
Leveraging Software Fault Tolerance for Longer Flash
Hardware Lifespan

Aviad Zuck
Technion

Rob Johnson
Broadcom

Donald E. Porter
UNC — Chapel Hill

Dan Tsafrir
Technion

ABSTRACT
In the context of data center computing, the carbon emis-
sion incurred during the manufacturing of solid-state drives
(SSDs), called embodied carbon, is increasingly overtaking
the emissions caused by powering these drives throughout
their operational lifetime. Out of an abundance of caution,
current SSDs are designed to fail long before the internal flash
components are completely unusable. Although this choice
may be appropriate for single-disk systems, distributed stor-
age systems can already tolerate individual SSD failures
through redundancy.
We propose Salamander, a new design for SSD servers

where SSDs expose multiple logical minidisks, which match
the granularity of hardware failures, so that: (1) as minidisks
fail, distributed storage systems can continue using the re-
maining good capacity; and (2) SSDs may recycle portions
of failed minidisks that still have some usable life. Salaman-
der increases the lifespan of SSDs, and therefore amortizes
embodied carbon, by incrementally exposing hardware dete-
rioration to the system and leveraging existing, end-to-end
redundancy mechanisms to recover from this deterioration.

CCS CONCEPTS
• Hardware→ Impact on the environment.

ACM Reference Format:
Aviad Zuck, Rob Johnson, Donald E. Porter, and Dan Tsafrir. 2025.
Leveraging Software Fault Tolerance for Longer Flash Hardware
Lifespan. InWorkshop on Hot Topics in Operating Systems (HOTOS
’25), May 14–16, 2025, Banff, AB, Canada. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3713082.3730386

1 INTRODUCTION
As the prevalence of SSDs in datacenters increases, so does
their role in the sustainability of these systems [1–4]. SSDs

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HOTOS ’25, May 14–16, 2025, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/2025/05
https://doi.org/10.1145/3713082.3730386

are a key storage medium in distributed systems [5–7], in-
cluding cloud storage, due to their superior performance,
power efficiency, and improving cost effectiveness (i.e., $/GB).
This paper argues that we should lower the carbon foot-

print of SSD servers by extending device lifetime, at the cost
of tolerating partial failures. A recent estimate of SSD server
sustainability [7] indicates that SSDs are responsible for up
to 80% of embodied emissions (related to raw materials and
manufacturing) and 38% of operational emissions. Renew-
able energy sources are expected to offset operational carbon
in datacenters [8], leaving embodied emissions as the pri-
mary source of datacenter emissions. Previous approaches to
decarbonize SSD storage proposed to increase densities [9]
and extend SSD lifetime [8]. This work expands upon recent
proposals [7, 10] to lower the embodied carbon footprint of
SSDs through extended device lifetime.
The primary factor determining SSD lifetime is the en-

durance of underlying flash media. The raw bit-error rate
(RBER) of pages grows proportionally to the number of prior
writes [11]. To mitigate this deterioration, flash pages include
additional, hidden space, called a spare area, that stores
error-correction codes (ECC). The relative size of the data
and spare areas determines the code rate, i.e., 𝑑𝑎𝑡𝑎

𝑑𝑎𝑡𝑎+𝑠𝑝𝑎𝑟𝑒 ,
and number of correctable bit errors [12], which in turn de-
termines the maximum number of device writes that an SSD
can endure. A typical flash page spare code rate is 88% [13]

In practice, SSDs are preemptively retired before the inter-
nal flash is completely worn out (§2). Datacenter operators
usually retire SSDs after several years of operation due to a
combination of: (1) averting unexpected data loss from worn-
out SSDs; and (2) replacing SSDs with newer, denser models.
Further, SSD firmware is typically designed to stop function-
ing when some minimal threshold of worn-out flash blocks
(or erase units) is exceeded (e.g., 2.5% [14]), Consequently,
when an SSD stops functioning, there is considerable lifetime
potential left on many of the flash blocks [15].

Prior work established that SSDs can be used longer than
current practice if one can tolerate a significant reduction
in the free space of local file systems [16]. In the context
of a single device, such as a phone or laptop, losing blocks
storing data can be a show-stopper, rendering the entire
system unusable [17]. Put differently, the efficacy of this idea
is limited by free space in the device. Prior work also explored
the potential for extending flash lifespan using lower code

210

https://doi.org/10.1145/3713082.3730386
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3713082.3730386
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3713082.3730386&domain=pdf&date_stamp=2025-06-06

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Aviad Zuck, Rob Johnson, Donald E. Porter, and Dan Tsafrir

rates [18–23]. This paper contributes the observation that a
distributed file system can seamlessly handle device errors
through redistribution of replicated data, obviating the need
for sacrificial free space as the SSDs age.

Our first key observation is that SSDs should expose many
logical minidisks to a distributed storage system, rather
than a single, monolithic volume. Existing distributed sys-
tems handle SSDs as large failure units, as all underlying
flash units fail at once. For example, suppose that within a
128 GiB SSD, 4 GiB of internal storage wears out, putting
it above the 2.5% failure threshold. At this point, the device
would stop working in practice. With current shrinking de-
vice proposals [16, 24], one could simulate a failure of the
entire SSD, recreate a smaller version at, say, 125 GiB, and
recover the full 125 GiB from other devices in the system. In
contrast, if one assumes the granularity of failure within the
SSD is 1 GiB, one could expose 128 × 1 GiB minidisks to the
distributed storage system. If three minidisks wear out, the
system need only recover 4 GiB of data by replicating these
minidisks’ contents elsewhere. By matching the device’s fail-
ure granularity to what software expects, one can logically
“shrink” the device with lower overheads.

