COMP 520 - Compilers

Lecture 3 (Tue Jan 18, 2022)

EBNF Grammars and Top-down Parsing

- PLPJ Reading for 1/18, 1/20
 - Parsing, Secn 4.3 (pp 83 84)
 - Top-down parsing, Secn 4.3.2, (pp 87 89)
 - Recursive descent parsing, Secn 4.3.3 (pp 89 93)
 - Systematic development of recursive-descent parsers,
 Secn 4.3.4 (pp 93 109)

Topics

- Context-free grammars and context-free languages
 - Leftmost derivations
- Parsing context free grammars
 - Top-down parsing
- Extended BNF form for grammars
 - Definitions
 - Grammar transformations
- Recursive descent parsers
 - Approach
 - Example

Context-free grammar

A CFG consists of

- a set of nonterminal symbols N (start with upper case)
- a set of terminal symbols T (start with lowercase)
- a distinguished nonterminal start symbol
- a set of rewrite rules of the form A ::= α where
 - A ∈ N
 - α is a sequence of N \cup T or ϵ (empty sequence)

Example (CFG G₀)

```
N = { S, A },T = { (, ), x, $}
```

- start symbol S
- rules

Context-free language

A sentence w is generated by a CFG G if

$$-S = \alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_n = w$$
 where

- S is the start symbol
- w consists exclusively of terminal symbols
- $\begin{array}{l} \bullet \quad \alpha_i \Longrightarrow \alpha_{i+1} \text{ if} \\ \quad \quad \alpha_i = \beta W \gamma, \text{ and } \alpha_{i+1} = \beta \omega \gamma \text{ and } W ::= \omega \text{ is a rule in G} \\ \end{array}$
- The context free language generated by a CFG G
 - L(G) is the set of all sentences generated by G

$$L(G) = \{ w \mid w \in T^* \text{ and } S \stackrel{^*}{\Rightarrow} w \}$$

What sentences are generated by CFG G₀?

Leftmost derivation

- Order of substitution does not affect the sentences generated by G
 - Example

```
S ::= B C $
B ::= b
C ::= ( C )
C ::= c
```

- Any sentence in L(G) can be generated using a *leftmost* derivation
- Leftmost derivation
 - $-S = \alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_n = w$ where
 - S is the start symbol
 - w consists exclusively of terminal symbols
 - $\alpha_i \Rightarrow \alpha_{i+1}$ if
 - $-\alpha_i = uB\gamma$ and $\alpha_{i+1} = u\beta\gamma$ where
 - u consists zero or more terminal symbols and
 - $-B := \beta$ is a rule in G

Top-down parsing

- How can we recognize sentences in a language?
 - Simulate a derivation using a pushdown automaton
 - top-down parser simulates a leftmost derivation
- Top-down parser operation
 - Input w is read from left to right
 - Parse stack initialized with start symbol S
 - Repeat until parse stack is empty or input is exhausted
 - if top of parse stack is terminal b
 - if b matches current input symbol then pop b from stack and advance to next input symbol
 - otherwise parse error
 - if top of parse stack is a nonterminal A
 - "predict" correct rule A ::= α from grammar G
 - pop A and push α
 - $w \in L(G)$ iff stack empty and input exhausted

Parse stack

CFG
$$G_0$$
S ::= A \$
A ::= (A)
A ::= x

Operation of top-down parser

Example

- CFG G₀
- input string: (x)\$

CFG G ₀	
S ::=	A \$
A ::=	(A)
A ::=	X

Input seen		Stack	Input left	Action
П		S	(x)\$	predict S ::= A\$
ion		A\$	(x)\$	see "(", predict A ::= (A)
vat		(A) \$	(x) \$	match terminal
Leftmost derivation	(A) \$	x) \$	see "x", predict A ::= x
)St ((x) \$	x) \$	match terminal
tmc	(x)\$)\$	match terminal
Lef	(x)	\$	\$	match terminal
1	(x) \$			stack empty, no input left – sentence recognized

Key idea for top-down parser

Resolve choices in grammar rules by looking at next symbol of input

```
A ::= (A)
A ::= X
```

Two choices of rule for A. Which terminals can appear at the start of each choice?

