Operating System Transactions

Donald E. Porter, Indrajit Roy, and Emmett Witchel THE UNIVERSITY OF
Y The University of Texas at Austin TEXAS

Problem Statement

AT AUSTIN

tx@-cs.utexas.edu

Approach

Secure sandboxing is hard to achieve System transactions synchronize » We have implemented system transactions in Linux 2.6.22.6

» Sandbox restricts access to system resources by untrusted app. access to system resources - Affectionately called ‘TxOS’

* Enforces security policy on apps that can’t be moditied » Atomic and isolated access to files, memory allocation, etc.
 Lack of OS mechanisms to isolate system resource usage - Users wrap system calls inside a transaction |
- Concurrent accesses can be exploited by attackers . Simple API. Only three new system calls: Solving TOCTTOU
» No easy way to rollback system state in case of a breach + sys xbegin, sys xend. sys xabort - Tsafrir: user-level path resolution, probabilistic guarantees
» Examples of sandboxing systems: Janus, Ostia, Systrace, Plash « TOCTTOU can be solved deterministically with transactions * Performance decreases with length of file name

* Janus vulnerable to symbolic link races, argument races, etc. Victim Attacker * TXOS uses transactions, deterministic guarantees

+ Others act as proxy to OS, copying syscall parameters symlink (' secret’,’ foo’); » Performance indistinguishable from Linux

sys xbegin() ;

i1 (3ccess (f foo’)) | Performance independent of file name length

Example £d=open (" £00") ; -
_____________ _—
« .. 25 {7 TxO8
Time-of-check-to-time-of-use (TOCTTOU) Attacks } |
sys xend() ; £
» Attacker exploits race condition to trick a setuid program symlink (' secret’,’ f0o’) ; 21
&

Ju—
|

» Changes a symbolic link between check and use » Similar in spirit to Quicksilver, TABS, Locus

o
)

o

Victim Attacker Different semantics and implementation o 10 O tend 0 50

1f (access (' foo’)) { DeS| n
symlink (" secret’,”foo’); Y Integration with Software Transactional Memory

fd= " foo’); i ' '
open (' foo') Version kernel data, detect conflicts and commit

* Open Problem: supporting system calls in TM

} * Transactions work on private copies of objects
* No deterministic solution without changing API

» Sys. calls violate isolation: results visible to other threads

» Lazy version management and eager conflict detection

C t soluti ' d vet orobabilisti » Solved using system transactions
HITENT SOTUTIONS are EXpEnsIve, ant yet Probabliiste « Locks held only to make copies and while committing

» EXperiment compares performance to locks in a web server

400+ hits in National Vulnerability DB for “symlink attack”

 Conflicts from non transactional threads are also detected . . .
Conflicts from non t » Transactions provide better scalability than locks.

« At commit time atomically copy modifications to stable objects
State of the art

Proliferation of ad hoc solutions to races & ﬁ &
‘foo @ -

 Linux has made numerous additions to file system API

—— STM+ System Tx
—S—Fine Grained Locking
—=—Coarse Locking

2500

N
o
o
o

* openat, renameat, faccessat and ten more

» Signal handling API has been redesigned

Requests Served per sec.
o o
o o
o o

Victim (Tx A)
Committed

e sigaction, pselect, sigprocmask, epoll_walit, etc.

500

il

1l
1l
&

* Complex semantics, difficult to learn. No end in sight ...

Number of Server Threads