A second key observation of this paper is that one can
dynamically decrease the code rate (i.e., increase redundancy)
as flash wears, extending lifespan at the cost of space and
latency. Current SSDs have a fixed ratio of spare area to data
area, reflecting the abstraction of a fixed-sized disk. After a
minidisk logically fails, some space within that disk could
still be useful at a lower code rate. As a simple example, if
twominidisks fail with a bit error rate above what the default
ECC can handle, one could combine two failed minidisks
into a new one that internally uses a lower code rate. The
reconstructed minidisk uses more space andmay have higher
latency than a minidisk on a new device; the alternative,
however, is not using the space at all. We acknowledge that
some datacenter applications are latency critical and would
prefer to lose storage rather than slow it down; we also note
that there are many users and applications that are more
sensitive to cost or environmental concerns than latency [25].
This paper presents Salamander1, a new design for SSD-

based distributed systems. The design of Salamander includes
two modes (§3). Shrinking Salamander (ShrinkS) reduces
SSD usable capacity by discarding flash pages that become
too worn out to reliably store data using pre-configured
ECC capabilities, and triggering a recovery event in the dis-
tributed file system. A regenerating Salamander (RegenS)
further utilizes worn-out flash pages by re-purposing data
bits to store additional ECC bits. RegenS more gracefully de-
grades capacity in order to further extend lifetime, though at
some performance overhead. Salamander further minimizes

1Salamanders have the ability to regenerate lost organs.

changes to storage systems by exposing the same SSD ab-
straction, but with finer-grain failure units, thereby utilizing
existing failure recovery recovery logic.
Our analysis (§4) indicates that Salamander can extend

flash lifetime by up to 1.5x. Furthermore, our analysis shows
a potential 8% reduction in embodied emissions of distributed
systems, even when accounting for the efficiency gains of
replacing older SSDs with newer SSDs. By having devices
fail more gradually, there is less risk of unexpected data loss
from a device failure. This change in turn alleviates the need
for premature, preemptive device retirement, as well as paves
the way for the use of less endurant, cheaper flash [8].

2 FLASH RELIABILITY IN PRACTICE
Flash devices access data at the granularity of flash pages—
groups of cells that are typically 4–16KB in size. A flash
block is a group of several hundred pages. Flash endurance
is measured in the number of program/erase cycles (PEC)
that pages can endure before encountering uncorrectable bit
errors. Over the course of repeated P/E cycles, charge be-
comes trapped in the flash cells, skewing subsequent voltage
measurements and ultimately flipping bits. Bit errors can
also be caused by other factors such as read disturbances
from neighboring pages [26].
Flash vendors take several measures to mitigate flash er-

rors [12, 26]. Primarily, each page is augmented with an
additional spare area (e.g., 12%) dedicated for ECC. Another
important mechanism is iterative voltage adjustment, which
attempts to compensate for voltage skew as the device ages,
at the cost of increased read latency.
Blocks that are too worn-out to reliably store data are

replaced with spare ones from the drive’s over-provisioned
space until reaching some threshold of failed blocks (e.g.,
2.5% [14]) beyond which SSDs either fail entirely (i.e., brick)
or become read-only.

SSD vendors provide a concrete estimate for the expected
lifetime of SSDs in drive writes per day (DWPD) during their
warranty period, derived from the PEC limit. SSD warranties
tend to be highly conservative [17, 27].

2.1 SSD Life Cycle in Datacenters
SSD failures due to underlying flash wear are perceived as a
major concern. Multiple works have analyzed SSD failures
over long periods in large, distributed deployments [14, 28–
32]. Perhaps counter-intuitively, reported SSD annual failure
rates (AFR) are relatively low (e.g., ~1%) and do not nec-
essarily increase with age and use. To wit, studies by Net-
App [14, 32] indicate that 60-98% of SSDs “do not even use
up 1% of their PEC limit”, concluding that “SSDs will last for
more than 100 years in production without wearing out”.

211

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

Moreover, our discussions with industry experts indicate
that datacenter operators regularly and proactively replace
SSDs after several years — long before they fail, mostly due
to: (1) preemptive failure mitigation to avoid costly unsched-
uled replacements; and (2) introducing newer, high-capacity,
more power-efficient models. This is consistent with another
recent observation that discarded datacenter SSDs are used
“well under their ratings” [33]. Recent results further suggest
that when a hardware component within a drive fails, this
typically happens before the SSD reaches 50-70% of the SSD’s
expected lifetime [34, 35].

Discussion. Modern datacenters rarely use all of the write
capacity in SSDs before they are replaced, which adversely
affects system sustainability due to the embodied emissions
of new replacement SSDs [2, 3]. Replacing drives with newer,
denser models can potentially reduce embodied emissions
by requiring fewer SSDs for the same capacity. However,
several recent studies indicate that carbon intensity likely
scales with density for 3D stacking, the process with which
modern FABs increase flash densities [2, 3, 7, 36]. Prior work
shows increased embodied carbon outweigh the gains from
improved power efficiency [25]. Because storage device fail-
ures are already handled well by distributed storage systems,
preemptive replacement of aged SSDs is of marginal value.
Prior work on extending SSD lifespan gains additional

space for additional ECC/parity by sacrificing some data
storage capacity [19–22, 37, 38], which this paper extends.
Another, orthogonal approach to lifespan extension changes
how the voltage within the cell is discretized into bits, e.g.,
switching from a TLC (3 bits per cell) to MLC (2 bits per
cell) [39, 40].

