
• Course web page
– http://www.cs.unc.edu/~prins/Classes/520
– Please check syllabus
– Lecture slides for today are online

• Written assignment
– Short assignment WA1 due at start of next class

• available on course web page

• Reading assignment for Thu Jan 13
– PLPJ Chapter 1

Welcome!
COMP 520 - Compilers

TR: 2:00 – 3:15 Spring 2022
Instr: Jan Prins, TA: Tao Tao

2[1] IntroductionCOMP 520: Compilers - J. F. Prins

What is this course about?

• How do programs written in a modern computer programming language
get compiled and run on a computer?
– Example: execution of a C program (linux)

Source program C Compiler machine instructions

prog.c cc prog.o

linker/loaderMachine code
Library

executable program

libcrt0.a, libm.a ld prog.exe

Computerinput output

3[1] Introduction

A more detailed view of the C compiler

• Recognize legal source programs

• Issue appropriate errors for invalid programs

• Generate correct (and efficient) machine code for valid programs

Compiler

errors

source
program

machine
code

... x = x + 5; 010110110 ...

COMP 520: Compilers - J. F. Prins

4[1] Introduction

How does a compiler work?

• A compiler translates between computer languages
– convert a program in the source language (e.g. C) to a program in

the target language (e.g. machine instructions)
– hopefully preserving meaning!

• How? “Syntax-directed translation”
– by analogy to natural language translation

• meaning is conveyed using the structure of sentences
– subject, verb, object

– Translation steps
• decode (discover) the “structure” from the input character stream
• match source language concepts to target language concepts
• encode target structure into output character stream

COMP 520: Compilers - J. F. Prins

5[1] Introduction

Example: the structure of an English sentence

t h e d o g c h a s e s a c a tletters

the dog chases a catwords

Article Noun NounArticleVerbparts of
speech

Subject Predicate Objectgrammar

Sentencesentence

COMP 520: Compilers - J. F. Prins

6[1] Introduction

Generating a translation

de hond jaagt een katwords

Article Noun NounArticleVerbparts of
speech

Subject Predicate Objectgrammar

Sentencesentence

letters d e h o n d j a a g t e e n k a t

COMP 520: Compilers - J. F. Prins

7[1] Introduction

Translation is not the whole story

• We want to run the translated program!
– execution of a Java program

Source program Java compiler JVM instructions

prog.java javac prog.class

JVM interpreter

Other class
files

Java.lang

java prog

Computerinput output

COMP 520: Compilers - J. F. Prins

8[1] Introduction

Compilers and Interpreters

• Compiler
– Mechanically translates a program from one representation to

another

• Interpreter
– Mechanically carries out the computation specified by a program

• Program execution always involves a compilation step followed by
interpretation

compile interpret

COMP 520: Compilers - J. F. Prins

9[1] Introduction

Different execution strategies

C compiler Intel
processor

C:

parser tree evaluation
JavaScript:
(originally)

Java compiler Java virtual machine
Java:

• One course objective is to understand the trade-offs involved in
different execution strategies

COMP 520: Compilers - J. F. Prins

10[1] Introduction

Why study compilers and interpreters? (1)
• Understand high-level programming languages

– what features can be translated
• modular structure

– classes, objects, inheritance
– information hiding

• user-defined (abstract) data types
• recursive procedures

– what features can (should) be avoided
• features that interfere with correctness or efficiency of programs

– incomplete type checking (unchecked casts)
– goto statements

– what features are not needed
• forward declarations (header files)
• nested procedures

• Understand compiler error and warning messages
COMP 520: Compilers - J. F. Prins

11

Example: Java generics

without type parameter
LinkedList list =

new LinkedList();

list.add(“abc”); // ok
list.add(new Foo())); // ok

String s = list.get(0); // no!

with type parameter
LinkedList<String> list =

new LinkedList<String>();

list.add(“abc”); // ok
list.add(new Foo())); // no!

String s = list.get(0); // ok

void m(LinkedList arg) {

LinkedList<String> t =
(linkedList<String>) arg;

String w = t.get(0);

}

[1] IntroductionCOMP 520: Compilers - J. F. Prins

but …
here compiler issues
an “unchecked cast”

warning?

12[1] Introduction

Why study compilers and interpreters? (2)

• Understand related tools and issues
– Integrated Development Environments (IDEs)

• Syntax highlighting, auto-completion
– Debuggers

• capabilities and limitations
– Linkers and Loaders

• arcane but critical in large system integration
– Just-in-time compilers (JIT)

• basis of efficient execution of Java and .NET
– Performance

• Large fraction of modern performance due to advanced compilers,
runtime systems, and target machine architectures

• But also: compiler limitations responsible for a lot of missing
performance

COMP 520: Compilers - J. F. Prins

13[1] Introduction

Why study compilers and interpreters? (3)

• Useful skill
– Many systems must parse and execute user input

• Data base queries
• Command lines and GUIs

– Flexible tools are “programmable”
• Example: grep (regular expression search)
• Internally grep translates the reg expr and interprets result

– Performance depends on sophisticated optimizing compilers
• To get good performance, you must understand the capabilities and

limitations of optimization
• Optimization is rife with intractable and uncomputable problems

– “Full-employment theorem” for optimizing compiler builders!

