
• PA1 due date: extended to Wed Feb 2, 11.59 PM
– Submission instructions on slides 2 – 5 below

• Reading assignment for Thu Feb 3
– Skim secn 4.4 pp 109 -118 (Abstract Syntax Trees)

COMP 520 - Compilers
Lecture 6 (Tue Feb 1, 2022)

Structure and Operation of Compilers

[6] Structure of CompilersCOMP 520: Compilers - Prins

2

PA1 submission

• Java project structure for pa1
– Package names

• miniJava
• miniJava.SyntacticAnalyzer

– Main class
• Compiler.java in package miniJava

COMP 520: Compilers - Prins

package miniJava.SyntacticAnalyzer;

package miniJava;

[6] Structure of Compilers

3

Sample compiler.java

COMP 520: Compilers - Prins [6] Structure of Compilers

return these exit codes
for invalid / valid
miniJava programs

return exit code 1
if unable to open
input file

(1);

4

Project submission on server
• Submission instructions

1. You do not have a home directory on comp520-1sp22.cs.unc.edu
so run the simple readiness check pa1.pl on your own machine or a department
server. You’ll receive either
• an indication that your submission passes the top level check – Great! you’re all

set!
• an error in one of several simple miniJava programs -- correct this and rerun

2. Copy your miniJava directory and subdirectories directly into your pa1 submission
folder (once it has been created)
• scp –pr miniJava comp520-1sp22.cs.unc.edu/home/submit/onyen/pa1

• Advice
– try uploading something before the 11.59 pm deadline to avoid unwelcome surprises
– The grader will run sometime after the deadline and will generate a test report in your

pa1 submission directory

• Note: check Piazza for info/updates

[6] Structure of CompilersCOMP 520: Compilers - Prins

6[6] Structure of CompilersCOMP 520: Compilers - Prins

How compilers are organized
• Today’s topics

• Steps in the compilation process

• Illustration of the steps for a Triangle program

• parts of the compiler and their relation to the compiler specification

• a bird’s eye view of implementation

7[6] Structure of CompilersCOMP 520: Compilers - Prins

Phases of compilation

Phase Input Output

lexical analysis
(scanner)

character
stream tokens

syntactic analysis
(parser)

tokens abstract syntax
tree (AST)

Contextual analysis
(type checker / identifier

resolution)
AST decorated

AST

optional
Optimization

decorated
AST

decorated
AST

Code generation decorated
AST

machine
instructions

U
ni

fie
d

in

PL
PJ

 te
xt

Fr
on

t e
nd

Ba
ck

 e
nd

8[6] Structure of CompilersCOMP 520: Compilers - Prins

FE: Lexical Analysis (Triangle)

• Recognize the meaningful units in the source code
– input: character stream

! this is part of a Triangle program

while b do

begin

n := 0;

b := false

end

– output: token stream

while b do begin n := 0 ; b := false end

while ident
b

do begin ident
n

:= inLit
0

; ident
b

:= ident
false

end eot

9[6] Structure of CompilersCOMP 520: Compilers - Prins

FE: Syntactic Analysis (Triangle)
• Use Triangle grammar to parse token stream into (concrete) syntax tree

Program ::= Single-Command eot
Command ::= Single-Command | Command ; Single-Command
Single-Command ::= while Expression do Single-Command | V-name := Expression

| begin Command end | ...
Expression ::= Primary-Expression | ...
Primary-Expression ::= intLit | V-name | ...
V-name ::= ident

eot

Program

10[6] Structure of CompilersCOMP 520: Compilers - Prins

FE: Construct Abstract Syntax Tree

• While parsing concrete syntax tree, construct the abstract syntax tree

AST “grammar” for mini-Triangle

AssignCommand

id

SimpleVname

BinaryExpression

VnameExpression

Program

11[6] Structure of CompilersCOMP 520: Compilers - Prins

FE: Construct Abstract Syntax Tree (Triangle)

Concrete Syntax Tree

Abstract Syntax Tree

12[6] Structure of CompilersCOMP 520: Compilers - Prins

FE: Contextual analysis

• Traverse AST
– determine the declaration associated with each identifier referenced
– determine the type of all expressions
– record in AST

let

var n: Integer;

var c: Char

in

begin

c := ‘&’;

n := n + 1

end

Decorated AST for sample program

13[6] Structure of CompilersCOMP 520: Compilers - Prins

BE: Optimization

• Restructure AST so that it corresponds to an equivalent but more
efficient program
– simple example: constant folding

x := y * 0 ⇒ x := 0

– introduce temporaries to hold previously computed values

f[i] := f[i] + (m[i] * m[j]) / pow(x[i] – x[j], 2);

f[j] := f[j] - (m[i] * m[j]) / pow(x[i] – x[j], 2);