3 SSD SHRINKING
This section describes the design of Salamander, a new class
of SSDs for distributed systems, which aim to: (1) extend
flash lifetime utilization beyond current, artificial limits; and
(2) integrate seamlessly into a distributed storage system.

Salamander drives expose their logical block address (LBA)
space as multiple minidisks (mDisks), or small-capacity,
logical units that appear to the system as independent, tiny
drives.We describe twomodes of operation: ShrinkS andRe-
genS. In ShrinkS, once anmDisk-worth of flash pages become
too worn out, the flash pages are preemptively retired, along
with a logical mDisk. RegenS expands ShrinkS and further
extends flash page endurance. When pre-configured ECC is
insufficient for reliable storage, RegenS converts some data
capacity from failed mDisks to extra ECC, thereby prolong-
ing the lifetime of the remaining data capacity. We envision
Salamander being implemented primarily in SSD firmware.

term definition
diFS distributed file system
LBA host logical block address
oPage logical data page in an fPage (e.g., 4KB)
fPage flash physical page containing oPages
mDisk minidisk
mSize size of mDisk (e.g., 1MB)
L(fPage) fPage tiredness level
𝑙𝑖𝑚𝑏𝑜 [𝐿 𝑗] # of fPages with tiredness level 𝑗 ∈ 1 . . . 4
𝐶𝑂2𝑒 (𝑋) Carbon footprint of server deployment X
𝑓𝑜𝑝 Fraction of operational emissions of total
𝑓𝑜𝑝𝑒𝑥 Fraction of operational costs of total
𝑃𝐸𝐴 |𝐵 Power effectiveness of SSD A relative to B
𝑅𝑢𝐴 |𝐵 Upgrade rate of SSDs in A relative to B
𝐶𝑅𝑢𝐴 |𝐵 Cost upgrade rate of SSDs in A relative to B
Table 1: Terms used to describe and analyze Salaman-
der.

Terminology. When a new SSD drive is introduced into a
distributed filesystem, it is logically partitioned into equally-
sized access units (e.g., an HDFS 128MB block) which are
stored redundantly. We use diFS to represent a distributed
file system. Let oPage denote a regular 4KB (OS) page and
fPage denote an SSD-internal flash page (capable of housing
several oPages).
We assume that fPage is the IO granularity for internal

SSD parallelism and that the SSD allows access at oPage gran-
ularity. For concreteness, in this section we assume an fPage
size of 16KB, housing four oPages (§4.2 discusses other sizes).
Notably, modern flash chips exhibit high variance in the er-
ror rate across pages even within the same block [41, 42].
Therefore, Salamander retires flash pages individually. Ta-
ble 1 summarizes the main terms used in this section.

3.1 Page Tiredness
The PEC count of fPages determines their wear level and is
regularly tracked by a Salamander SSD using a compact bit
array. Over timewhen an fPage becomes “tired”, i.e., too worn-
out for its ECC to reliably hide its bit errors, the fPage’s valid
oPages are relocated to a fresh fPage. However, unlike standard
SSDs, in Salamander a tired page may still be used to store
data. Specifically, each fPage in Salamander has a “tiredness
level” 𝐿 ∈ {0, 1, 2, 3, 4}, where 𝐿(fPage) is the number of
oPages in the fPage that are re-purposed for extra ECC to
support reliable data storage in the rest of the oPages.

Page tiredness level 𝐿 is related to erase cycles experienced
so far. Thus, 𝐿0 is associated with young fPages that store
regular data in all of their four oPages; 𝐿1 is associated with

212

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Aviad Zuck, Rob Johnson, Donald E. Porter, and Dan Tsafrir

(a) baseline
(1) (2)

2.5% bad blocks
drive reference

opage

distributed index

SSD

fPage ECC

enhanced ECC

mDisk

unallocated
fPages

oPages

fPage

ECC

(b) Salamander

(1) (2) (3) (4)

shrinking regenerating

Figure 1: Flash units in a baseline distributed system (a1) gradually fail. The drive fails when a small internal threshold of bad
flash units is reached (a2). In Salamander data is replicated at finer “mini” disk granularity (b1). As mDisks fail the drive shrinks
but continues functioning (b2). To further extend lifetime the drive can regenerate mDisks by deleting oPages in failed fPages for
extra ECC (b3) until an mDisk-worth of oPages are available and the device creates a new mDisk (b4).

fPages that must sacrifice one oPage for additional ECC; and
𝐿4 means the fPage can no longer reliably store any data.

3.2 Minidisks
When a new Salamander SSD is introduced into the diFS, the
device appears as 𝑁 equally-sized mDisks, as illustrated in
Fig. 1. The diFS treats these as separate failure domains and
issues I/O operations to these mDisks separately.

Let mSize denote the mDisk size, which is set to match the
granularity of SSD-internal hardware failures. To achieve
granular failure and recovery processes, we currently assume
mSize is small, e.g., 1MB. Each mDisk exposes an independent
logical block address (LBA) space. Each LBA is internally
mapped to a different oPage containing its data. For example,
a 1MB mDisk maps LBAs 0-255 onto 256 different oPages, i.e.,
1 MB of flash internal storage.

LBAs and Reads. An mDisk is only a logical abstraction.
Each mDisk 𝑀𝑖 (𝑖 ∈ 1 . . . 𝑁 − 1) has a separate logical address
space (i.e., LBAs), implemented as a set of consecutive in-
dices in the in the SSD’s internal logical-to-physical mapping.
LBAs in an mDisk may be mapped to any oPage within the
SSD. Concretely, a read request to an LBA 𝑗 in mDisk 𝑀𝑖 is
translated into an internal index < 𝑖, 𝑗 > in the mapping
array, which refers to a specific fPage.

