
• Please turn in at the front of the room
– Written assignment 1 (red folder)

• For Tue 1/18
– Skim PLPJ Chapter 3 (pp 55 – 70)
– Study PLPJ Chapter 4 Secns 4.1, 4.2 (pp 73 – 83)
– … then look at PA1 again

COMP 520 - Compilers
Lecture 2 (Jan 13, 2022)

Specification of Programming Languages

2[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Today’s Topics
• Formal description of programming languages

– syntactic description: context free grammars
– concrete and abstract syntax
– contextual constraints
– semantics

• Phases of compilation
– Compiler project timeline

• Tools and machines needed in this class

• Review of WA1

• Quick look at PA1

3[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Functional description of a compiler

• source and target programs
– are expressed as a sequence of characters (source) or instruction codes (target)

• translation of a programming language
– split into two parts

• syntax – the structure of “sentences” in the language
• semantics – the meaning of “sentences” in the language

• if we can precisely describe the source and target languages …
– the compiler is a meaning-preserving translation from sentences in the source

language to sentences in the target language

Compiler

errors

source
program

target
program

... x = x + 5; 010110110 ...

4[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Syntactic description of a language
• A simple context-free grammar (CFG) describes a few English sentences

Sentence ::= Subject Predicate Object
Subject ::= Article Noun
Predicate ::= Verb
Object ::= Article Noun
Article ::= a | the
Noun ::= dog | cat | mice
Verb ::= chase | chases

• Components of a CFG
– Terminals {a, the, dog, cat, mice, chase, chases}
– Nonterminals {Sentence, Subject, Predicate, Article, Noun, Verb}
– Start nonterminal Sentence
– Rules (shown above)

• Language generated by a context free grammar (CFG)
– is a set of sentences
– each sentence

• composed entirely of terminals
• can be generated by repeated application of the rules commencing from the start nonterminal

5[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Derivation of a sentence using a CFG

Sentence ::= Subject Predicate Object
Subject ::= Article Noun
Predicate ::= Verb
Object ::= Article Noun

Article ::= a | the
Noun ::= dog | cat | mice
Verb ::= chase | chases

Sentence

Subject Predicate Object

Article Noun Verb Article Noun

the dog chases cata

A syntax tree records the derivation of a sentence

6[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Arbitrarily long sentences: CFG for dog language

• Recursion in the rules
Sentence ::= Bark | Bark Sentence
Bark ::= woof | bow—wow

Sentence

Bark Sentence

Bark

woof

woof

bow-wow

Bark Sentence

7[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Another CFG for dog language

• Same language, different grammar
Sentence ::= Bark | Sentence Bark
Bark ::= woof | bow—wow

Sentence

Sentence Bark

Sentence Bark

Bark

woof

woof

bow-wow

8[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Yet another CFG for dog language

• A grammar with multiple syntax trees for the same sentence!
Sentence ::= Bark | Sentence Sentence
Bark ::= woof | bow—wow

Sentence

Sentence Sentence

BarkSentence

Bark Bark woof

woof bow-wow

Sentence

Sentence

Sentence Sentence

Bark Sentence

Bark Barkwoof

bow-wow woof

Sentence

This grammar is ambiguous. Ambiguous grammars are problematic for language specifications

9[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Uses and limitations of CF Grammars
• CF grammars describe a superset of meaningful sentences

– examples of incorrect sentences
• The mice chases a dog
• The dog chases a mice

– we need additional constraints to determine validity
• these are outside of the CFG framework

• CF grammars can be used to find the structure of a sentence
– A parser is used to find the syntax tree for a sentence
– The syntax tree describes the sentence structure

• CF grammars for programming languages
– ensure a unique syntax tree for each sentence

• no ambiguous grammars
– can be efficiently parsed

• using parsers with time complexity linear in sentence length
• Not all CFGs can be efficiently parsed

10[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

A CFG for a programming language
• Expressions in Mini-Triangle

Exp ::= PrimExp | Exp Oper PrimExp
PrimExp ::= intlit | id | Oper PrimExp | (Exp)
Oper ::= + | - | * | / | < | > | =

• Special interpretation of terminals
– intlit stands for any integer
– id stands for any identifier
– blanks are ignored

• Construct syntax trees for
-20

x + y

x – y > 0

0 < x – y

0 < (x – y)

m >= n

11[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Abstract Syntax Trees (ASTs)
• The problem with syntax trees

– unnecessary detail to control derivation interferes with utility

• Abstract syntax trees for mini-Triangle expressions
– abstract structure of expressions

Exp ::= intlit | id | op Exp | Exp op Exp

– let represent an Exp. Substitution choices for the four rules above are:

• ASTs are a better representation of the “meaning” of a
program
– so why not parse using AST grammar?
– construct the abstract syntax tree for x – y = 0

intlit id unop binop

op op
binop

x 2+

ex: AST for x+2

12[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

AST for commands

• A piece of the mini-Triangle grammar for commands
Program ::= Cmd
Cmd ::= id := Exp | let Decl in Cmd
Decl ::= var id : type

• Abstract syntax trees for mini-Triangle commands
– abstract structure of commands
Cmd ::= id type Cmd declaration (decl)

| id Exp assignment (assign)

