COMP 520 - Compilers
Lecture 13 (Tue Mar 29, 2022)

Run-time organization

 Reading

— Chapter 6, section 6.1 - 6.5 (pp 173 - 229)

Run-time Organization

Where are we?

 We have completed discussion of the compiler “front-end”
— scanning
— parsing
— contextual analysis

« Semantics of a program
— defined in terms of its decorated AST
— could be executed by an AST “interpreter”

* Nextis “back end”
— code generation
— translate the AST semantics to operations in the target machine

« Approach
— first try to understand the target machine
» (lower-level) storage and execution model connects front end to back end
— then study the translation
» challenge: what is done at compile time and what is done at run time?

COMP 520 Compilers - Prins Run-time Organization

Run-time organization

« Overview of run-time issues
— memory model and organization
— representation of values
— evaluation of expressions

— procedures and functions
 activation records
* non-local variable access
« parameter passing

— runtime resources and management system
* Run-time organization for object-oriented languages

— creation of, and access to, objects
— inheritance and virtual methods

COMP 520 Compilers - Prins Run-time Organization

Target machine model

 Machine model
— physical
» MIPS as studied in computer organization class
* Intel Architecture (x86-64) or ARM
— abstract

» Triangle Abstract Machine (TAM) from our text
« Java Virtual Machine (JVM)

* Application Binary Interface (ABI)

— a set of conventions
* how values are represented (integers, floating point values, byte order)
» where values are stored (stack, heap)
 basic runtime facilities (memory allocation, garbage collection)
— examples
 MIPS
« TAM, JVM, .NET Microsoft Common Language Runtime (CLR)

COMP 520 Compilers - Prins Run-time Organization @ 4

ABI:

MIPS memory organization

« ABI defines fixed addresses and usage conventions

« Key areas

7Hff fffc, o,

“‘Reserved”

» for use by operating system l
Text segment T

» generated MIPS instructions loaded here Dynamic data

Static data

10000000, _,
Stack segment “

* procedure invocation and expression 400000, _
evaluation stack

— expands downwards

Data segment

 static constants and variables are placed at the bottom
— their locations are known by the compiler

» dynamically-allocated data values are placed above the static data
— e.g. new instances of a class

Stack segment

Data segment

Text segment

— their locations cannot be predicted by the compiler (depends on run-time behavior)

— expands upwards
— memory for deleted (or unused) values can be reused

COMP 520 Compilers - Prins Run-time Organization

TAM memory organization

 Two separate memories

— Code store CB,

« compiler-generated program is loaded
into code segment

» predefined runtime functions are located
in the primitive segment CP
 TAM can not write into code store

— Data store cT

e static constants and variables are loaded —
into global segment

» procedure invocation and expression
evaluation use execution stack
— expands downwards

« dynamically allocated values are
allocated on the heap PB
— expands upwards
— memory for deleted values can be reused

« ABI defines fixed addresses and usage
conventions

— various locations in memories are PT
accessed relative to machine registers -
(CB, SB, HT, etc.)

COMP 520 Compilers - Prins Run-time Organization

code
segment

primitive
segment

code store

LB
—

ST

HT
—

HB,

execution
stack

dynamic
data
(heap)

data store

Representation of values in memory

« Values of a given type must have a well-defined representation
— ex: double, int, char, boolean
— typically represented as 64-bit, 32-bit, 16-bit, or 8-bit binary values
— chosen to match underlying machine hardware
— it is easiest for a compiler if all values of a type have the same size

« For aggregate values (records, arrays, class instances)
— compiler must know how to access components
— aggregate values may have static size or dynamic size

— indirect representation of dynamic size values
« fixed sized pointer to location of dynamic sized value

COMP 520 Compilers - Prins Run-time Organization

Execution model: Stack machine

 Stack machine

— all operations take place at stack top

— implementations

« Burroughs 5500 (hardware interpreter)
« TAM (software interpreter)

« Stack operations
STORE adar
LOAD addr
LOADL ¢
ADD, SUB, ...