Writes. oPage writes for any mDisk are performed to the
next available fPage. Whenever a write to LBA 𝑗 in mDisk 𝑀𝑖

is issued, the SSD buffers the written data in a small non-
volatile buffer until enough data is cached to fill all oPages in
the next available fPage. For example, for a 16KB fPage if the
next available fPage is of 𝐿0, then whenever the equivalent of
four oPages are buffered they are evicted and written to the
fPage. The relevant mapping entries are updated accordingly

so that the mapping entry in index < 𝑀𝑖 , 𝑗 > points to the
relevant oPage and fPage (e.g., 1st oPage in fPage 100).
An open design question for future work is how to navi-

gate the trade-off between flexibility in mapping mDisks onto
fPages and the potential for correlated failures in mDisks. It
may be that simple placement rules within the SSD suffice,
or that the best place to manage this risk is in the diFS.

3.3 Minidisk Decommissioning
Assuming every fPage contains four oPages, then the number
of oPages that can be stored in a page with tiredness level 𝐿 𝑗
is 4 − 𝑗 . Let 𝑙𝑖𝑚𝑏𝑜 [𝐿 𝑗] denote the overall number of fPages
with a tiredness level of 𝐿 𝑗 . The number of oPages that can
be stored in limbo pages of type 𝑗 is

𝑣𝑎𝑙𝑖𝑑 [𝑙𝑖𝑚𝑏𝑜 [𝐿 𝑗]] = (4 − 𝑗) · 𝑙𝑖𝑚𝑏𝑜 [𝐿 𝑗] (1)

Whenever an fPage accumulates more writes (i.e., wear)
and transitions to some 𝐿 𝑗+1 the SSD checks whether the
volume of available physical space is insufficient to store the
device’s logical capacity, i.e., if

3∑︁
𝑗=0

|𝑣𝑎𝑙𝑖𝑑 [𝑙𝑖𝑚𝑏𝑜 [𝐿 𝑗]] | < |𝐿𝐵𝐴𝑠 | (2)

If so, the SSD proactively triggers decommissioning for a
victim mDisk by retiring mSize

4𝐾𝐵 oPages, e.g., 256 for a 1MB
mDisk.

To this end, the SSD preemptively retires the most worn-
out fPages in 𝐿 𝑗 , regardless of their related mDisk, and relo-
cates their data to less worn-out fPages until enough oPages
are relocated. In this process only the oPages of the victim
minidisk are invalidated, their associated fPages are placed
in limbo according to their tiredness level 𝐿 𝑗 , and relevant
𝑙𝑖𝑚𝑏𝑜 [𝐿 𝑗] counts are updated accordingly. Once re-location
is completed, the victim minidisk is decommissioned and
the diFS is also notified so that it can recover data as usual

213

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

Figure 2: Switching oPages to additional ECC trades capacity
for increasingly diminishing lifetime benefits.

on other drives (e.g., re-replicate). Fig. 1b (left) illustrates an
mDisk decommissioning.

3.4 Minidisk Regeneration
By reviving aging flash pages, we can further improve upon
the lifetime gains of ShrinkS, with potential performance
overheads (§4). For applications that can tolerate some per-
formance degradation, we propose RegenS, which re-uses
partially worn-out pages to regenerate new mDisks. The key
idea is to augment a retired fPage with additional retired
oPages that are repurposed to store additional ECC.
In order to implement regeneration, when an fPage is re-

tired and transitions from tiredness level 𝑗 to 𝑗 + 1, the SSD
firmware must track whether enough oPages are available
to form a new mDisk at tiredness level 𝑗 + 1. For simplic-
ity, we assume all oPages in a mDisk have the same tiredness
level, and leave analysis of mixed tiredness for future work.
If enough oPages are available, but not used, a new mDisk is
created, 𝑁 incremented accordingly, and the host is notified
to introduce the new mDisk to diFS. Fig. 1b (right) illustrates
an mDisk resurrection.

4 IMPLICATIONS
ShrinkS extends SSD lifetime by slowly reducing capacity,
similarly to CVSS [16]. Unlike CVSS, the potential for lifetime
extension in ShrinkS does not hinge on available free space
in the host file system. Moreover, CVSS retires entire flash
blocks whose average RBER is too high, potentially missing
much of the remaining lifetime of stronger pages within
blocks. We therefore conservatively assume that ShrinkS
can extend device lifetime at least as well as CVSS, which
reports a ~20% improvement in lifetime, given only 50% space
utilization.

RegenS further trades device capacity for additional ECC
capability and increased flash lifetime. To illustrate, we use
known models for flash RBER [11] and the relationship be-
tween code rate and ECC capability [12]. For simplicity we
only consider RBER due to aging. Fig. 2 illustrates the re-
sulting relation between page tiredness levels (i.e., code rate)
and PEC benefits for an example with a standard 16KB fPage
(four oPages) and a 2KB spare [13], which has a 50% potential
lifetime benefit for 𝐿1. Due to the marginal utility of reusing

(a) # of SSDs
(system)

(b) capacity
(system)

(c) throughput
(device)

(d) avg. latency
(device)

4KB
16K
B

time
Figure 3: Baseline SSDs (red) gradually fail and reduce system
capacity (3b). For RegenS (green) worn-out devices can shrink
and regenerate and reduce the rate of device failures (3a). Re-
genS degrades device performance for large accesses as more
fPages transition to 𝐿1 (3c and 3d).

very worn oPages, we conclude that, realistically, RegenS
should limit itself to 𝐿 < 2, noting that a sparsely populated
diFS may continue shrinking for 𝐿 ≥ 2.
Figures 3a and 3b illustrate the number of functioning

SSDs and available capacity over time for a batch of SSDs
deployed in a distributed system. Because RegenS devices
can shrink, this slows the rate of wear-related device failures
and capacity reduction, flattening the slope (red) compared
to the baseline (green).