– let represent a Cmd, and represent an Exp, possible Cmd ASTs:

decl

id type

assign

id

13[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Semantics

• Typically an evaluation rule for each kind of node in an AST

evaluate left Exp and then evaluate right Exp and
then combine the results using op (+, -, etc.)

evaluate Exp and store result into variable id

create space for variable id and then evaluate Cmd

• Example
– let var x: Integer in x := 5 + (2 * 10)

assign

id

binop

op

decl

id type

AST node Evaluation rule

14[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Semantics: AST + evaluation rules ⇒ meaning

• Mini-triangle program
– let var x: Integer in x := 5 + (2 * 10)

• Corresponding AST decl

x

Integer assign

binop

5 binop

2 10

x

+

*

15[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Contextual constraints

• The mini-Triangle grammar for commands
Program ::= Cmd
Cmd ::= id := Exp | let Decl in Cmd
Decl ::= var id : type

• The following can be derived using this grammar
let var x: Integer in x := 5 + 5
let var x: Integer in y := 5 + 5
let var x: Integer in x := 5 > 3

• contextual constraints must be added to ensure
– declaration before use of variables
– type of variable appropriate for operation
– type of value appropriate for assignment

16[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Summary: specification of a programming language

• Syntax (formal)
– context free grammar
– additional lexical rules (comments, whitespace in text. etc.)

• Additional contextual constraints (can be made formal)
– Identifier declaration and reference rules
– Type rules

• Semantics
– Operational definition of evaluation

17[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

Phases of compilation

Phase Input Output

lexical analysis
(scanner)

character
stream tokens

syntactic analysis
(parser)

tokens abstract syntax
tree (AST)

Contextual analysis
(type checker / identifier

resolution)
AST decorated

AST

(optional)
Optimization

decorated
AST

decorated
AST

Code generation decorated
AST

machine
instructions

U
ni

fie
d

in

PL
PJ

 te
xt

Fr
on

t e
nd

Ba
ck

 e
nd

18

Compiler Project timeline
• Project timeline (may be subject to change)

project phase assigned due time
syntactic analysis Thu Jan 13 Mon Jan 31 (18 days)
AST construction Tue Feb 1 Mon Feb 21 (20 days)
contextual analysis Tue Feb 22 Mon Mar 21 (22 days + brk)
code gen / execution Tue Mar 22 Mon Apr 11 (21 days)
complete project Tue Apr 12 Thu Apr 28 (16 days)

*specification may be available before the preceding due date

• Team commitments
• send to me by email, by due date of first phase (Mon Jan 31)
• they are binding for remainder of project
• team project earns credit at 80% rate

[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

19COMP 520 Tools and machinesCOMP 520: Compilers - J. F. Prins

CS machine access
• Development machines

– We are using Java, so lots of choice
• Windows, Mac OS, or Linux - all will run Java and Eclipse
• most folks prefer to develop on their own machine

– COMP 520 server (details to follow)
• comp520-1sp22.cs.unc.edu (accessible from UNC network)

– login with your onyen
• you will submit your project checkpoints and receive scores on this machine

• Tools
– Windows

• secureCRT provides terminal windows for logins across network
– can drag and drop files between your machine and cs machines using built-in zmodem

protocol
– Download from http://software.unc.edu/

• alternatively use sftp
– Mac, Linux

• Use unix tools:
– terminal/ssh (for login)
– scp (to move files or hierarchies)

20COMP 520: Compilers - J. F. Prins

Development environment

• If you are already set up to run Java with Eclipse
– generally this will be sufficient for our project

• Java SE development kit (JDK)
– Use Java 8

• Eclipse for Java Developers
– version 4.5 (Mars) or later for Java Developers (latest is fine)
– http://www.eclipse.org

COMP 520 Tools and machines

21

Assignments

• Compiler Project PA1
– Review handout online

[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

22

Triangle Examples (1)

• Triangle commands
– Conditional command
– Scope command

if x > y then

let const xcopy ~ x

in

begin

x := y;

y := xcopy

end

else

[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

23

Triangle Examples (2)

• Triangle expressions
– Scoped expression
– Conditional expression

let

const taxable ~ if income > allowance

then income – allowance

else 0

in

taxable / 4

[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

24

Triangle Examples (3)

• Triangle types, procedures, and operators
– Named type
– Function declaration
– Operator declaration

type Point ~ record

x: Integer, y: Integer

end;

func projection (pt: Point) : Point ~

{x ~ pt.x, y ~ 0 – pt.y};

func /\ (b1: Boolean, b2 : Boolean) : Boolean ~

if b1 then b2 else false

[2] Specification of Programming LanguagesCOMP 520: Compilers - J. F. Prins

	COMP 520 - Compilers�Lecture 2 (Jan 13, 2022)�Specification of Programming Languages
	Today’s Topics
	Functional description of a compiler
	Syntactic description of a language
	Derivation of a sentence using a CFG
	Arbitrarily long sentences: CFG for dog language
	Another CFG for dog language
	Yet another CFG for dog language
	Uses and limitations of CF Grammars
	A CFG for a programming language
	Abstract Syntax Trees (ASTs)
	AST for commands
	Semantics
	Semantics: AST + evaluation rules  meaning
	Contextual constraints
	Summary: specification of a programming language
	Phases of compilation
	Compiler Project timeline
	CS machine access
	Development environment
	Assignments
	Triangle Examples (1)
	Triangle Examples (2)
	Triangle Examples (3)

