
• Reading
– PLPJ Contextual Analysis: Type Checking (secn 5.2)

COMP 520 - Compilers

Lecture 11 (Thu Mar 3)

Contextual analysis: Type Checking

[11] Types and type checkingCOMP 520: Compilers - Prins

2[11] Types and type checkingCOMP 520: Compilers - Prins

Topics

• Type checking
– examples of type checking
– role of types in programming languages
– structural vs.name equivalence in types

• A general framework for type checking
– definitions

• type synthesis
• type constraints

– examples

3[11] Types and type checkingCOMP 520: Compilers - Prins

Type checking
• Basic examples

– assignment statements
• do target and expression type agree? int x = 1 + 2;

– Expressions
• what is the type of the result? x + 3 != 4

• What are the types of the intermediate expressions?

– function/procedure calls
• do arguments types agree with parameter types?
• does a function return a result of the appropriate type?

– type definitions and variable declarations
• is the type well-formed?

– does a class type refer to an identified class?
– void [] ?

• Systematically answering such questions is called “type checking”

4[11] Types and type checkingCOMP 520: Compilers - Prins

Type analysis
• Where do we need to use type analysis

– automatic conversions/coercions
• convert byte or short to int or long
• convert byte, short, int, long to float or double
• automatic boxing/unboxing of int to/from Integer in Java

– overload resolution
• which definition of “+” should be used?

– inheritance
• which methods are available on an object?
• can the invocation of an overridden method be statically determined?

– type inference
• variables or parameters without type declarations (e.g. python)
• can a type be inferred for a missing declaration?

5[11] Types and type checkingCOMP 520: Compilers - Prins

Types in modern programming languages

• What is a type?
– a set of possible values (and their representation)
– a set of permissible operations

• Purpose of types
– safety and correctness

• apply only permissible operations on values with correct representation
– improve readability and comprehensibility
– provide consistency checks on programs
– provide information to improve efficiency of execution

• eliminate run-time type checks
• efficient space (re)use

6[11] Types and type checkingCOMP 520: Compilers - Prins

Type safety

• Type safety is also known as “strong typing”
– all operations applied to values with a known representation

• pointer dereference can not be applied to arbitrary integers
• arithmetic operations are applied to values of known representation
• appropriate methods are applied to objects

– strongly typed languages guarantee to detect any situation where this
is not the case at compile time

• Java, Triangle, modern C (C99 and later)

• Dynamic typing
– the type is part of the value

• python
– type safety is checked at runtime, not compile time

• so may result in runtime error

7[11] Types and type checkingCOMP 520: Compilers - Prins

When does type checking take place?

• Compile time
– statically typed

• Java, Triangle, C++, Haskell, ...

• Run-time
– dynamically typed

• JavaScript, Perl, Python, PHP, Ruby, ...
• Java casts

• Never
– untyped

• Assembler (but even this is changing towards strong typing)

Strong typing

8[11] Types and type checkingCOMP 520: Compilers - Prins

Type wars
• Static vs. dynamic typing

– static typing
• catches many common programming errors at compile time
• avoids run-time overhead of dynamic typing

– dynamic typing
• static type systems are restrictive
• type declarations are wordy and slow the programmer down

• In practice
– static type systems are restrictive so an escape system is added

• e.g. C casts (void *) defeat typing
• unclear whether this is the best or worst of the two worlds

– static type systems are getting better
• overloading, generics, type inference, virtual method invocation
• dynamic typing used where static typing is too restrictive

– “casts” with type checks and conversions

9[11] Types and type checkingCOMP 520: Compilers - Prins

Type equivalence

• In many modern languages we can define named types
type Height = Integer

type Weight = Integer

var h : Height, w: Weight

... h := 130; w := 150; h := h + w ... is this OK?

• When are two types equivalent?
– Structural equivalence

• when they are the same following substitution of type definitions
– example languages: C, Triangle

– Name equivalence
• only when they are the same named type

– example languages: Ada, Pascal, (C++), (Java)

• The form of type equivalence has fundamental bearing on type checking

10

miniJava type checking

• Fairly simple – bottom up
– leaves of the AST are Terminals: Identifiers, Literals, and Operators

• We can assign each of these a specific TypeDenoter (BaseType,
ClassType, or ArrayType)

– The specific types are manifest (Literals) or extracted from the declaration of
an Identifier

– Expression, Reference, and Declaration nodes compute their type
from their children

– specific Statement nodes make some checks for type agreement
• AssignStmt
• IfStmt

– special types
• ERROR, UNSUPPORTED

[11] Types and type checkingCOMP 520: Compilers - Prins

11[11] Types and type checkingCOMP 520: Compilers - Prins

Simple approach to type checking

• Define a set of possible types
– set of base types and some ways to build new types

• Define a representation of programs
– simple class of ASTs

• Define a type-assignment algorithm that
– labels all nodes of an AST with zero or more types
– handles many forms of overloading

• essentially all languages have some form of overloading
– addition: operation on integers or floats?