4.1 Sustainability
To estimate the potential of Salamander for decarbonizing
datacenters, including the effects of changing hardware up-
grade rates, we apply a similar methodology to [43], using
terms defined in Table 1. Therefore, the carbon footprint of
a server deployment using Salamander drives (𝑆), relative to
baseline (𝐵) is defined as:

𝑓𝑜𝑝 · 𝑃𝐸𝑆 |𝐵 ·𝐶𝑂2𝑒 (𝐵) + (1 − 𝑓𝑜𝑝) · 𝑅𝑢𝑆 |𝐵 ·𝐶𝑂2𝑒 (𝐵) (3)

According to a recent estimate [25] operational emissions
account for 58% of datacenter-related emissions (𝑓𝑜𝑝 = 0.58).
However, in addition to SSD storage servers, datacenters also
include HDD and compute servers whose emissions are more
dominated by operational emissions [3, 25]. We therefore
apply a conservative factor of 20% for SSD servers only,
i.e., 𝑓𝑜𝑝 = 0.46. Notably, this value may effectively be even
lower since the carbon model in [25] appears to be based on
an SSD carbon intensity estimate (17.3 kgCO2e/TB) that is
significantly lower than other recent estimates [3, 7].

Prior work estimates the increase in operational emissions
for the same workloads by 6% according to [25] when not
replacing drives with newer, more power-efficient models.
We set the power effectiveness, 𝑃𝐸𝑆 |𝐵 = 1.06.

We model the relative upgrade rates of SSDs based on the
estimated lifetime benefits of at least 20% for ShrinkS and 50%
for RegenS. From here, 𝑅𝑢𝑆 |𝐵 = 1

1.2 = 0.83 and 𝑅𝑢𝑆 |𝐵 = 0.66.
We now consider the impact of extending SSD use at the

system level. First, we consider overall system capacity. For
𝐿0, Salamander and baseline SSDs have the same capacity.

214

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Aviad Zuck, Rob Johnson, Donald E. Porter, and Dan Tsafrir

Figure 4: CO2e reduction in different system configurations.

For 𝐿1 we assume Salamander drives shrink up to 20% of
original capacity, so average SSD capacity is 60% of baseline,
or 86% for a RegenS device lifetime. In both cases system
operators may add new SSDs to offset missing capacity. How-
ever, baseline SSDs fail more frequently with reported AFR
of 1-3% [28] (Fig. 3a, 3b) which further requires additional
SSDs. These two behaviors partially cancel out in terms of
emissions. Nevertheless, we conservatively fix 𝑅𝑢𝑆 |𝐴 gains
by 40% to 0.9 for ShrinkS and 0.8 for RegenS.

Overall, using Eq. 3, we conclude that Salamander achieves
3–8% CO2e savings in current designs. One easy carbon re-
duction on the horizon for datacenters is renewable energy
sources; if one considers the reduction in carbon of Salaman-
der relative to an estimated total carbon footprint when using
only renewables, these gains increase to 11–20%, illustrated
in the rightmost set of bars in Fig. 4.

4.2 Performance
ShrinkS performance is similar to a baseline SSD’s, since
fPages are retired at similar RBER levels in both setups. In
RegenS, 𝐿1 fPages require more IO operations to access the
same amount of data as in 𝐿0. Therefore, sequential access
throughput and large random access latency (e.g., 16KB)
degrades by a factor of 4

4−𝐿 for a given 𝐿 (Fig. 3c, 3d), e.g., 25%
reduction for 𝐿1. To mitigate, RegenS may store more ECC in
dedicated pages, which may also fit SSDs with fPage < 16𝐾𝐵.
We expect that small, random accesses (i.e., 4 KiB pages)

will likely have the same latency in baseline and RegenS.
Although 𝐿1 fPages have a higher RBER, potentially incurring
overheads for ECC computation and additional read retries,
this is likely mitigated the lower code rate of these pages [44–
46], provided all of the ECC is within the same fPage.

4.3 Recovery
We estimate that the volume of recovery traffic using mDisks
will be comparable to the baseline, at least without regener-
ation, because the same total number of LBAs fail over time.
Baseline SSD failure is logically equivalent to retiring all flash
blocks simultaneously. A ShrinkS SSD similarly transitions
flash blocks from tiredness level 𝐿0 to 𝐿1, but over a longer
period, and at an increasing rate as the device ages. Recov-
ery traffic with regeneration is more complicated, since the

regenerated mDisks increase the total data that will fail, and
are shorter lived than the original mDisks. As future work we
will explore including a short grace period for mDisk decom-
missioning in RegenS during which mDisk data is maintained
internally until the diFS system has safely re-distributed it.

4.4 Cost analysis
Datacenter SSD total cost of ownership (TCO) is composed of
acquisition, surrounding hardware, and running costs over
time, i.e., electricity, cooling and various maintenance costs.
The exact composition of TCO for real-life datacenters is
proprietary and varies for different server configurations. We
use a similar methodology to how we estimated emissions
overheads to estimate the TCO of an SSD server deployment
with Salamander SSDs (S) relative to that of a deployment
with baseline SSDs (B) as
𝑇𝐶𝑂 (𝑆) = 𝑓𝑜𝑝𝑒𝑥 ·𝑇𝐶𝑂 (𝐵) + (1− 𝑓𝑜𝑝𝑒𝑥) ·𝐶𝑅𝑢𝑆 |𝐵 ·𝑇𝐶𝑂 (𝐵) (4)
where 𝑓𝑜𝑝𝑒𝑥 is the fraction of operational costs. 𝐶𝑅𝑢𝑆 |𝐵 is
the relative cost upgrade rate of SSDs in S, i.e., the cost
of Salamander drives combined with that of newer, more
cost-effective, baseline SSDs to compensate for the reduced
capacity of Salamander drives during their 𝐿1 phase.

