COMP 520 - Compilers
Lecture 3 (Tue Jan 18, 2022)

EBNF Grammars and Top-down Parsing

« PLPJ Reading for 1/18, 1/20
— Parsing, Secn 4.3 (pp 83 — 84)
— Top-down parsing, Secn 4.3.2, (pp 87 — 89)
— Recursive descent parsing, Secn 4.3.3 (pp 89 — 93)

— Systematic development of recursive-descent parsers,
Secn 4.3.4 (pp 93 —109)

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Topics

Context-free grammars and context-free languages
— Leftmost derivations

Parsing context free grammars
— Top-down parsing

Extended BNF form for grammars
— Definitions
— Grammar transformations

Recursive descent parsers
— Approach
— Example

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Context-free grammar

A CFG consists of
— a set of nonterminal symbols N (start with upper case)
— a set of terminal symbols T (start with lowercase)
— a distinguished nonterminal start symbol

— a set of rewrite rules of the form A ::= a where
e Ae N
 aisasequence of NuUT or g (empty sequence)

 Example (CFG G)
— N={S,A},
-T={G), x, $}

— start symbol S

— rules
S = A$
A= (A)

A = x

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Context-free language

A sentence w is generated by a CFG G if
- S=oy=>o0,=> ...=a,=W Where
o S is the start symbol
* W consists exclusively of terminal symbols
° o, = 0y If
— o,= Wy, and a;,; = oy and W :=wisarulein G

 The context free language generated by a CFG G
— L(G) is the set of all sentences generated by G
L(G)={w|weT" and S = w}

 What sentences are generated by CFG G,?
S:= A%
A= (A)
A = X

I
COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Leftmost derivation

« Order of substitution does not affect the sentences generated by G

— Example
S:= BCS$
B .= b
C::= (C)
C = c

— Any sentence in L(G) can be generated using a leftmost derivation

o Leftmost derivation
- S=oy=>o,=> ...=a,=W wWhere

e Sis the start symbol

* W consists exclusively of terminal symbols

° o, = Oy If
— o;= uBy and o;,; = UBy where
— u consists zero or more terminal symbols and
— B:=pisarulein G

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Top-down parsing

« How can we recognize sentences in a language?
— Simulate a derivation using a pushdown ((x)) s
automaton | o input
 top-down parser simulates a leftmost derivation
: S
e Top-down parser operation
— Input w is read from left to right Parser
— Parse stack initialized with start symbol S
— Repeat until parse stack is empty or input is
exhausted Parse
« if top of parse stack is terminal b stack
— if b matches current input symbol then pop b from
stack and advance to next input symbol CEG G
— otherwise parse error S = A S
« if top of parse stack is a nonterminal A A T A
— “predict” correct rule A ::= o from grammar G A = ()
=X

— pop A and push a
- w € L(G) iff stack empty and input exhausted

[3] EBNF grammars and parsing

COMP 520: Compilers - J.F. Prins

Operation of top-down parser

::OG)

Example
* CFG G,
e input string: (x)$

input left

> > 9
....mm
> s

o/

(I
X~ >

O$ predict S ;= A$
I5 A$ x)$ see “(*, predict A = (A)
'g (ADHS] (XS match terminal
g (A)$ xX)$ see “x”, predict A ::= x
*g (X% xX)$ match terminal
E (x)%)% match terminal
< x) $ $ match terminal
)% stack empty, no input left —
sentence recognized

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Key Idea for top-down parser

* Resolve choices in grammar rules by looking at next symbol of input

A= (A)
A = X
Two choices of rule for A. Which terminals can appear at the start of each
choice?
— startersof (A) ={ (}
— starters of X ={ x }

Since these two sets are disjoint, we can always resolve choice for A by looking
at the next input symbol

What if the grammar were changed as follows?
S = A%
A= (A)
A = ¢ (empty sequence)

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Top-down parsing and the LL(1) condition

 LL(1) condition

— qguarantees parser can always “predict” the correct rule to apply based on the
next (1) input symbol reading Left to right following the Leftmost derivation

e CFG grammars

— grammars meeting the LL(1) condition can be efficiently parsed using a top-
down parser

— however, many grammars do not meet the LL(1) condition

« Example 1 Example 2
- N={S A} — same N, T
- T={C.,) x $} — new rules
— rules S:= (A)S$
S = (A)S$ A= A, X
A = x, A A= X
A = x

« We may need to modify grammars to achieve the LL(1) condition
— not always possible: some CFLs do not have an LL(1) grammar (!)

