
• Reading
– Chapter 6, section 6.1 - 6.5 (pp 173 - 229)

COMP 520 - Compilers

Lecture 13 (Tue Mar 29, 2022)

Run-time organization

Run-time OrganizationCOMP 520 Compilers - Prins

2Run-time OrganizationCOMP 520 Compilers - Prins

Where are we?
• We have completed discussion of the compiler “front-end”

– scanning
– parsing
– contextual analysis

• Semantics of a program
– defined in terms of its decorated AST
– could be executed by an AST “interpreter”

• Next is “back end”
– code generation
– translate the AST semantics to operations in the target machine

• Approach
– first try to understand the target machine

• (lower-level) storage and execution model connects front end to back end
– then study the translation

• challenge: what is done at compile time and what is done at run time?

3Run-time OrganizationCOMP 520 Compilers - Prins

Run-time organization
• Overview of run-time issues

– memory model and organization
– representation of values
– evaluation of expressions
– procedures and functions

• activation records
• non-local variable access
• parameter passing

– runtime resources and management system

• Run-time organization for object-oriented languages
– creation of, and access to, objects
– inheritance and virtual methods

4Run-time OrganizationCOMP 520 Compilers - Prins

Target machine model
• Machine model

– physical
• MIPS as studied in computer organization class
• Intel Architecture (x86-64) or ARM

– abstract
• Triangle Abstract Machine (TAM) from our text
• Java Virtual Machine (JVM)

• Application Binary Interface (ABI)
– a set of conventions

• how values are represented (integers, floating point values, byte order)
• where values are stored (stack, heap)
• basic runtime facilities (memory allocation, garbage collection)

– examples
• MIPS
• TAM, JVM, .NET Microsoft Common Language Runtime (CLR)

5Run-time OrganizationCOMP 520 Compilers - Prins

ABI: MIPS memory organization
• ABI defines fixed addresses and usage conventions

• Key areas
– “Reserved”

• for use by operating system

– Text segment
• generated MIPS instructions loaded here

– Stack segment
• procedure invocation and expression

evaluation stack
– expands downwards

– Data segment
• static constants and variables are placed at the bottom

– their locations are known by the compiler

• dynamically-allocated data values are placed above the static data
– e.g. new instances of a class
– their locations cannot be predicted by the compiler (depends on run-time behavior)
– expands upwards
– memory for deleted (or unused) values can be reused

6Run-time OrganizationCOMP 520 Compilers - Prins

TAM memory organization
• Two separate memories

– Code store
• compiler-generated program is loaded

into code segment
• predefined runtime functions are located

in the primitive segment
• TAM can not write into code store

– Data store
• static constants and variables are loaded

into global segment
• procedure invocation and expression

evaluation use execution stack
– expands downwards

• dynamically allocated values are
allocated on the heap

– expands upwards
– memory for deleted values can be reused

• ABI defines fixed addresses and usage
conventions

– various locations in memories are
accessed relative to machine registers
(CB, SB, HT, etc.) code store

code
segment

primitive
segment

CB

CP

CT

PB

PT

data store

global
segment

dynamic
data

(heap)

execution
stack

SB

LB

ST

HT

HB

7Run-time OrganizationCOMP 520 Compilers - Prins

Representation of values in memory
• Values of a given type must have a well-defined representation

– ex: double, int, char, boolean
– typically represented as 64-bit, 32-bit, 16-bit, or 8-bit binary values
– chosen to match underlying machine hardware
– it is easiest for a compiler if all values of a type have the same size

• For aggregate values (records, arrays, class instances)
– compiler must know how to access components
– aggregate values may have static size or dynamic size
– indirect representation of dynamic size values

• fixed sized pointer to location of dynamic sized value

8Run-time OrganizationCOMP 520 Compilers - Prins

Execution model: Stack machine
• Stack machine

– all operations take place at stack top
– implementations

• Burroughs 5500 (hardware interpreter)
• TAM (software interpreter)

• Stack operations
STORE addr pop value off stack top and store at address addr
LOAD addr push value at address addr onto top of stack
LOADL c push literal value c onto top of stack
ADD, SUB, … perform operation at stack top:

pop operands, push result
CALL foo execute foo: foo receives its arguments at the

stack top, consumes them, and returns its
result at stack top

9Run-time OrganizationCOMP 520 Compilers - Prins

Code generation and execution on stack machines
• Given expression AST, construct code for expression evaluation on stack

– via postorder traversal of AST
• generate code for children of node (l to r) then generate code for node
• leaf action: load value
• non-leaf action: perform operation

• example: x + 2 + 3 * x
AST Code Execution on stack machine (x = 5)