We define𝐶𝑅𝑢𝑆 |𝐵 = 𝑅𝑢𝑆 |𝐵+(1−𝑅𝑢𝑆 |𝐵)·𝐶𝐸𝐵𝑛𝑒𝑤 ·𝐶𝑎𝑝 (𝐵𝑛𝑒𝑤)
as the cost effectiveness of SSDs in S relative to B, where
𝑅𝑢𝑆 |𝐵 is the previously defined upgrade rate, 𝐶𝑎𝑝 (𝐵𝑛𝑒𝑤) is
the fraction of reduced capacity that requires new baseline
SSDs, and 𝐶𝐸𝐵𝑛𝑒𝑤 is the cost effectiveness of new baseline
SSDs, i.e., $/TB/year. Previously, we determined an aver-
age shrunk drive capacity of 60% of baseline capacity, i.e.,
𝐶𝑎𝑝 (𝐵𝑛𝑒𝑤) = 0.4. An historical analysis of SSD $/TB costs
shows a ~4x improvement every five years [47], a conserva-
tive datacenter hardware replacement period [48]. Accord-
ingly, we conservatively assume Salamander drives start
shrinking (𝐿1) after five years and set 𝐶𝐸𝐵𝑛𝑒𝑤 = 0.25.

A recent analysis by Seagate [49] shows that “device acqui-
sition cost is by far the dominant component” for datacenter
devices with ~86% of TCO. We therefore set 𝑓𝑜𝑝𝑒𝑥 = 0.14
accordingly.

Overall, using Eq. 4, we conclude that Salamander achieves
13% and 25% cost savings for ShrinkS and RegenS accordingly.
Even when we model operating costs as a higher percentage
of the budget there is still a cost benefit for Salamander;
for instance, if we assume half the cost is operational costs,
Salamander lowers costs by 6–14%.

ACKNOWLEDGMENTS
This work was supported in part by NSF/BSF grant 2154771/
2021736, NSF grant 2244937, and a gift fromBroadcom. Porter
has a significant financial interest in Fortanix, Inc. We also
thank Ethan Miller, Nadav Amit, and Michael Factor for their
insightful comments and assistance.

215

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

REFERENCES
[1] Lawrence Berkeley National Laboratory. 2024 united states data

center energy usage report. https://eta-publications.lbl.gov/sites/
default/files/2024-12/lbnl-2024-united-states-data-center-energy-
usage-report.pdf. Accessed: Jan 2025.

[2] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S
Lee, David Brooks, and Carole-Jean Wu. ACT: Designing sustainable
computer systems with an architectural carbon modeling tool. In
Annual International Symposium on Computer Architecture, ISCA, 2022.

[3] Swamit Tannu and Prashant J Nair. The dirty secret of SSDs: Embodied
carbon. In Workshop on Sustainable Computer Systems Design and
Implementation, HotCarbon, 2022.

[4] Jialun Lyu, JaylenWang, Kali Frost, Chaojie Zhang, Celine Irvene, Esha
Choukse, Rodrigo Fonseca, Ricardo Bianchini, Fiodar Kazhamiaka, and
Daniel S Berger. Myths and misconceptions around reducing carbon
embedded in cloud platforms. In Proceedings of the 2nd Workshop on
Sustainable Computer Systems, HotCarbon, 2023.

[5] Azure premium storage: Design for high performance.
https://learn.microsoft.com/en-us/azure/virtual-machines/premium-
storage-performance%20, 2024. Accessed: Jan 2025.

[6] What’s the difference between an SSD and a hard drive? https://aws.
amazon.com/compare/the-difference-between-ssd-hard-drive/. Ac-
cessed: Jan 2025.

[7] Sara McAllister, Fiodar Kazhamiaka, Daniel S Berger, Rodrigo Fon-
seca, Kali Frost, Aaron Ogus, Maneesh Sah, Ricardo Bianchini, George
Amvrosiadis, Nathan Beckmann, et al. A call for research on storage
emissions. In Workshop on Sustainable Computer Systems, HotCarbon,
2024.

[8] Sara McAllister, Benjamin Berg, Daniel S Berger, George Amvrosiadis,
Nathan Beckmann, Gregory R Ganger, et al. FairyWREN: A sustainable
cache for emerging {Write-Read-Erase} flash interfaces. In USENIX
Symposium on Operating Systems Design and Implementation, OSDI,
2024.

[9] Aviad Zuck, Donald E. Porter, and Dan Tsafrir. Degrading data to
save the planet. In ACM Workshop on Hot Topics in Operating Systems,
HotOS, 2023.

[10] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee,
Gu-YeonWei, David Brooks, and Carole-JeanWu. Chasing carbon: The
elusive environmental footprint of computing. IEEE Micro, 42(4):37–47,
2022.

[11] Bryan S Kim, Jongmoo Choi, and Sang Lyul Min. Design tradeoffs for
SSD reliability. In USENIX Conference on File and Storage Technologies,
FAST, 2019.

[12] Alessia Marelli and Rino Micheloni. BCH and LDPC error correction
codes for NAND flash memories. 3D Flash Memories, pages 281–320,
2016.