- starters of (A) = { (}
- starters of $X = \{x\}$

Since these two sets are disjoint, we can always resolve choice for A by looking at the next input symbol

What if the grammar were changed as follows?

```
S ::= A $
A ::= (A)
A ::= \epsilon (empty sequence)
```

Top-down parsing and the LL(1) condition

• LL(1) condition

 guarantees parser can always "predict" the correct rule to apply based on the next (1) input symbol reading Left to right following the Leftmost derivation

CFG grammars

- grammars meeting the LL(1) condition can be efficiently parsed using a topdown parser
- however, many grammars do not meet the LL(1) condition

Example 1

```
- N = { S A }
- T = { ( , ) x $}
- rules
    S ::= ( A ) $
    A ::= x , A
    A ::= x
```

Example 2

- same N, T
- new rules

$$A ::= A, X$$

- We may need to modify grammars to achieve the LL(1) condition
 - not always possible: some CFLs do not have an LL(1) grammar (!)

Top-down parsing

- How can we recognize sentences in a language?
 - Simulate a derivation using a pushdown automaton
 - top-down parser simulates a leftmost derivation
- Top-down parser operation
 - Input w is read from left to right
 - Parse stack initialized with start symbol S
 - Repeat until parse stack is empty or input is exhausted
 - if top of parse stack is terminal b
 - if b matches current input symbol then pop b from stack and advance to next input symbol
 - otherwise parse error
 - if top of parse stack is a nonterminal A
 - "predict" correct rule A ::= α from grammar G
 - pop A and push α
 - $w \in L(G)$ iff stack empty and input exhausted

Parse stack

Recursive Descent Parsing

- Implementation of a top-down parser using recursive procedures
 - uses a set of mutually recursive procedures
 - one procedure parseN() for each nonterminal N in the grammar
 - parseN() parses the right-hand side(s) of rule(s) for N
 - maintains some local state recording progress
 - the parse stack is implicitly maintained in the procedure call stack

```
Parser

A)) $

CFG G<sub>0</sub>

S::= A $

A ::= ( A )

A ::= x
```

```
parseS() {
    parseA();
    accept('$');
}

parseA() {
    if ( currChar == '(') ) {
        accept('(');
        parseA();
        accept(')');
    }
    el se
        accept('x');
}
```

EBNF grammars

- An Extended BNF grammar is a CFG with
 - rules of the form $A := \alpha$ where $A \in N$ and α is an *extended regular expression* that may contain

```
• sequences of terminals and nonterminals

IfStmt ::= i f Exp then Stmt ElsePart

SimpleStmt ::= ski p

• empty sequence ε

Empty ::= ε

• choice |

ElsePart ::= el se Stmt | Empty

• repetition *

Stmt ::= SimpleStmt*

• grouping ()
```


Prog ::= (let Decl (; Decl)* in Stmt) | IfStmt

EBNF language

- A sentence w is generated by a EBNF grammar G if
 - $-S = \alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_n = w$ where
 - S is the start symbol
 - w consists exclusively of terminal symbols
 - α_i ⇒ α_{i+1} if
 α_i = βWγ and α_{i+1} = βμγ where
 » W ::= ω is a rule in G and
 » regular expression ω can generate μ
- An EBNF grammar G generates a language L(G)
 - L(G) is a context free language

EBNF grammars

EBNF is simply a convenience

- Every EBNF grammar can be rewritten as a simple context free grammar (CFG)
- Ex: eliminate EBNF extensions in this rule Prog ::= let Decl (; Decl)* in Stmt | IfStmt

EBNF benefits

- simpler expression of grammars
- better target for grammar transformations
- we can conveniently extend recursive descent parsers to directly parse an EBNF grammar