+

+ *

x 2 3 x

LOAD x
LOADL 2
ADD
LOADL 3
LOAD x
MUL
ADD

5
2

7 7
3
5

7
15

22

10Run-time OrganizationCOMP 520 Compilers - Prins

Triangle code generation
• Triangle Abstract Machine (TAM)

– Implements a stack machine

let

var n: Integer

var c: Char

in

begin

c := ‘&’;

n := n + 1

end

Triangle
PUSH 2 // space for n, c

LOADL 38 // ascii code ‘&’

STORE 1[SB] // store in c

LOAD 0[SB] // load n

LOADL 1

CALL add

STORE 0[SB] // update n

POP 2 // delete space

HALT

TAM instructions

11Run-time OrganizationCOMP 520 Compilers - Prins

Execution model: Register machine
• Register machine

– all operations take place in fixed collection of registers
– implementations

• RISC architectures, such as MIPS

• Register machine operations
STORE r, addr store value in register r at address addr
LOAD r, addr load value at address addr into register r
LOADL r, c load literal value c into register r
ADD r3, r1, r2 r3 = r1 + r2 (r1, r2, r3 registers)
SUB r3, r1, r2 r3 = r1 – r2 (r1, r2, r3 registers)
…

• A register machine can simulate a stack machine
– part of Application Binary Interface (ABI),

• e.g. a fixed register is designated as the stack pointer
– sometimes supported in hardware (e.g. ia-32 floating point)

12Run-time OrganizationCOMP 520 Compilers - Prins

Expression evaluation on register machines
• Naive strategy

– simulate stack machine
– load values at stack top into registers for operations, and save result

back onto stack

• Better strategy
– some values can be kept in registers rather than on the stack

• ex: x + 2 + 3 * x
• finding optimal solution with fixed number of registers is NP-hard

lw r1,x

li r2,2

add r1,r2,r2

li r3,3

mul r3,r1,r3

add r2,r3,r1

13Run-time OrganizationCOMP 520 Compilers - Prins

Procedures and functions
• The procedure and function abstraction

– allows us to build large programs and reuse code
– invocation:

• call from within a statement or expression
• return (possibly with result) to point of call

– local variables have separate instantiations for each invocation
• enables recursive invocation

• Implementation of procedure and function invocation
– a convention
– machine dependent and possibly hardware assisted
– division of responsibility between caller and callee

• caller: set up arguments and space for result
• callee: create space for locals, execute body, clean up space, and return

– debuggers rely on the convention being followed

14Run-time OrganizationCOMP 520 Compilers - Prins

Anatomy of a function (Triangle)

func fib(n : Integer) : Integer ~
if n <= 2

then 1
else fib(n-1) + fib(n-2)

function name

argument

parameter

function definition

function body

(recursive) function call

15Run-time OrganizationCOMP 520 Compilers - Prins

Lifetime of a function / procedure
• The lifetime of an activation of procedure P is:

– all steps taken from the start of execution of P until its return to the
point of call

– includes the lifetimes of procedures that P calls

• Dynamic concept
– may depend on parameters

• Important fact
– Given activations of procedures A and B, their lifetimes are either

disjoint or properly nested

16Run-time OrganizationCOMP 520 Compilers - Prins

Activation trees

func f (n : Integer) : Integer ~
if n <= 2

then 1
else f(n-1) + f(n-2)

f(4)

f(3)

f(2)

f(2)

f(1)
•Depends on runtime
behavior

•May be different for
each program input

Fibonacci function

17Run-time OrganizationCOMP 520 Compilers - Prins

Execution stack and activation records
• Activation tree suggests the use of a stack to keep track of currently

active procedures
– superficially similar to nested scope
– but activation tree is dynamic and scope is static

• Stack usually laid out in contiguous storage
– each entry on the stack is a procedure or function activation record

• Information needed to manage one procedure activation
• In our text, an activation record is known as a “frame”

• If F calls G, then G’s activation record contains
– information to resume execution of F (return address)
– arguments from F to G (often viewed as part of F)
– local variables of G
– result of G to F (often viewed as part of F)

18Run-time OrganizationCOMP 520 Compilers - Prins

Components of a frame
• Register conventions

– the frame pointer LB (FP in MIPS) contains address of start of the frame
– the stack pointer ST (SP in MIPS) contains address of the end of the frame

and is the top of the execution stack

Static link

Dynamic link

Return address

space for local
variables

expression
evaluation

stack

LB

ST

Dynamic link
– points at start of frame of

calling procedure

Static Link
– points at start of AR of

statically enclosing
procedure (more later)

Return address
– address to resume execution

of caller

19Run-time OrganizationCOMP 520 Compilers - Prins

Who’s Doing What and When?