CALL foo

COMP 520 Compilers - Prins

pop value off stack top and store at address addr
push value at address addr onto top of stack
push literal value ¢ onto top of stack

perform operation at stack top:
pop operands, push result

execute foo: foo receives its arguments at the
stack top, consumes them, and returns its
result at stack top

Run-time Organization

Code generation and execution on stack machines

« Given expression AST, construct code for expression evaluation on stack
— via postorder traversal of AST
« generate code for children of node (I to r) then generate code for node
* leaf action: load value
* non-leaf action: perform operation

« example: x+2+3*x

AST Code Execution on stack machine (x = 5)
+ LOAD X 1 — 5 7 7 7 22
/ \ LOADL 2 2 3 15
+ * ADD >
/ \ / \ LOADL 3
LOAD X
X 2 3 X MUL

ADD

COMP 520 Compilers - Prins Run-time Organization

Triangle code generation

» Triangle Abstract Machine (TAM)
— Implements a stack machine

Triangle TAM instructions
Tet PUSH 2 // space for n, c
var n: Integer LOADL 38 // ascii code ‘&’
var c: Char STORE 1[SB] // store in c
in LOAD O[SB] // load n
begin LOADL 1
c 1= ‘& CALL add
n '=n + 1 STORE O[SB] // update n
end POP 2 // delete space
HALT

COMP 520 Compilers - Prins Run-time Organization

Execution model: Register machine

* Register machine
— all operations take place in fixed collection of registers

— implementations
e RISC architectures, such as MIPS

* Register machine operations

STORE r, addr store value in register r at address addr
LOAD r, addr load value at address addr into register r
LOADL r, c load literal value c into register r

ADD r3, r1, r2 r3=r1+r2 (r1, r2, r3 registers)

SUB r3, r1, r2 r3=r1-r2 (r1, r2, r3 registers)

* A register machine can simulate a stack machine

— part of Application Binary Interface (ABI),
* e.g. afixed register is designated as the stack pointer

— sometimes supported in hardware (e.g. ia-32 floating point)

COMP 520 Compilers - Prins Run-time Organization

Expression evaluation on register machines

« Naive strategy
— simulate stack machine

— load values at stack top into registers for operations, and save result
back onto stack

« Better strategy
— some values can be kept in registers rather than on the stack

e ex: X+2+3% X

« finding optimal solution with fixed number of registers is NP-hard
Tw rl,x
11 r2,2
add rl,r2,r2
11 r3,3
mul r3,rl,r3
add r2,r3,rl

COMP 520 Compilers - Prins Run-time Organization

Procedures and functions

« The procedure and function abstraction
— allows us to build large programs and reuse code

— invocation:
« call from within a statement or expression
 return (possibly with result) to point of call

— local variables have separate instantiations for each invocation
« enables recursive invocation

* Implementation of procedure and function invocation
— a convention
— machine dependent and possibly hardware assisted

— division of responsibility between caller and callee
 caller: set up arguments and space for result
 callee: create space for locals, execute body, clean up space, and return

— debuggers rely on the convention being followed

COMP 520 Compilers - Prins Run-time Organization

Anatomy of a function (Triangle)

function definition

function name

parameter

| / .
func fib(n : Integer) : Integer ~ /funct/onbody
if n <= 2

then 1 7
else fib(n-1) +‘fjb(n52)

// \\

(recursive) function call argument

COMP 520 Compilers - Prins Run-time Organization

Lifetime of a function / procedure

* The lifetime of an activation of procedure P is:

— all steps taken from the start of execution of P until its return to the
point of call

— includes the lifetimes of procedures that P calls

« Dynamic concept
— may depend on parameters

* |mportant fact

— Given activations of procedures A and B, their lifetimes are either
disjoint or properly nested

COMP 520 Compilers - Prins Run-time Organization

Activation trees

Fibonacci function

func f (n : Integer) : Integer ~
if n <= 2 f(4)
then 1
else f(n-1) + f(n-2) / \
f(3) f(2)
«Depends on runtime / \
behavior .I:(2) f(1)

*May be different for
each program input

Run-time Organization

COMP 520 Compilers - Prins

Execution stack and activation records

« Activation tree suggests the use of a stack to keep track of currently
active procedures

— superficially similar to nested scope
— but activation tree is dynamic and scope is static

« Stack usually laid out in contiguous storage

— each entry on the stack is a procedure or function activation record
» Information needed to manage one procedure activation
* In our text, an activation record is known as a “frame”

« |fF calls G, then G’s activation record contains
— information to resume execution of F (return address)
— arguments from F to G (often viewed as part of F)
— local variables of G
— result of G to F (often viewed as part of F)

