COMP 520 - Compilers

Lecture 11 (Thu Mar 3)

Contextual analysis: Type Checking

- Reading
 - PLPJ Contextual Analysis: Type Checking (secn 5.2)
Topics

• Type checking
 – examples of type checking
 – role of types in programming languages
 – structural vs. name equivalence in types

• A general framework for type checking
 – definitions
 • type synthesis
 • type constraints
 – examples
Type checking

• Basic examples
 – assignment statements
 • do target and expression type agree? \(\text{int } x = 1 + 2; \)
 – Expressions
 • what is the type of the result? \(x + 3 \neq 4\)
 • What are the types of the intermediate expressions?
 – function/procedure calls
 • do arguments types agree with parameter types?
 • does a function return a result of the appropriate type?
 – type definitions and variable declarations
 • is the type well-formed?
 – does a class type refer to an identified class?
 – void [] ?

• Systematically answering such questions is called “type checking”
Type analysis

- Where do we need to use type analysis
 - automatic conversions/coercions
 - convert byte or short to int or long
 - convert byte, short, int, long to float or double
 - automatic boxing/unboxing of int to/from Integer in Java
 - overload resolution
 - which definition of “+” should be used?
 - inheritance
 - which methods are available on an object?
 - can the invocation of an overridden method be statically determined?
 - type inference
 - variables or parameters without type declarations (e.g. python)
 - can a type be inferred for a missing declaration?
Types in modern programming languages

• What is a type?
 – a set of possible values (and their representation)
 – a set of permissible operations

• Purpose of types
 – safety and correctness
 • apply only permissible operations on values with correct representation
 – improve readability and comprehensibility
 – provide consistency checks on programs
 – provide information to improve efficiency of execution
 • eliminate run-time type checks
 • efficient space (re)use
Type safety

• Type safety is also known as “strong typing”
 – all operations applied to values with a known representation
 • pointer dereference can not be applied to arbitrary integers
 • arithmetic operations are applied to values of known representation
 • appropriate methods are applied to objects
 – strongly typed languages guarantee to detect any situation where this is not the case at compile time
 • Java, Triangle, modern C (C99 and later)

• Dynamic typing
 – the type is part of the value
 • python
 – type safety is checked at runtime, not compile time
 • so may result in runtime error
When does type checking take place?

- **Compile time**
 - statically typed
 - Java, Triangle, C++, Haskell, ...

- **Run-time**
 - dynamically typed
 - JavaScript, Perl, Python, PHP, Ruby, ...
 - Java casts

- **Never**
 - untyped
 - Assembler (but even this is changing towards strong typing)
Type wars

- **Static vs. dynamic typing**
 - **static typing**
 - catches many common programming errors at compile time
 - avoids run-time overhead of dynamic typing
 - **dynamic typing**
 - static type systems are restrictive
 - type declarations are wordy and slow the programmer down

- **In practice**
 - static type systems are restrictive so an escape system is added
 - e.g. C casts (void *) defeat typing
 - unclear whether this is the best or worst of the two worlds
 - static type systems are getting better
 - overloading, generics, type inference, virtual method invocation
 - dynamic typing used where static typing is too restrictive
 - “casts” with type checks and conversions
Type equivalence

• In many modern languages we can define *named* types

  ```
  type Height = Integer
  type Weight = Integer
  var h : Height, w : Weight
  ...
  h := 130;  w := 150;  h := h + w ...
  ```

• When are two types equivalent?

 – *Structural equivalence*
 • when they are the same following substitution of type definitions
 – example languages: C, Triangle

 – *Name equivalence*
 • only when they are the same named type
 – example languages: Ada, Pascal, (C++), (Java)

• The form of type equivalence has fundamental bearing on type checking
miniJava type checking

- Fairly simple – bottom up
 - leaves of the AST are Terminals: Identifiers, Literals, and Operators
 - We can assign each of these a specific TypeDenoter (BaseType, ClassType, or ArrayType)
 - The specific types are manifest (Literals) or extracted from the declaration of an Identifier
 - Expression, Reference, and Declaration nodes compute their type from their children
 - specific Statement nodes make some checks for type agreement
 - AssignStmt
 - IfStmt
- special types
 - ERROR, UNSUPPORTED
Simple approach to type checking

- Define a set of possible types
 - set of base types and some ways to build new types

- Define a representation of programs
 - simple class of ASTs

- Define a type-assignment algorithm that
 - labels all nodes of an AST with zero or more types
 - handles many forms of overloading
 - essentially all languages have some form of overloading
 - addition: operation on integers or floats?