Code

Static data

Stack

Heap

Free memory

Generated by compiler

Space reserved by compiler

Activation records generated
at run time

Managed by run-time
dynamic allocation

20COMP 520 Compilers - Prins

Recall TAM memory organization
• Two separate memories

– Code store
• compiler-generated program is loaded

into code segment
• predefined runtime functions are located

in the primitive segment
• TAM can not write into code store

– Data store
• static constants and variables are loaded

into global segment
• procedure invocation and expression

evaluation uses execution stack
– expands downwards

• dynamically allocated values are
allocated on the heap

– expands upwards
– memory for deleted values can be reused

• ABI defines fixed addresses and usage
conventions

– various locations in memories are
accessed relative to machine registers
(CB, SB, HT, etc.) code store

code
segment

primitive
segment

CB

CP

CT

PB

PT

data store

global
segment

dynamic
data

(heap)

execution
stack

SB

LB

ST

HT

HB

Run-time Organization

21Run-time OrganizationCOMP 520 Compilers - Prins

Procedures and functions
• Run-time access to variables

– local variables
– global variables
– non-local, non-global variables (Triangle)
– object instances and members (miniJava)

• Procedures and functions
– frame maintenance
– parameter passing
– result value

• Heap-allocated variables
– runtime heap management

22COMP 520 Compilers - Prins

Runtime access to local variables
• The value of a local variable may be stored

– in an activation record on the execution stack
• if the variable lifetime = procedure lifetime

– in the heap
• if the variable lifetime can exceed procedure lifetime

– E.g. a reference returned from a procedure

• Two models of scoped variables
– local/global scope (C)

• all procedures (logically) declared at global scope
• variables are declared at global scope or at local scope
• variable references are local or global

– where do we find the value at runtime?

– nested procedures (Pascal, Triangle)
• procedure definitions may be nested
• variables are declared in procedures (including a special “global” procedure)
• variable references may refer to a declaration in a surrounding procedure

– where do we find the value at runtime?

EASY!

HARD!

Run-time Organization

23

Local/global scope: access to variables
• A variable x can be declared

– at global scope
• the compiler knows dG(x), the offset of x

relative to the stack base SB
• to get the value of x at stack top in TAM

– LOAD dG(x)[SB]
• to store value at stack top into x

– STORE dG(x)[SB]

– at local scope in procedure P
• the variable is allocated in the frame for P and

is available only while P is executing.
• the compiler knows d(x), the offset of x relative to LB
• to get the value of x at stack top

– LOAD d(x)[LB]
• to store value at stack top into x

– STORE d(x)[LB]
Run-time OrganizationCOMP 520 Compilers - Prins

global
segment

execution
stack

SB

LB

ST proc P

24COMP 520 Compilers - Prins

Object access (preview)
• Classes

class A {int x; void p(){x = 3;} }

– Information known to the compiler
• class A : SA = size of class A (# fields)
• field x: dx = displacement of field x within A

• Objects
– instances are created on the heap

A a = new A();

– access to members
a.x = 2;

a.p();

mJAM
runtime
layout

a

LB

da

activation record on stack

object instance in heap

xdx

SA

reserved

Run-time Organization

25

Local/gobal scope: frame maintenance
• Procedure declaration

int p(int x, int y) { return x+y; }

• Procedure call
int x = p(2*3, 4) + 1;

• Steps taken at point of call
1. evaluate each argument expression at stack top

• one value on the stack for each argument
2. create new frame at stack top

• space for dynamic link and return address (static link unused)
3. Jump to procedure at appropriate address in instruction store

• Steps taken by the callee
– save caller LB into dynamic link
– save caller return address
– set LB to start of current frame
– execute body
– restore LB of caller
– restore ST of caller, popping parameters of caller and pushing result from callee
– return to caller at RA

COMP 520 Compilers - Prins Run-time Organization

26COMP 520 Compilers - Prins

Nested procedures and non-local variables (Triangle)

let

var a: Integer;

proc F(b: Integer) ~

let

var b2: Integer;

proc G(c: Integer) ~

begin

… a, b, b2, c,
F(…), G(…)

end

in

… a, b, b2, F(…), G(…)

in

… a, F(…)

Run-time Organization

27

level 0

COMP 520 Compilers - Prins

Nested procedures and non-local variables (Triangle)

let

var a: Integer;

proc F(b: Integer) ~

let

var b2: Integer;

proc G(c: Integer) ~

begin

… a, b, b2, c,
F(…), G(…)

end

in

… a, b, b2, F(…), G(…)

in

… a, F(…)

level 1

level 2

Variable Access and Procedure Call

28COMP 520 Compilers - Prins

Nested procedures: access to non-local variables
• Procedure nesting level

– defined as the number of enclosing procedure or function
declarations at a given point in a program

• Given a reference to a variable x
– Declaration level dx

• procedure nesting level at point of declaration of x
– Reference level rx

• procedure nesting level at reference of x
– rx ≥ dx

• To find value of x at reference level rx in TAM
– assume x is stored at offset h in frame of declaring procedure

LOAD h[LB] // if rx – dx = 0
LOAD h[L1] // if rx – dx = 1 L1 = LOAD 0[LB] (the static link)
LOAD h[L2] // if rx – dx = 2 L2 = { LOAD 0[LB]; LOADI }
LOAD h[L3] // if rx – dx = 3 L3 = { LOAD 0[LB]; LOADI; LOADI }

…. ….. …..