COMP 520: Compilers - J. F. Prins

14[1] Introduction

Why study compilers and interpreters? (4)

• Pedagogical reasons
– Many CS concepts come together in compilers

• Automata theory
– grammars and recognizing automata of formal languages

• Programming language design and implementation
– type system and type checking, language semantics, run-time organization

• Data structures and algorithms
– used within a compiler

• Machine organization
– target language is a (virtual or real) machine
– efficiency issues: caches, register allocation, instruction sequences …

• Software engineering
– Compilers are large and sophisticated programs

» can be constructed using modern design principles and patterns
– The compiler you build in this class may well be the most intricate program

you have constructed!

• It’s so “meta”
– programs processing programs

COMP 520: Compilers - J. F. Prins

15[1] Introduction

Is this the right course for you?
• What will we study and what is required?

– Let’s check the administrative handout on the course web page

• Project
– implement a compiler for a (small) subset of Java

• generate code for a virtual machine

– the compiler you construct will itself be a Java program
• significant amount of Java programming, but
• you will follow a design outlined in the text and illustrated in a sample

compiler available to you
• you will be given interfaces and specs for key parts

– you can work in teams of two, if desired
• a team effort earns 80% credit for each of the two members

– there will be optional project extensions to earn additional credit!

COMP 520: Compilers - J. F. Prins

~50% of your grade and
a lot of programming!

16

A message from the Registrar …

• Starting with the Spring Semester 2020, all students will be required to confirm that
they have reviewed the Honor Code and that they have begun academic activity for all
registered courses at Carolina.

• The acknowledgement in activity helps UNC fulfill a federal requirement for
participation in Title IV (student financial aid) programs and helps us more effectively
serve students.

• Students will receive an email with instructions on how to complete this task each
semester in Connect Carolina.

• A student’s failure to participate could bring significant consequences:
– A student's failure to acknowledge that they have begun a course may have an

impact on future registration, including prevention from registering in the next
term.

– Students receiving financial aid may see their awards lowered or removed
completely.

[1] IntroductionCOMP 520: Compilers - J. F. Prins

18

Triangle Examples (1)

• Triangle commands
– Conditional command
– Scope command

if x > y then

let const xcopy ~ x

in

begin

x := y;

y := xcopy

end

else

[1] IntroductionCOMP 520: Compilers - J. F. Prins

19

Triangle Examples (2)

• Triangle expressions
– Scoped expression
– Conditional expression

let

const taxable ~ if income > allowance

then income – allowance

else 0

in

taxable / 4

[1] IntroductionCOMP 520: Compilers - J. F. Prins

20

Triangle Examples (3)

• Triangle types, procedures, and operators
– Named type
– Function declaration
– Operator declaration

type Point ~ record

x: Integer, y: Integer

end;

func projection (pt: Point) : Point ~

{x ~ pt.x, y ~ 0 – pt.y};

func /\ (b1: Boolean, b2 : Boolean) : Boolean ~

if b1 then b2 else false

[1] IntroductionCOMP 520: Compilers - J. F. Prins

21[1] Introduction

Evolution of Compilers: a bit of history
• The problem

– 1954: IBM develops 704 computer (follow-on to 701)
• All programming done in machine code (assembly) ...
• Observation: Software development exceeded cost of hardware!

• Attempt at Solution
– “Speedcoding”

• An interpreter of algebraic expressions
– Speedcode programs ran 10-20 times slower than hand-written assembly

• John Backus’ idea
– A program to translate high-level algebraic expressions into

machine instructions
• Many thought it impossible

– 1954-57: FORTRAN I project
• By 1958, > 50% of all projects used FORTRAN for programming
• Cut development time in half

COMP 520: Compilers - J. F. Prins

22[1] Introduction

FORTRAN I
• The first “compiler”

– Etymology of the term “compiler”
• compile:

– to put together or compose from materials gathered from several
sources

• compiler
– originally a program that put together different machine-language

subroutines
» a linking-loader

• “algebraic compiler” original name of Backus’ system in 1954
– provided rudimentary translation of algebraic expressions
– algebraic translation aspect dropped from name over time

• Huge impact on programming languages and computer science
– Led to enormous body of theoretical work on compilation

• parsing, static analysis of programs
– Enabled thousands of high-level languages to be proposed

• few survive today … (but Fortran is among them)

COMP 520: Compilers - J. F. Prins

23[1] Introduction

Things To Do
• Check course web page

– source for all information – check regularly
– follow Piazza link to sign up and use Piazza for questions

• Start reading assignment
– Skim 24 pages and start looking at chapter 3

• Short problem set
– Just 3 simple questions, write answers on handout, due Thursday

• Get set up to use course facilities
– Details TBD

• Look ahead
– Start looking at chapter 3, and preview of first project phase
– Look at simpleScannerParser example (will be placed online)

COMP 520: Compilers - J. F. Prins

	Welcome!�COMP 520 - Compilers�TR: 2:00 – 3:15 Spring 2022�Instr: Jan Prins, TA: Tao Tao
	What is this course about?
	A more detailed view of the C compiler
	How does a compiler work?
	Example: the structure of an English sentence
	Generating a translation
	Translation is not the whole story
	Compilers and Interpreters
	Different execution strategies
	Why study compilers and interpreters? (1)
	Example: Java generics
	Why study compilers and interpreters? (2)
	Why study compilers and interpreters? (3)
	Why study compilers and interpreters? (4)
	Is this the right course for you?
	A message from the Registrar …
	Triangle Examples (1)
	Triangle Examples (2)
	Triangle Examples (3)
	Evolution of Compilers: a bit of history
	FORTRAN I
	Things To Do

