Current solutions are expensive, and yet probabilistic 

• 400+ hits in National Vulnerability DB for “symlink attack”

Time-of-check-to-time-of-use (TOCTTOU) Attacks

• Attacker exploits race condition to trick a setuid program

• Changes a symbolic link between check and use

State of the art
Proliferation of ad hoc solutions to races

• Linux has made numerous additions to file system API 

• openat, renameat, faccessat and ten more

• Signal handling API has been redesigned 

• sigaction, pselect, sigprocmask, epoll_wait, etc.

• Complex semantics, difficult to learn. No end in sight …

• Sandbox restricts access to system resources by untrusted app. 

• Enforces security policy on apps that can‟t be modified

• Lack of OS mechanisms to isolate system resource usage

• Concurrent accesses can be exploited by attackers 

• No easy way to rollback system state in case of a breach

• Examples of sandboxing systems: Janus, Ostia, Systrace, Plash

• Janus vulnerable to symbolic link races, argument races, etc.

• Others act as proxy to OS, copying syscall parameters

Approach

Victim      Attacker 
symlink(’secret’,’foo’); 

sys_xbegin();

if(access(’foo’)) {

fd=open(’foo’);  

... 

}

sys_xend();

symlink(’secret’,’foo’); 