Run-time Organization

29COMP 520 Compilers - Prins

Nested Procedures: frame maintenance
• At procedure call

– call P occurs at reference level rP
– P is declared at declaration level dP
– rP – dP ≥ 0

• Check some examples
– F calls F, F calls G, G calls F
– how do we set the dynamic link? how do we set the static link?

• Steps taken by the caller
– establish static link at start of frame (current stack top)

• Steps taken by the callee
– save caller LB into dynamic link
– execute body
– restore LB of caller
– restore ST of caller
– pop caller arguments off stack
– push result on the stack
– return to caller

Run-time Organization

30COMP 520 Compilers - Prins

Parameter passing mechanisms
• Definition

– argument
• passed into a procedure or function

– parameter
• stands for something passed into a procedure or function

• Questions
– when are arguments of function calls evaluated?

• most languages evaluate arguments at the point of call
– to what are the parameters bound?

• values?
• addresses?
• functions?

Run-time Organization

31COMP 520 Compilers - Prins

Call-by-value
• Frequently used (e.g. C, Java)

– ex
let

proc g(x: Integer) ~ x := x + 1
var y: Integer

in
y := 5; g(y); print(y)

– implementation
• argument is evaluated at stacktop (= value of y) by caller
• callee parameter x is directly before activation record of g
• modifications to x have no effect on y, because argument is popped on

return by callee

• Call-by-value-result
– x is copied back into y on termination of g

Run-time Organization

32COMP 520 Compilers - Prins

Call-by-reference
• the address is passed instead of a value (e.g. Pascal var parameter)

– ex
let

proc g(var x: Integer) ~ x := x + 1
var y: Integer

in
y := 5; g(y); print(y)

– implementation
• argument must be a variable
• argument is evaluated at stacktop (= address of y) by caller
• callee parameter x is directly before activation record of g
• a reference to x requires dereference of the pointer
• a change to x changes y

– why do this?

• Aliasing
– two parameters may refer to the same location or a parameter may refer to

the same location as a global variable
– is this a problem?

Run-time Organization

33COMP 520 Compilers - Prins

• need to be allocated and deallocated at run-time
language allocation deallocation
C malloc free
C++ new delete
Java new (garbage collection)
Matlab (implicit) (reference counting)

• values on the heap are always passed as a reference
– for performance reasons
– but can lead to extensive aliasing

Values that live on the heap

Run-time Organization

34COMP 520 Compilers - Prins

Run-time API
• alloc(k)

– locates a block of at least k bytes in free space pool, removes it from
pool, returns its address

• free(p)
– places the block pointed to by p back in free space pool
– Not needed if unused storage is automatically reclaimed

Run-time Organization

35COMP 520 Compilers - Prins

Issues in Heap Management
• Wasted space

– If alloc returns blocks larger than requested, excess space is wasted

• Fragmentation
– After a series of alloc/free commands, free space pool becomes

fragmented, preventing allocation of large blocks

• Speed
– alloc and free should be inexpensive

Run-time Organization

	COMP 520 - Compilers�Lecture 13 (Tue Mar 29, 2022)�Run-time organization
	Where are we?
	Run-time organization
	Target machine model
	ABI: MIPS memory organization
	TAM memory organization
	Representation of values in memory
	Execution model: Stack machine
	Code generation and execution on stack machines
	Triangle code generation
	Execution model: Register machine
	Expression evaluation on register machines
	Procedures and functions
	Anatomy of a function (Triangle)
	Lifetime of a function / procedure
	Activation trees
	Execution stack and activation records
	Components of a frame
	Who’s Doing What and When?
	Recall TAM memory organization
	Procedures and functions
	Runtime access to local variables
	Local/global scope: access to variables
	Object access (preview)
	Local/gobal scope: frame maintenance
	Nested procedures and non-local variables (Triangle)
	Nested procedures and non-local variables (Triangle)
	Nested procedures: access to non-local variables
	Nested Procedures: frame maintenance
	Parameter passing mechanisms
	Call-by-value
	Call-by-reference
	Values that live on the heap
	Run-time API
	Issues in Heap Management

