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Topics

• Type checking
– examples of type checking
– role of types in programming languages
– structural vs.name equivalence in types

• A general framework for type checking
– definitions

• type synthesis
• type constraints

– examples
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Type checking
• Basic examples

– assignment statements
• do target and expression type agree? int x = 1 + 2;

– Expressions
• what is the type of the result? x + 3 != 4

• What are the types of the intermediate expressions?

– function/procedure calls
• do arguments types agree with parameter types?
• does a function return a result of the appropriate type?

– type definitions and variable declarations
• is the type well-formed?

– does a class type refer to an identified class?
– void [ ]  ?

• Systematically answering such questions is called “type checking”
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Type analysis
• Where do we need to use type analysis

– automatic conversions/coercions
• convert byte or short to int or long
• convert byte, short, int, long to float or double
• automatic boxing/unboxing of int to/from Integer in Java

– overload resolution
• which definition of “+” should be used?

– inheritance
• which methods are available on an object?
• can the invocation of an overridden method be statically determined? 

– type inference
• variables or parameters without type declarations (e.g. python)
• can a type be inferred for a missing declaration?
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Types in modern programming languages

• What is a type?
– a set of possible values (and their representation)
– a set of permissible operations

• Purpose of types
– safety and correctness

• apply only permissible operations on values with correct representation
– improve readability and comprehensibility
– provide consistency checks on programs
– provide information to improve efficiency of execution

• eliminate run-time type checks
• efficient space (re)use
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Type safety

• Type safety is also known as “strong typing”
– all operations applied to values with a known representation

• pointer dereference can not be applied to arbitrary integers
• arithmetic operations are applied to values of known representation
• appropriate methods are applied to objects

– strongly typed languages guarantee to detect any situation where this 
is not the case at compile time

• Java, Triangle, modern C (C99 and later)

• Dynamic typing
– the type is part of the value

• python 
– type safety is checked at runtime, not compile time

• so may result in runtime error
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When does type checking take place?

• Compile time 
– statically typed

• Java, Triangle, C++, Haskell, ...

• Run-time
– dynamically typed

• JavaScript, Perl, Python, PHP, Ruby, ...
• Java casts

• Never
– untyped

• Assembler (but even this is changing towards strong typing)

Strong typing
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Type wars
• Static vs. dynamic typing

– static typing
• catches many common programming errors at compile time
• avoids run-time overhead of dynamic typing

– dynamic typing
• static type systems are restrictive
• type declarations are wordy and slow the programmer down

• In practice
– static type systems are restrictive so an escape system is added

• e.g. C casts (void *) defeat typing 
• unclear whether this is the best or worst of the two worlds

– static type systems are getting better
• overloading, generics, type inference, virtual method invocation
• dynamic typing used where static typing is too restrictive

– “casts” with type checks and conversions
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Type equivalence

• In many modern languages we can define named types
type Height = Integer

type Weight = Integer

var h : Height, w: Weight

...  h := 130;  w := 150;  h := h + w ...    is this OK?

• When are two types equivalent?
– Structural equivalence

• when they are the same following substitution of type definitions
– example languages:  C,  Triangle

– Name equivalence 
• only when they are the same named type

– example languages: Ada, Pascal, (C++), (Java)

• The form of type equivalence has fundamental bearing on type checking
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miniJava type checking

• Fairly simple – bottom up
– leaves of the AST are Terminals:  Identifiers, Literals, and Operators

• We can assign each of these a specific TypeDenoter (BaseType, 
ClassType, or ArrayType)

– The specific types are manifest (Literals) or extracted from the declaration of 
an Identifier

– Expression, Reference, and Declaration nodes compute their type 
from their children 

– specific Statement nodes make some checks for type agreement
• AssignStmt
• IfStmt

– special types
• ERROR, UNSUPPORTED
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Simple approach to type checking

• Define a set of possible types
– set of base types and some ways to build new types

• Define a representation of programs
– simple class of ASTs

• Define a type-assignment algorithm that
– labels all nodes of an AST with zero or more types
– handles many forms of overloading

• essentially all languages have some form of overloading
– addition: operation on integers or floats?