- Type checking
 - following type assignment each AST node is labeled with a set of types
 - program is type correct if all nodes have a single type
 - program contains type error(s) if some node has no type assignment or more than one possible type assignment
Characterization of a set of types

- Type values constructed from
 - basic types
 - Int, Real, Bool, ...
 - parameterized types
 (in the following, a type variable (α, β, \ldots) stands for any type)
 - tuple types
 $\alpha_1 \times \ldots \times \alpha_n$
 - function types
 $\alpha \rightarrow \beta$
 - array types
 $\text{Array}(\alpha)$

- named types
 - for name equivalence, if needed
 Complex $= \text{Real} \times \text{Real}$
Characterization of a simple class of ASTs

• **AST structure**
 – Leaves: two kinds
 • constants
 • identifiers (applied occurrences)
 – denoting variables or functions (including operators)
 – interior nodes: two kinds
 • tuple constructor
 • function application

– Example
 • Concrete syntax: a + 10
 • AST:
Type values at leaves

- Declarations provide type value(s) for AST leaves
 - a variable type is obtained from its (unique) declaration
 a: Int
 - constants have a manifest (unique) type
 10: Int
 5.3: Real
 true: Bool
 - functions or operators may have multiple types as a result of overloading
 +: Int \times Int \rightarrow Int
 +: Real \times Real \rightarrow Real

- The declarations are external to our simple ASTs
Generate possible type assignments

- Step 1: generate possible type assignments $\tau(v)$ for each node v by bottom-up traversal of AST
 - v is a leaf of the AST
 - $\tau(v) = \text{set of types associated with } v$
 - v is a tuple constructor (v_1, \ldots, v_k)
 - $\tau(v) = \{ t_1 \times \ldots \times t_k \mid t_1 \in \tau(v_1), \ldots, t_k \in \tau(v_k) \}$
 - v is function application $f(a)$
 - $\tau(v) = \{ r \mid (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \}$
Constrain type assignments

- Step 2: constrain type assignments $\sigma(v) \subseteq \tau(v)$ for each node v by top-down traversal of AST
 - v is root
 - $\sigma(v) = \tau(v)$
 - v is function application $f(a)$
 - $\sigma(f) = \{ d \rightarrow r \mid (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \text{ and } r \in \sigma(v) \}$
 - $\sigma(a) = \{ d \mid (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \text{ and } r \in \sigma(v) \}$
 - v is tuple constructor (v_1, \ldots, v_k)
 - $\sigma(v_i) = \{ t_i \mid t_1 \times \ldots \times t_i \times \ldots \times t_k \in \sigma(v) \}$
Type checking

- Type checking of an AST is successful if and only if $|\sigma(v)| = 1$ for every v in the AST
 - ex: $a + 10$
 - $\tau(v)$ is shown as $\{ \ldots \}$
 - $\sigma(v) \subseteq \tau(v)$ is shown by underlining elements of $\tau(v)$
 - type checking is successful
 - overloading is resolved

```plaintext
+ ( )
  |   |
  a   10
  { Int } { Int × Int }
  { Int × Int → Int, Real × Real → Real }
```

- $\sigma(v)$ is the set of types that can be assigned to v.
- $\tau(v)$ is the set of types that v has in the current context.
- $\sigma(v) \subseteq \tau(v)$ means that v can be assigned to types that are a subset of those it is already typed as.
- Overloading is resolved by ensuring that each type is assigned to at most one type.
- Type checking is successful if for every node v in the AST, $|\sigma(v)| = 1$.

The diagram shows the type checking process for the expression $a + 10$, where a is typed as Int and 10 is also typed as Int, and the addition operator is typed as Int → Int.
More examples

• Declarations

 +: Real × Real → Real
 +: Complex × Complex → Complex
 +: Real × Real → Complex
 :
 := Real × Real → Bool
 := Complex × Complex → Bool

 r: Real
 c: Complex

• Examples

 r + r = r
 r = c
 (r + r) = (r + r)
Extensions

• Parametric polymorphism (generic types)
 – parameterized types that include type variables that vary over all types

 index: $\text{Array}(\alpha) \times \text{Int} \rightarrow \alpha$

 $=: \alpha \times \alpha \rightarrow \text{Bool}$
 – substitute type variables in generate and constrain phases
 – ex
 • a: $\text{Array}(\text{Real})$, i: Int
 • type assignment for a[i]?
Commands

• Include commands in AST with a new type Stmt
 – parametric polymorphism: type variables α vary over all types
 ifCmd: $\text{Bool} \times \text{Stmt} \times \text{Stmt} \rightarrow \text{Stmt}$
 assignCmd : $\alpha \times \alpha \rightarrow \text{Stmt}$
 sequenceCmd : $\text{Stmt} \times \text{Stmt} \rightarrow \text{Stmt}$
 – ex
 • $x: \text{Int}$
 • type assignment for $x := 3; x := 4$?
Type inference

- No types declared for variables – types must be inferred
 - a type variable α_x is used to describe the type of each occurrence of program variable x
 - equality and membership become equations rather than true/false propositions (solved using resolution theorem proving)
 - types are inferred if there exists a unique solution for type equations at end of constrain phase
- found in various languages including Haskell
- Example
 What is the type assignment for a, b and i

 $$a[i] := b[i+1] * 5.5$$

 Given only the types for the operators (+, *, := , and indexing) as defined in these slides