
• wa1 and wa2 sample solutions are online

• pa1 is due tonight by midnight

[7] Operator PrecedenceCOMP 520: Compilers - Prins

COMP 520 - Compilers
Lecture 7 (Thu Feb 3, 2022)

Operator Precedence and Stratified Grammars

207 - Operator PrecedenceCOMP 520: Compilers - Prins

Topics

• Expressing operator precedence using stratified grammars
– Grammar structure
– LL(1) parsing

• Constructing corresponding syntax trees
– using recursive descent parsers

307 - Operator PrecedenceCOMP 520: Compilers - Prins

The shape of the syntax tree
• Intuition

– bottom up evaluation of expressions in AST
– therefore nodes lower in the tree are evaluated before their parents

• Associativity and precedence in arithmetic expressions
2 + 3 + 4

• left to right evaluation => left associativity
• tree is deep on the left

- - - 3
• right to left evaluation of unary op => right associative
• tree is deep on the right

2 + 3 * 4
• operator precedence
• tree is deep on right since * has higher precedence than +

(2 + 3) * 4
• explicit precedence
• tree is deep on the left

407 - Operator PrecedenceCOMP 520: Compilers - Prins

Specifying operator precedence in an LL(1) grammar

• Suppose we have a simple grammar to describe arithmetic expressions
E ::= E + E | E * E | (E) | num

• Consider the string of terminals 2+3*4
– the string has two syntax trees

• the grammar is ambiguous

– one of these trees reflects the desired operator precedence
• multiplication should be “lower” in the tree than addition

– interpretation: must evaluate multiplication before we can evaluate addition

– How can we encode precedence in the grammar?

507 - Operator PrecedenceCOMP 520: Compilers - Prins

Simple unambiguous grammar for expressions

• Our familiar grammar for arithmetic expressions
E ::= T | E Op T
T ::= (E) | num
Op ::= + | *

• What is the associativity?

• Does it enforce precedence?

• What is the shape of the syntax tree of the following?
– 2 + 3 + 4
– 2 + (3 + 4)
– (2 + 3) + 4

• Is this grammar LL(1)?

607 - Operator PrecedenceCOMP 520: Compilers - Prins

Incorporating precedence in expressions

• Operator associativity and precedence can be specified using a stratified
grammar

E ::= E + T | T
T ::= T * F | F
F ::= (E) | num

• Associativity: consider the sentence 2+3+4
– what is the shape of the syntax tree?

• Precedence: consider the sentences 2+3*4 and 2*3+4
– why does it work ?

• Exercise: construct the syntax tree for 3+4*5+6

707 - Operator PrecedenceCOMP 520: Compilers - Prins

Parsing stratified grammar

• Stratified grammar has left recursion
E ::= E + T | T
T ::= T * F | F
F ::= (E) | num

• Eliminate left recursion
E ::= T (+ T)*
T ::= F (* F)*
F ::= (E) | num

• Augment grammar
– add unique start symbol S and terminal $ representing end-of-input

S ::= E $

807 - Operator PrecedenceCOMP 520: Compilers - Prins

Recursive-descent parsing of stratified grammar

• Stratified grammar in EBNF form
S ::= E $ (1)
E ::= T (+ T)* (2)
T ::= F (* F)* (3)
F ::= (E) | num (4)

• Is it LL(1)?

9

How can we build an abstract syntax tree?

• Idea
– Each parse method returns a syntax tree
– Syntax tree is built bottom-up
– Ex:

E ::= T + T
T ::= (E) | num

– parseT()

• returns a num leaf or
• returns an E tree

– parseE()

• returns a T + T ternary tree

07 - Operator PrecedenceCOMP 520: Compilers - Prins

T

num

T

E()

E

+T T T T

+

10

How can this work with grammar transformations?

• Left recursion removal
E ::= T | E op T
T ::= (E) | num

07 - Operator PrecedenceCOMP 520: Compilers - Prins

E ::= T (op T)*
T ::= (E) | num

ExprTree parseE() {
ExprTree e1 = parseT();
while (curToken.kind == Token.op) {

String op = curToken.spelling;
acceptIt();
ExprTree e2 = parseT();
e1 = new ExprTree(e1,op,e2);

}
return e1;

}

11

PA2 abstract syntax tree construction

• PA2 abstract syntax tree constructors

07 - Operator PrecedenceCOMP 520: Compilers - Prins

	Slide Number 1
	Topics
	The shape of the syntax tree
	Specifying operator precedence in an LL(1) grammar
	Simple unambiguous grammar for expressions
	Incorporating precedence in expressions
	Parsing stratified grammar
	Recursive-descent parsing of stratified grammar
	How can we build an abstract syntax tree?
	How can this work with grammar transformations?
	PA2 abstract syntax tree construction