• Type checking
– following type assignment each AST node is labeled with a set of types

• program is type correct if all nodes have a single type
• program contains type error(s) if some node has no type assignment or more than

one possible type assignment

12[11] Types and type checkingCOMP 520: Compilers - Prins

Characterization of a set of types

• Type values constructed from
– basic types

• Int, Real, Bool, ...

– parameterized types
(in the following, a type variable (α, β, ...) stands for any type)

• tuple types
α1 × ... × αn

• function types
α → β

• array types
Array(α)

– named types
• for name equivalence, if needed

Complex = Real × Real

13[11] Types and type checkingCOMP 520: Compilers - Prins

Characterization of a simple class of ASTs

• AST structure
– Leaves: two kinds

• constants
• identifiers (applied occurrences)

– denoting variables or functions (including operators)

– interior nodes: two kinds
• tuple constructor ()
• function application •

– Example
• Concrete syntax: a + 10
• AST:

14[11] Types and type checkingCOMP 520: Compilers - Prins

Type values at leaves

• Declarations provide type value(s) for AST leaves
– a variable type is obtained from its (unique) declaration

a: Int

– constants have a manifest (unique) type
10: Int
5.3: Real
true: Bool

– functions or operators may have multiple types as a result of
overloading

+: Int × Int → Int
+: Real × Real → Real

• The declarations are external to our simple ASTs

15[11] Types and type checkingCOMP 520: Compilers - Prins

Generate possible type assignments

• Step 1: generate possible type assignments τ(v) for each node v by
bottom-up traversal of AST
– v is a leaf of the AST

• τ(v) = set of types associated with v

– v is a tuple constructor (v1, ... , vk)
• τ(v) = { t1 × ... × tk | t1 ∈ τ(v1) , ... , tk ∈ τ(vk) }

– v is function application f(a)
• τ(v) = { r | (d → r) ∈ τ(f) and d ∈ τ(a) }

16[11] Types and type checkingCOMP 520: Compilers - Prins

Constrain type assignments

• Step 2: constrain type assignments σ(v) ⊆ τ(v) for each node v by top-
down traversal of AST
– v is root

• σ(v) = τ(v)

– v is function application f(a)
• σ(f) = { d → r | (d → r) ∈ τ(f) and d ∈ τ(a) and r ∈ σ(v) }
• σ(a) = { d | (d → r) ∈ τ(f) and d ∈ τ(a) and r ∈ σ(v) }

– v is tuple constructor (v1, ... , vk)
• σ(vi) = { ti | t1 × ... × ti × ... × tk ∈ σ(v) }

17[11] Types and type checkingCOMP 520: Compilers - Prins

Type checking

• Type checking of an AST is successful if and only if | σ(v) | = 1 for every
v in the AST
– ex: a + 10

τ(v) is shown as { ... }
σ(v) ⊆ τ(v) is shown by
underlining elements of τ(v)

– type checking is successful
– overloading is resolved

•

()+

a 10

{ Int × Int → Int,
Real × Real → Real }

{ Int × Int }

{ Int } { Int }

{ Int }

18[11] Types and type checkingCOMP 520: Compilers - Prins

More examples

• Declarations
+: Real × Real → Real
+: Complex × Complex → Complex
+: Real × Real → Complex

=: Real × Real → Bool
=: Complex × Complex → Bool

r: Real
c: Complex

• Examples
r + r = r
r = c
(r + r) = (r + r)

19[11] Types and type checkingCOMP 520: Compilers - Prins

Extensions

• Parametric polymorphism (generic types)
– parameterized types that include type variables that vary over all

types
index: Array(α) × Int → α
=: α × α → Bool

– substitute type variables in generate and constrain phases
– ex

• a: Array(Real), i: Int
• type assignment for a[i]?

20[11] Types and type checkingCOMP 520: Compilers - Prins

Commands

• Include commands in AST with a new type Stmt
– parametric polymorphism: type variables α vary over all types

ifCmd: Bool × Stmt × Stmt → Stmt
assignCmd : α × α → Stmt
sequenceCmd : Stmt × Stmt → Stmt

– ex
• x: Int
• type assignment for x := 3; x :=4 ?

21[11] Types and type checkingCOMP 520: Compilers - Prins

Type inference

• No types declared for variables – types must be inferred
– a type variable αx is used to describe the type of each occurrence of

program variable x
– equality and membership become equations rather than true/false

propositions (solved using resolution theorem proving)
• types are inferred if there exists a unique solution for type equations at

end of constrain phase
– found in various languages including Haskell
– Example

What is the type assignment for a, b and i
a[i] := b[i+1] * 5.5

Given only the types for the operators (+, *, := , and indexing) as defined in
these slides

	COMP 520 - Compilers�Lecture 11 (Thu Mar 3)�Contextual analysis: Type Checking
	Topics
	Type checking
	Type analysis
	Types in modern programming languages
	Type safety
	When does type checking take place?
	Type wars
	Type equivalence
	miniJava type checking
	Simple approach to type checking
	Characterization of a set of types
	Characterization of a simple class of ASTs
	Type values at leaves
	Generate possible type assignments
	Constrain type assignments
	Type checking
	More examples
	Extensions
	Commands
	Type inference