• Type checking 
– following type assignment each AST node is labeled with a set of types 

• program is type correct if all nodes have a single type
• program contains type error(s) if some node has no type assignment or more than 

one possible type assignment
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Characterization of a set of types

• Type values constructed from
– basic types

• Int, Real, Bool, ...

– parameterized types 
(in the following, a type variable (α, β, ...) stands for any type) 

• tuple types
α1 × ... × αn

• function types
α → β

• array types
Array(α)

– named types
• for name equivalence, if needed

Complex = Real × Real 
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Characterization of a simple class of ASTs

• AST structure
– Leaves:  two kinds

• constants
• identifiers (applied occurrences)

– denoting variables or functions (including operators)

– interior nodes: two kinds
• tuple constructor ()
• function application •

– Example 
• Concrete syntax:  a + 10
• AST:
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Type values at leaves

• Declarations provide type value(s) for AST leaves
– a variable type is obtained from its (unique) declaration

a: Int

– constants have a manifest (unique) type 
10: Int
5.3: Real
true: Bool

– functions or operators may have multiple types as a result of 
overloading

+: Int × Int → Int
+: Real × Real  → Real 

• The declarations are external to our simple ASTs
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Generate possible type assignments

• Step 1:  generate possible type assignments τ(v) for each node v by 
bottom-up traversal of AST
– v is a leaf of the AST

• τ(v) = set of types associated with v

– v is a tuple constructor (v1, ... , vk)
• τ(v) = { t1 × ... × tk |  t1 ∈ τ(v1) , ... , tk ∈ τ(vk) }

– v is function application f(a)
• τ(v) = { r |  (d → r) ∈ τ(f)  and  d ∈ τ(a) }
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Constrain type assignments

• Step 2:  constrain type assignments σ(v) ⊆ τ(v) for each node v by top-
down traversal of AST
– v is root

• σ(v) = τ(v)

– v is function application f(a)
• σ(f) = { d → r |  (d → r) ∈ τ(f)  and  d ∈ τ(a)  and  r ∈ σ(v) }
• σ(a) = { d |  (d → r) ∈ τ(f)  and  d ∈ τ(a)  and  r ∈ σ(v) }

– v is tuple constructor (v1, ... , vk)
• σ(vi) = { ti | t1 × ... × ti × ... × tk ∈ σ(v) }
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Type checking

• Type checking of an AST is successful if and only if  | σ(v) | = 1  for every 
v in the AST
– ex:  a + 10

τ(v) is shown as { ... }
σ(v) ⊆ τ(v) is shown by 
underlining elements of τ(v) 

– type checking is successful 
– overloading is resolved

•

()+

a 10

{ Int × Int  → Int,
Real × Real  → Real }

{ Int × Int }

{ Int } { Int }

{ Int }
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More examples

• Declarations
+: Real × Real  → Real
+: Complex × Complex → Complex
+: Real × Real  → Complex

=: Real × Real  → Bool
=: Complex × Complex → Bool

r: Real
c: Complex 

• Examples
r + r = r
r = c
(r + r) = (r + r)
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Extensions

• Parametric polymorphism (generic types)
– parameterized types that include type variables that vary over all 

types
index:  Array(α) × Int → α
=: α × α → Bool

– substitute type variables in generate and constrain phases
– ex

• a: Array(Real),   i: Int
• type assignment for a[i]?
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Commands

• Include commands in AST with a new type Stmt
– parametric polymorphism:  type variables α vary over all types

ifCmd:  Bool × Stmt × Stmt → Stmt
assignCmd : α × α → Stmt
sequenceCmd : Stmt × Stmt → Stmt

– ex
• x: Int
• type assignment for x := 3; x :=4 ?
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Type inference

• No types declared for variables – types must be inferred
– a type variable αx is used to describe the type of each occurrence of 

program variable x
– equality and membership become equations rather than true/false 

propositions (solved using resolution theorem proving)
• types are inferred if there exists a unique solution for type equations at 

end of constrain phase
– found in various languages including Haskell
– Example

What is the type assignment for a, b and i
a[i] := b[i+1] * 5.5 

Given only the types for the operators (+, *, := , and indexing) as defined in 
these slides
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