COMP 520 Compilers - Prins Run-time Organization

Components of a frame

* Register conventions
— the frame pointer LB (FP in MIPS) contains address of start of the frame
— the stack pointer ST (SP in MIPS) contains address of the end of the frame
and is the top of the execution stack
LB . Dynamic link
Static link — points at start of frame of
calling procedure

Dynamic link

Return address Static Link
— points at start of AR of
statically enclosing

space for local

variables procedure (more later)

expression Return address

evaluation — address to resume execution
stack of caller

v

ST

COMP 520 Compilers - Prins Run-time Organization

Who’s Doing What and When?

Code : Generated by compiler
Static data |- Space reserved by compiler
Stack ‘ Activation records generated
l at run time

Free memory

|

Heap : Managed by run-time
dynamic allocation

COMP 520 Compilers - Prins Run-time Organization

Recall TAM memory organization

 Two separate memories

— Code store CB,

« compiler-generated program is loaded
into code segment

» predefined runtime functions are located
in the primitive segment CP
 TAM can not write into code store

— Data store cT

e static constants and variables are loaded —
into global segment

» procedure invocation and expression
evaluation uses execution stack
— expands downwards

« dynamically allocated values are
allocated on the heap PB
— expands upwards
— memory for deleted values can be reused

« ABI defines fixed addresses and usage
conventions

— various locations in memories are PT
accessed relative to machine registers -
(CB, SB, HT, etc.)

COMP 520 Compilers - Prins Run-time Organization

code
segment

primitive
segment

code store

LB
—

ST

HT
—

HB,

execution
stack

dynamic
data
(heap)

data store

Procedures and functions

* Run-time access to variables
— local variables
— global variables
— non-local, non-global variables (Triangle)
— object instances and members (miniJava)

* Procedures and functions
— frame maintenance
— parameter passing
— result value

 Heap-allocated variables
— runtime heap management

COMP 520 Compilers - Prins Run-time Organization

Runtime access to local variables

« The value of a local variable may be stored

— in an activation record on the execution stack
« if the variable lifetime = procedure lifetime

— in the heap

« if the variable lifetime can exceed procedure lifetime
— E.g. areference returned from a procedure

« Two models of scoped variables

— local/global scope (C)
« all procedures (logically) declared at global scope
« variables are declared at global scope or at local scope

 variable references are local or global
— where do we find the value at runtime? EASY!

— nested procedures (Pascal, Triangle)
» procedure definitions may be nested
 variables are declared in procedures (including a special “global” procedure)

 variable references may refer to a declaration in a surrounding procedure
— where do we find the value at runtime?

HARD!

COMP 520 Compilers - Prins Run-time Organization @ 22

Local/global scope: access to variables

A variable x can be declared

— at global scope

 the compiler knows dg(x), the offset of x
relative to the stack base SB

- to get the value of x at stack top in TAM T
— LOAD dg(x)[SB] | stack
* to store value at stack top into x ——> s
proc P
— STORE dg(x)[SB] ST, :

— at local scope in procedure P

« the variable is allocated in the frame for P and
is available only while P is executing.

« the compiler knows d(x), the offset of x relative to LB
 to get the value of x at stack top

— LOAD d(x)[LB]
 to store value at stack top into x

— STORE d(x)[LB]

——— —
COMP 520 Compilers - Prins Run-time Organization @ 23

Object access (preview)

« Classes
class A {int x; void pQ{x = 3;} }
— Information known to the compiler

« classA: S, =size of class A (# fields)
« fieldx: d, =displacement of field x within A

« Objects
— instances are created on the heap
A a = new AQ);

— access to members

a.x = 2;
a.pQ);
S, ——
LB > T
i reserved |[<— dX —>| X

mJAM d TR |
runtime a e T
layout object instance in heap

activation record on stack

COMP 520 Compilers - Prins Run-time Organization

Local/gobal scope: frame maintenance

* Procedure declaration
int p(int x, int y) { return x+y; }

e Procedure call
int x = p(2*3, 4) + 1;

« Steps taken at point of call

1. evaluate each argument expression at stack top
« one value on the stack for each argument

2. create new frame at stack top
» space for dynamic link and return address (static link unused)

3. Jump to procedure at appropriate address in instruction store

« Steps taken by the callee
— save caller LB into dynamic link
— save caller return address
— set LB to start of current frame
— execute body
— restore LB of caller
— restore ST of caller, popping parameters of caller and pushing result from callee
— return to caller at RA

COMP 520 Compilers - Prins Run-time Organization

Nested procedures and non-local variables (Triangle)

let
var a: Integer;
proc F(b: Integer) ~
let
var b2: Integer;
proc G(c: Integer) ~

begin
. a, b, b2, c,
FC ..), G(C ..)
end
in
.a, b, b2, FC ..), G(C ..)
in
. a, FC ..)