14[6] Structure of CompilersCOMP 520: Compilers - Prins

BE: Code Generation
• Produce machine code

– for abstract machine or physical machine

• Issues
– location of program variables (stack, heap)
– instruction selection and register allocation
– linkage conventions (ABI: Application Binary Interface)

let

var n: Integer

var c: Char

in

begin

c := ‘&’;

n := n + 1

end

PUSH 2

LOADL 38

STORE 1[SB]

LOAD 0[SB]

LOADL 1

CALL add

STORE 0[SB]

POP 2

HALT

Triangle TAM instructions

15[6] Structure of CompilersCOMP 520: Compilers - Prins

Implementation of multiple phases

• Single-pass compiler
– economical in time and space
– limited ability to implement language features and optimizations

• Multi-pass compiler
– conceptually simpler and more versatile
– requires more space and time

• Wirth’s design principle
– design programming languages so that their compilers are simple

• Pascal
• C + “.h” header files

• Programmers design principle
– but not too simple!

16[6] Structure of CompilersCOMP 520: Compilers - Prins

Traditional Two-Pass Compiler

• Front end creates AST
– time complexity O(n) or O(n log n) where n is size of the program in

characters

• Back end translates AST to target machine
– O(n) or O(n log n) time complexity for simple code generation
– but most back end optimization problems are NP-hard

errors

source
code

machine
codeFront end Back end

AST

17[6] Structure of CompilersCOMP 520: Compilers - Prins

UNCOL: the universal AST?

• Suppose we have
– n programming languages
– m target machines
– do we really need to construct n * m compilers ?

• A universal AST would allow us to
– construct n front-ends
– construct m back ends
– n + m components: much less work!

• The Universal Computer Oriented Language: an elusive goal since 1960
– variation (evolution) in programming languages
– variation (evolution) in hardware architecture
– but hope springs eternal: JVM ? .NET ?

18[6] Structure of CompilersCOMP 520: Compilers - Prins

Back End (Instruction Selection)

• Produce compact, fast code
• Use available addressing modes
• Pattern matching problem

– ad hoc techniques
– tree pattern matching
– dynamic programming

errors

IR machine
code

Instruction
selection

Register
allocation

19[6] Structure of CompilersCOMP 520: Compilers - Prins

Back End (Register Allocation)

• performance advantage if a register is used instead of memory
• but we have a limited number of registers

– which values to keep in a register?
• optimal allocation difficult

– NP-complete for k ≥ 1 registers

errors

IR machine
code

Instruction
selection

Register
allocation

20[6] Structure of CompilersCOMP 520: Compilers - Prins

Compilers and Instruction Set Architecture

• Compiler benefits from simple instruction set
– Difficult to deal with complex operations in instruction set

• example: VAX instruction INDEX(base-addr, i, low, high)
– if (low ≤ i ≤ high) return base-addr + 4 * i
– 2 comparisons, 1 multiply, 1 add

• Typical program
– Only one test necessary

» loop bounds guarantee all values
of i are valid indices

– No multiplications necessary
» AddressOf(a[i+1]) == AddressOf(a[i])+4

– better to avoid INDEX operation

• Current processor architectures
– “orthogonal” RISC instruction set

• easy for compiler to generate and optimize
• easy to implement in hardware with superior performance

int a[10];
int s = 0;
for (i=0; i < 10; i++)

s += a[i];
end

	COMP 520 - Compilers�Lecture 6 (Tue Feb 1, 2022)�Structure and Operation of Compilers�
	PA1 submission
	Sample compiler.java
	Project submission on server
	How compilers are organized
	Phases of compilation
	FE: Lexical Analysis (Triangle)
	FE: Syntactic Analysis (Triangle)
	FE: Construct Abstract Syntax Tree
	FE: Construct Abstract Syntax Tree (Triangle)
	FE: Contextual analysis
	BE: Optimization
	BE: Code Generation
	Implementation of multiple phases
	Traditional Two-Pass Compiler
	UNCOL: the universal AST?
	Back End (Instruction Selection)
	Back End (Register Allocation)
	Compilers and Instruction Set Architecture