Grammar Transformations

- Transform grammar to a form suitable or more convenient for parsing
 - Substitution of nonterminal symbols

```
C ::= A b D
A ::= c \mid d
=> C ::= (c \mid d) b D
```

Left-factorization

Elimination of Left Recursion

```
N ::= X | NY

→

N ::= X (Y)*
```


Elimination of left-recursion

- Why is the left recursion elimination transformation correct?
 - General case can be reduced to simple case

$$N ::= \alpha_{1} | \dots | \alpha_{m} | N\beta_{1} | \dots | N\beta_{n}$$

$$\rightarrow$$

$$N ::= (\alpha_{1} | \dots | \alpha_{m}) | N(\beta_{1} | \dots | \beta_{n})$$

$$\downarrow$$

- Correctness of $N := X \mid NY \rightarrow N := X (Y)^*$
 - examine derivations of both sides

Simplify a grammar for parsing

A simple grammar for a subset of arithmetic expressions

Add new start symbol S and terminal S representing end-of-input

Remove left recursion

Substitute for Op

Other versions of arithmetic expression grammars

- Simplify these for parsing. Do they meet the LL(1) condition?
- Right recursive arithmetic expressions

```
E ::= T | T Op E
T ::= (E) | num
Op ::= + | ×
```

• Left and right recursive arithmetic expressions

```
E ::= T | E Op E
T ::= (E) | num
Op ::= + | ×
```

Recursive descent parsers for EBNF

- How can we implement recursive descent parsers for EBNF?
 - Choice $\alpha \mid \beta$
 - Conditional or case statement based on next input symbol
 - Repetition α^*
 - While statement that repeats based on next input symbol
 - Example

```
S ::= E $
E ::= T ((+ | ×) T)*
T ::= ( E ) | num
```

```
void parseS() {
   parseE();
   accept('$');
void parseE() {
   parseT();
   while (currChar == '+'
              || currChar == 'x') {
         acceptIt();
         parseT();
voi d parseT() {
   switch (currChar) {
      case '0',..., case'9':
             acceptIt();
             return:
      case '(':
             acceptIt();
             parseE();
             accept( ')' );
             return;
}}
```

Informal definitions of grammar properties

- Given an EBNF grammar
 - nonterminal set N, start symbol S, Terminal set T
 - assume one rule per nonterminal
 - multiple rules with same NT at left can be combined

$$A ::= \alpha_1 \dots A ::= \alpha_m \rightarrow A ::= \alpha_1 | \dots | \alpha_m$$

- Define
 - Nullable(α)
 - Property that is True iff α can derive the empty string
 - Starters[α]
 - Set of terminals that may start derivations from α
 - Includes ε if Nullable(α)
 - Followers[A] where A∈N
 - Set of terminals that may follow A in a derivation
 - For augmented grammars, only Followers[S] includes ε

Informal LL(1) condition for EBNF grammars

Idea

- For each choice of the form A ::= $\beta (\alpha_1 | \dots | \alpha_m) \gamma$
 - Starters[α_i] and Starters[α_i] must be disjoint for all $1 \le i,j \le m$
- For each repetition of the form A ::= β (α)* γ
 - Starters [α] and Starters[γ] are disjoint
 - Nullable(α) is False

Example

– Is this EBNF grammar LL(1)?

```
S ::= A $
A ::= x z \mid x E (y E)^* z
E ::= a \mid b
```


Parsing a grammar that does not meet LL(1)

- Consider conditional statements
 - with optional "else" part
- Example G₁
 - N = {Stmt, Exp, ElsePart},
 T = {if, then, skip, else, true, false}
 start symbol Stmt
 rules
 Stmt ::= if Exp then Stmt ElsePart
 Exp ::= true
 Exp ::= false
 Stmt ::= skip
 ElsePart ::= else Stmt
 ElsePart ::= ε
- What is L(G₁)? Why does this grammar not meet the LL(1) condition?
 Can we parse it anyway?

