
COMP 520 Spring 2022 Syllabus and Administrative Details

COMP 520 1 Spring 2022

COMP 520: Compilers
Syllabus and Administrative Details

Spring 2022

Time/Dates: TTh 2:00 – 3:15 pm (Tue Jan 11 – Thu Apr 28, 2022)
Instructor: Jan Prins, FB 334 (Brooks Building), Email: prins@cs.unc.edu
TA: Tao Tao, Email: ttao@cs.unc.edu , office and office hours TBA.
Format: In-person lectures, office hours (TBA), and Piazza for asynchronous Q&A and discussions

Description. This upper-level undergraduate class (also available for graduate credit) builds on, extends,
and integrates material from prerequisite courses to build a compiler for a non-trivial subset for the Java
programming language. Java will also be the implementation language for the compiler. Upon
completion of this course, you should:

• Understand the theory and practice of compilers, linkers, debuggers, and program execution
using hardware or abstract machines.

• Appreciate the effect of trade-offs in programming language design and computer architecture
on program compilation and the run-time support system.

• Have gained additional experience with the design and implementation of a large and complex
program using Java.

• Be prepared for advanced study in programming languages and optimizing compilers.

Communication. All course materials (reading assignments, lecture notes, problem sets, and project
assignments) will be available from our course web page http://www.cs.unc.edu/~prins/Classes/520/.
Check this page regularly for updates. For questions and discussion outside of class and office hours use
online discussion via Piazza. Please consult the course web page to sign up for piazza.

Prerequisites. Prerequisites are COMP 301 (Foundations of Programming), COMP 311 (Computer
Organization) and COMP 455 (Models of Languages and Computation). Familiarity with programming
language design and implementation concepts (COMP 524) is helpful but not required.

Text. We will use Programming Language Processors in Java: Compilers and Interpreters, by David Watt
and Deryck Brown, Prentice Hall, 2000 (ISBN 0-130-25786-9). This book is out of print, but a pdf version
is available on our website.

Approach. Class lectures describe the theory and practice of compiling a programming language into a
form suitable for execution by computer. Topics covered include compiler organization, with detailed
study of the various phases of compilation (concrete syntactic analysis, abstract syntax tree construction,
contextual analysis, and code generation). We will also consider run-time organization and various
interpretive techniques to support execution of compiled programs. Special consideration will be given
to the implementation of object-oriented languages such as Java.
The compiler construction project is a central part of the course. You will construct a compiler for
miniJava, a subset of the Java language. Your compiler should generate instructions for a stack-oriented
abstract machine for which an interpreter and debugger will be provided. Construction of the miniJava
compiler should follow the design strategy described in the course text and in class. A complete compiler

mailto:prins@cs.unc.edu
mailto:ttao@cs.unc.edu
http://www.cs.unc.edu/%7Eprins/Classes/520/

COMP 520 Spring 2022 Syllabus and Administrative Details

COMP 520 2 Spring 2022

available online in source form illustrates the approach for the Triangle language described in the text
(however, Triangle differs substantially from miniJava). Specifications for each phase of the project will
be distributed and must be implemented in your project. The compiler construction project will occupy a
significant amount of time outside of the classroom. Five functional milestones in the compiler project
will be used to keep on schedule, and will be graded. Start each phase of the project promptly – late
checkpoint submissions will not receive credit (functionality tests for each milestone are made available
shortly after the due date).

Grading. The course grade will be based on the miniJava compiler project (48%), a midterm and a final
exam (32% total), four short written assignments (16%), and class participation (4%).
Written assignments must be completed individually and submitted electronically by midnight on the due
date. Compiler milestones must be uploaded to the appropriate course submission directory by the
specified due date and time. Late assignments will not be accepted, except for medical reasons.
The midterm exam is scheduled during class time on Tuesday Mar 1. The final exam is scheduled for
Friday May 5 at noon in compliance with UNC final exam regulations and according to the UNC Final Exam
calendar. You may consult your notes and other course materials in the exams. Communication with
anyone other than the instructor is prohibited.
The programming project can be completed individually or by a team of two. A team effort earns 80%
project credit per team member, additional credit is available through optional extensions of the compiler.
A team effort must be applied for and approved by the instructor in writing (email) before the first project
checkpoint due date. Upon approval, the two members are fixed for the duration of the project. If a team
encounters irreconcilable problems working together, it may be disbanded following consultation with
and approval from the instructor, with the remaining individual projects earning credit at a negotiated
rate.

Honor code. The Honor Code and the Campus Code are in effect for this course. I am committed to
treating Honor Code violations seriously and urge all students to become familiar with its terms as set out
at http://instrument.unc.edu. If you have questions, it is your responsibility to ask me about the
Code’s application. All exams, written work, and programming projects must comply with the
requirements of the Honor Code and the rules listed in this section in all aspects of the submitted work.
In this course written assignments and exams must be completed individually and cannot be discussed
with other students. For the compiler project, you are encouraged to discuss project design issues with
your classmates, the teaching staff, or using our Piazza discussion board, but all code submitted must be
written by yourself or by your team. In individual discussions and in Piazza, specific code sequences solving
a problem should not be posted or exchanged. If you are in doubt about the suitability of a question or
posting, feel free to contact me for advice. Consultation or use of any other compiler produced in any
offering of this class is specifically prohibited.

Computer access. You may use any computer you wish for your compiler development. However, each
checkpoint will require you to upload your Java source files to a specific directory on our class server
comp520-1sp22.cs.unc.edu — it is your responsibility to ensure that your programs work as required
using Java SE (Standard Edition) version 8 when executed on the Linux environment found on this server.
Additional details related to the server will be clarified in class. You are strongly encouraged to develop
your project using the Eclipse IDE - the configuration you need is “Eclipse IDE for Java Developers”.

http://instrument.unc.edu/

COMP 520 Spring 2022 Syllabus and Administrative Details

COMP 520 3 Spring 2022

Syllabus. Following are the key topics planned for study, the approximate number of lectures to be spent
on each, and the corresponding chapters in the course text.

Introduction (2 lectures) Chapters 1-3 (selected sections)
Compilers and Interpreters, overview of the translation process, motivation
Specification of programming languages

Syntactic Analysis (8 lectures) Chapters 4, 3
Context-free grammars and parsing
EBNF grammars and recursive descent parsers
Lexical analysis and scanner construction
Bottom-up parsing and precedence parsing
Components and structure of the translation process
Abstract syntax trees and AST traversal

Contextual analysis (4 lectures) Chapter 5
Identifier resolution: declarations and references
Type checking framework
Contextual analysis for Triangle and Java

Run-time organization (3 lectures) Chapter 6
Storage and execution model
Procedure activation records and parameter passing
Object-oriented execution: inheritance and virtual method invocation

Code generation (3 lectures) Chapter 7
Expression evaluation and control flow
Code templates
Code generation examples

Virtual Machines and Interpretation (3 lectures) Chapter 8
Virtual machine principles
Case studies: TAM, mJAM, JVM and .NET MSIL/CLR
Just-in-time (JIT) compilation

Additional topics (3 lectures) Supplementary materials
Register allocation
Data flow analysis
Compiler bootstrapping

	COMP 520: Compilers