[13] Jisung Park,Myungsuk Kim,Myoungjun Chun, Lois Orosa, Jihong Kim,
and Onur Mutlu. Reducing solid-state drive read latency by optimizing
read-retry. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS, 2021.

[14] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder.
A study of {SSD} reliability in large scale enterprise storage deploy-
ments. In USENIX Conference on File and Storage Technologies, 2020.

[15] Jui-Nan Yen, Yao-Ching Hsieh, Cheng-Yu Chen, Tseng-Yi Chen, Chia-
Lin Yang, Hsiang-Yun Cheng, and Yixin Luo. Efficient bad block
management with cluster similarity. In International Symposium on
High-Performance Computer Architecture, HPCA. IEEE, 2022.

[16] Ziyang Jiao, Xiangqun Zhang, Hojin Shin, Jongmoo Choi, and Bryan S
Kim. The design and implementation of a fcapacity-variant storage
system. In USENIX Conference on File and Storage Technologies, FAST,
2024.

[17] Tao Zhang, Aviad Zuck, Donald E Porter, and Dan Tsafrir. Apps can
quickly destroy your mobile’s flash: why they don’t, and how to keep
it that way. In Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys, 2019.

[18] Ming-Chang Yang, Yuan-Hao Chang, Yuan-Hung Kuan, and Che-Wei
Tsao. Graceful space degradation: An uneven space management for
flash storage devices. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(9):1425–1434, 2015.

[19] Chanha Kim, Chanik Park, Sungjoo Yoo, and Sunggu Lee. Extending
lifetime of flash memory using strong error correction coding. IEEE
Transactions on Consumer Electronics, 61(2):206–214, 2015.

[20] Shuhei Tanakamaru, Mayumi Fukuda, Kazuhide Higuchi, Atsushi Es-
umi, Mitsuyoshi Ito, Kai Li, and Ken Takeuchi. Post-manufacturing,
17-times acceptable raw bit error rate enhancement, dynamic code-
word transition ECC scheme for highly reliable solid-state drives, SSDs.
Solid-State Electronics, 58(1):2–10, 2011.

[21] Yuan-Hao Chang and Tei-Wei Kuo. A reliable MTD design for MLC
flash-memory storage systems. In ACM international conference on
Embedded software, EMSOFT, 2010.

[22] Shunzhuo Wang, Fei Wu, Zhonghai Lu, You Zhou, Qin Xiong, Meng
Zhang, and Changsheng Xie. Lifetime adaptive ECC in NAND flash
page management. In Design, Automation & Test in Europe Conference
& Exhibition, DATE. IEEE, 2017.

[23] You Zhou, Fei Wu, Zhonghai Lu, Xubin He, Ping Huang, and Chang-
sheng Xie. SCORE: A novel scheme to efficiently cache overlong ECCs
in NAND flash memory. ACM Transactions on Architecture and Code
Optimization, 15(4):1–25, 2018.

[24] ScaleFlux. https://scaleflux.com.
[25] JaylenWang, Daniel S Berger, Fiodar Kazhamiaka, Celine Irvene, Chao-

jie Zhang, Esha Choukse, Kali Frost, Rodrigo Fonseca, Brijesh Warrier,
Chetan Bansal, et al. Designing cloud servers for lower carbon. In
Annual International Symposium on Computer Architecture. IEEE, 2024.

[26] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu.
Error characterization, mitigation, and recovery in flash-memory-
based solid-state drives. Proceedings of the IEEE, 105(9):1666–1704,
2017.

[27] The Tech Report. The SSD endurance experiment: They’re
all dead. http://techreport.com/review/27909/the-ssd-endurance-
experiment-theyre-all-dead, 2015.

[28] Fan Xu, Shujie Han, Patrick PC Lee, Yi Liu, Cheng He, and Jiongzhou
Liu. General feature selection for failure prediction in large-scale SSD
deployment. In International Conference on Dependable Systems and
Networks, DSN. IEEE, 2021.

[29] Wenwen Hao, Ben Niu, Yin Luo, Kangkang Liu, and Na Liu. Improving
accuracy and adaptability of SSD failure prediction in hyper-scale data
centers. ACM SIGMETRICS Performance Evaluation Review, 49(4):99–
104, 2022.

[30] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca Schroeder. Proac-
tive error prediction to improve storage system reliability. In USENIX
Annual Technical Conference, USENIX ATC, 2017.

[31] Peng Li, Wei Dang, Congmin Lyu, Min Xie, Quanyang Bao, Xiaofeng Ji,
and Jianhua Zhou. Reliability characterization and failure prediction
of 3D TLC SSDs in large-scale storage systems. IEEE Transactions on
Device and Materials Reliability, 21(2):224–235, 2021.

[32] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder.
Operational characteristics of SSDs in enterprise storage systems:
A large-scale field study. In USENIX Conference on File and Storage
Technologies, FAST, 2022.

[33] ServeTheHome. We bought 1347 used data center SSDs to look at SSD
endurance. https://www.servethehome.com/we-bought-1347-used-
data-center-ssds-to-look-at-ssd-endurance-solidigm/, 2022. Accessed:
Nov. 2024.