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Top-down parsing

« How can we recognize sentences in a language?
— Simulate a derivation using a pushdown ((x)) s
automaton | o input
 top-down parser simulates a leftmost derivation
: S
e Top-down parser operation
— Input w is read from left to right Parser
— Parse stack initialized with start symbol S
— Repeat until parse stack is empty or input is
exhausted Parse
« if top of parse stack is terminal b stack
— if b matches current input symbol then pop b from
stack and advance to next input symbol CEG G
— otherwise parse error S = A S
« if top of parse stack is a nonterminal A A T A
— “predict” correct rule A ::= o from grammar G A = ()
=X

— pop A and push a
- w € L(G) iff stack empty and input exhausted

[3] EBNF grammars and parsing

COMP 520: Compilers - J.F. Prins

Recursive Descent Parsing

Implementation of a top-down parser using recursive procedures
— uses a set of mutually recursive procedures

» one procedure parseN() for each nonterminal N in the grammar

— parseN() parses the right-hand side(s) of rule(s) for N

¢ maintains some local state recording progress
— the parse stack is implicitly maintained in the procedure call stack

C(Cx)) S
Parser —
A))D S
CFG G,
S ..: A$
A= (A)
A = X

COMP 520: Compilers - J.F. Prins

[3] EBNF grammars and parsing

parseS() {
parseA();
accept(“$”);

}

parseA() {
iIT (currChar == “(*) {
accept(“(C);
parseA();
accept(“)”);
}

else
accept(“x*);

EBNF grammars

 An Extended BNF grammar is a CFG with

— rules of the form A ::=a where A e N
and o is an extended regular expression that may contain

sequences of terminals and nonterminals
IfStmt ;= 1T Exp then Stmt ElsePart
SimpleStmt ::= skip

empty sequence ¢
Empty ::=¢

choice |
ElsePart ::= else Stmt | Empty

repetition *
Stmt ::= SimpleStmt*

grouping ()
Prog ::= (let Decl (; Decl)* 1n Stmt) | IfStmt

BNF

—~
[

Extended

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

EBNF language

A sentence w is generated by a EBNF grammar G if
- S=oy=>o0,=> ...=a,=W Where

o S is the start symbol

* W consists exclusively of terminal symbols

° o, = 0y If

— o, = BWy and o, =PBuy where

» Wi =wisarulein G and
» regular expression o can generate p

 An EBNF grammar G generates a language L(G)
— L(G) is a context free language

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

EBNF grammars

 EBNF is simply a convenience

— Every EBNF grammar can be rewritten as a simple context free
grammar (CFG)

— Ex: eliminate EBNF extensions in this rule
Prog ::= let Decl (; Decl)* in Stmt | IfStmt

 EBNF benefits
— simpler expression of grammars
— better target for grammar transformations

— we can conveniently extend recursive descent parsers to directly
parse an EBNF grammar

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Grammar Transformations

 Transform grammar to a form suitable or more convenient for parsing

— Substitution of nonterminal symbols
C:=AbbD => C:=(c|d)bD
A:=c|d

— Left-factorization
1fStmt ::= 1T Exp then Stmt
| 1T Exp then Stmt else Stmt

_)
1fStmt ::= 1T Exp then Stmt (¢ | else Stmt)

— Elimination of Left Recursion
N ::= X | NY
—
N = X (Y)*

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Elimination of left-recursion

 Why is the left recursion elimination transformation correct?
— General case can be reduced to simple case
N:i=oq|...]o, |[NB|...|NB,
_)

Ni= (o] .- lag) | N(B|..-1By)

_/
~ ~ N

X Y

— Correctnessof N:=X|NY -5 N: =X (Y)*
« examine derivations of both sides

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Simplify a grammar for parsing

E:=T|EOpT
T:= (E) | num
Op:=+|x

S:= E$

e Remove left recursion

E:=T(OpT)*
T:= (E) | hum
Op:=+|x

» Substitute for Op
E:=T(+|x) T)*
T:= (E) | hum

COMP 520: Compilers - J.F. Prins

A simple grammar for a subset of arithmetic expressions

Add new start symbol S and terminal $ representing end-of-input

[3] EBNF grammars and parsin

Other versions of arithmetic expression grammars

Simplify these for parsing. Do they meet the LL(1) condition?

* Right recursive arithmetic expressions
E:=T | TOpE
T:= (E) | num
Op:=+|x

Left and right recursive arithmetic expressions
E:=T| EOpE

T:= (E) | num

Op:=+|x

[3] EBNF grammars and parsing @

COMP 520: Compilers - J.F. Prins

Recursive descent parsers for EBNF

« How can we implement recursive
descent parsers for EBNF?

— Choice o |

e Conditional or case statement
based on next input symbol

— Repetition o*

* While statement that repeats
based on next input symbol

— Example
S:=ES$
Ex=T((+[|x) T)*
T:= (E) | num

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

void parseSQ {

}

parseE(Q);
accept(“$?);

void parseE(Q) {

}

parseT();
while (currChar == "+*
Il currChar == "x") {
acceptlt();
parseT();
}

void parseT(Q {

3}

switch (currChar) {
case “07,.., case’9’:
acceptlt(Q);
return;

case “(“:
acceptlt(Q);
parseE(Q);
accept(“)”);
return;

Informal definitions of grammar properties

e Given an EBNF grammar
— nonterminal set N, start symbol S, Terminal set T

— assume one rule per nonterminal

e multiple rules with same NT at left can be combined
A= o, .. Ai=oa, - A= oy l... o,

e Define

— Nullable(a)
* Property that is True iff o can derive the empty string

— Starters[o]
» Set of terminals that may start derivations from o
* Includes ¢ if Nullable(a)

— Followers[A] where AeN
» Set of terminals that may follow A in a derivation
* For augmented grammars, only Followers[S] includes ¢

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Informal LL(1) condition for EBNF grammars

e |dea

— For each choice of the form A= B (o, |...]| o)y
» Starters[o; | and Starters[o;] must be disjoint for all 1 <i,j<m

— For each repetition of the form A ::= B (a)* vy
o Starters [a] and Starters[y] are disjoint
* Nullable(a) is False

 Example
— |Is this EBNF grammar LL(1)?
S =A%
A =xz | xXE(yE*z
E =a | b

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

Parsing a grammar that does not meet LL(1)

 Consider conditional statements
— with optional “else” part

 Example G;
— N = {Stmt, Exp, ElsePart},
— T={if, then, skip, else, true, false}
— start symbol Stmt

— rules
Stmt .= 1T Exp then Stmt ElsePart
Exp = true
Exp .= false
Stmt = skip
ElsePart::= else Stmt
ElsePart ::= ¢

« Whatis L(G,)? Why does this grammar not meet the LL(1) condition?
Can we parse it anyway?

COMP 520: Compilers - J.F. Prins [3] EBNF grammars and parsing

	COMP 520 - Compilers�Lecture 3 (Tue Jan 18, 2022)�EBNF Grammars and Top-down Parsing
	Topics
	Context-free grammar
	Context-free language
	Leftmost derivation
	Top-down parsing
	Operation of top-down parser
	Key idea for top-down parser
	Top-down parsing and the LL(1) condition
	Top-down parsing
	Recursive Descent Parsing
	EBNF grammars
	EBNF language
	EBNF grammars
	Grammar Transformations
	Elimination of left-recursion
	Simplify a grammar for parsing
	Other versions of arithmetic expression grammars
	Recursive descent parsers for EBNF
	Informal definitions of grammar properties
	Informal LL(1) condition for EBNF grammars
	Parsing a grammar that does not meet LL(1)