216

 https://eta-publications.lbl.gov/sites/default/files/2024-12/lbnl-2024-united-states-data-center-energy-usage-report.pdf
 https://eta-publications.lbl.gov/sites/default/files/2024-12/lbnl-2024-united-states-data-center-energy-usage-report.pdf
 https://eta-publications.lbl.gov/sites/default/files/2024-12/lbnl-2024-united-states-data-center-energy-usage-report.pdf
 https://learn.microsoft.com/en-us/azure/virtual-machines/premium-storage-performance%20
 https://learn.microsoft.com/en-us/azure/virtual-machines/premium-storage-performance%20
 https://aws.amazon.com/compare/the-difference-between-ssd-hard-drive/
 https://aws.amazon.com/compare/the-difference-between-ssd-hard-drive/
https://scaleflux.com
http://techreport.com/review/27909/the-ssd-endurance-experiment-theyre-all-dead
http://techreport.com/review/27909/the-ssd-endurance-experiment-theyre-all-dead
https://www.servethehome.com/we-bought-1347-used-data-center-ssds-to-look-at-ssd-endurance-solidigm/
https://www.servethehome.com/we-bought-1347-used-data-center-ssds-to-look-at-ssd-endurance-solidigm/

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Aviad Zuck, Rob Johnson, Donald E. Porter, and Dan Tsafrir

[34] Jacob Alter, Ji Xue, Alma Dimnaku, and Evgenia Smirni. SSD failures
in the field: symptoms, causes, and prediction models. In International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2019.

[35] Shujie Han, Patrick PC Lee, Fan Xu, Yi Liu, Cheng He, and Jiongzhou
Liu. An in-depth study of correlated failures in production SSD-based
data centers. In USENIX Conference on File and Storage Technologies,
FAST, 2021.

[36] Lieven Eeckhout. Focal: A first-order carbon model to assess processor
sustainability. InACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS, 2024.

[37] Ren-Shuo Liu, Chia-Lin Yang, Cheng-Hsuan Li, and Geng-You Chen.
Duracache: A durable SSD cache using MLC NAND flash. In Annual
Design Automation Conference, DAC, 2013.

[38] Jaeho Kim, Eunjae Lee, Jongmoo Choi, Donghee Lee, and Sam H Noh.
Chip-level RAID with flexible stripe size and parity placement for
enhanced SSD reliability. IEEE Transactions on Computers, 65(4):1116–
1130, 2014.

[39] Ellis H Wilson, Myoungsoo Jung, and Mahmut T Kandemir. Zombi-
eNAND: Resurrecting dead nand flash for improved SSD longevity.
In International Symposium on Modelling, Analysis & Simulation of
Computer and Telecommunication Systems, MASCOTS. IEEE, 2014.

[40] Xavier Jimenez, David Novo, and Paolo Ienne. Phoenix: Reviving
MLC blocks as SLC to extend NAND flash devices lifetime. In Design,
Automation & Test in Europe Conference & Exhibition, DATE. IEEE,
2013.

[41] Youngseop Shim, Myungsuk Kim, Myoungjun Chun, Jisung Park,
Yoona Kim, and Jihong Kim. Exploiting process similarity of 3D flash
memory for high performance SSDs. InAnnual IEEE/ACM International
Symposium on Microarchitecture, MICRO, 2019.

[42] Md Raquibuzzaman, Md Mehedi Hasan, Aleksandar Milenkovic, and
Biswajit Ray. Layer-to-layer endurance variation of 3D NAND flash
memory. In IEEE International Reliability Physics Symposium, IRPS.
IEEE, 2022.

[43] Jennifer Switzer, Gabriel Marcano, Ryan Kastner, and Pat Pannuto.
Junkyard computing: Repurposing discarded smartphones to minimize
carbon. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS,
2023.

[44] Meng Zhang, Fei Wu, Qin Yu, Weihua Liu, Lanlan Cui, Yahui Zhao,
and Changsheng Xie. BeLDPC: Bit errors aware adaptive rate LDPC
codes for 3D TLC NAND flash memory. In 2020 Design, Automation &
Test in Europe Conference & Exhibition, DATE. IEEE, 2020.

[45] Yunpeng Song, Yina Lv, and Liang Shi. DECC: Differential ECC for
read performance optimization on high-density NAND flash memory.
In Asia and South Pacific Design Automation Conference, ASPDAC,
2023.

[46] Myoungjun Chun, Myungsuk Kim, Dusol Lee, Jisung Park, and Jihong
Kim. Readguard: Integrated SSD management for priority-aware read
performance differentiation. ACM Transactions on Storage, 20(4):1–39,
2024.

[47] Our World in Data. Historical price of computer memory and stor-
age. https://ourworldindata.org/grapher/historical-cost-of-computer-
memory-and-storage, 2024. Accessed: April 2025.

[48] Supermicro. Green computing: Top ten best practices for a green
data center. https://www.supermicro.com/white_paper/eGuide_Data_
Center_Refresh.pdf, 2022. Accessed: April 2025.

[49] Seagate. Three truths about hard drives and ssds. https://www.seagate.
com/blog/three-truths-about-hard-drives-and-ssds/, 2024. Accessed:
April 2025.

217

 https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage
 https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage
https://www.supermicro.com/white_paper/eGuide_Data_Center_Refresh.pdf
https://www.supermicro.com/white_paper/eGuide_Data_Center_Refresh.pdf
 https://www.seagate.com/blog/three-truths-about-hard-drives-and-ssds/
 https://www.seagate.com/blog/three-truths-about-hard-drives-and-ssds/

	Abstract
	1 Introduction
	2 Flash Reliability in Practice
	2.1 SSD Life Cycle in Datacenters

	3 SSD Shrinking
	3.1 Page Tiredness
	3.2 Minidisks
	3.3 Minidisk Decommissioning
	3.4 Minidisk Regeneration

	4 Implications
	4.1 Sustainability
	4.2 Performance
	4.3 Recovery
	4.4 Cost analysis

	References