COMP 520 Compilers - Prins Run-time Organization

Nested procedures and non-local variables (Triangle)

let
var a: Integer;

proc F(b: Integer) ~

level 1

in

.a, FC ..)

COMP 520 Compilers - Prins Variable Access and Procedure Call

Nested procedures: access to non-local variables

* Procedure nesting level

— defined as the number of enclosing procedure or function
declarations at a given point in a program

« Given a reference to a variable x
— Declaration level d,
« procedure nesting level at point of declaration of x
— Reference level r,
« procedure nesting level at reference of x
- r,xd

X

* Tofind value of x at reference level r, in TAM
— assume x is stored at offset h in frame of declaring procedure

LOAD h[LB] /i r,—d, =0
LOAD h[L1] /i r,—d, =1 L1=LOAD O[LB] (the static link)
LOAD h[L2] /i r,—d, =2 L2 = { LOAD O[LB]; LOADI }

LOAD h[L3] IHif r,—d, =3 L3 ={LOAD O[LB]; LOADI; LOADI }

COMP 520 Compilers - Prins Run-time Organization

Nested Procedures: frame maintenance

« At procedure call
— call P occurs at reference level rp
— P is declared at declaration level dp
— rp—dp 20

 Check some examples
— FecallsF, Fcalls G, Gcalls F
— how do we set the dynamic link? how do we set the static link?

« Steps taken by the caller
— establish static link at start of frame (current stack top)

« Steps taken by the callee
— save caller LB into dynamic link
— execute body
— restore LB of caller
— restore ST of caller
— pop caller arguments off stack
— push result on the stack
— return to caller

COMP 520 Compilers - Prins Run-time Organization

Parameter passing mechanisms

* Definition
— argument
« passed into a procedure or function
— parameter
« stands for something passed into a procedure or function

* Questions
— when are arguments of function calls evaluated?
* most languages evaluate arguments at the point of call
— to what are the parameters bound?
« values?
« addresses?
 functions?

COMP 520 Compilers - Prins Run-time Organization

Call-by-value

* Frequently used (e.g. C, Java)
— ex
let
proc g(x: Integer) ~ x :=x+ 1
var y: Integer
in
y :=5; g(y); print(y)

— implementation

« argument is evaluated at stacktop (= value of y) by caller
 callee parameter x is directly before activation record of g

* modifications to x have no effect on y, because argument is popped on
return by callee

« Call-by-value-result
— X is copied back into y on termination of g

COMP 520 Compilers - Prins Run-time Organization @ 31

Call-by-reference

« the address is passed instead of a value (e.g. Pascal var parameter)
— ex
let
proc g(var x: Integer) ~ x :=x + 1
vary: Integer
in
y :=5; g(y); print(y)

— implementation
« argument must be a variable
« argument is evaluated at stacktop (= address of y) by caller
» callee parameter x is directly before activation record of g
» areference to x requires dereference of the pointer
* achange to x changes y

— why do this?

« Aliasing
— two parameters may refer to the same location or a parameter may refer to
the same location as a global variable

— _is this a problem?

COMP 520 Compilers - Prins Run-time Organization

Values that live on the heap

 need to be allocated and deallocated at run-time

language allocation deallocation

C malloc free

C++ new delete

Java new (garbage collection)
Matlab (implicit) (reference counting)

« values on the heap are always passed as a reference
— for performance reasons
— but can lead to extensive aliasing

COMP 520 Compilers - Prins Run-time Organization @ 33

Run-time API

 alloc(k)

— locates a block of at least k bytes in free space pool, removes it from
pool, returns its address

« free(p)
— places the block pointed to by p back in free space pool
— Not needed if unused storage is automatically reclaimed

COMP 520 Compilers - Prins Run-time Organization

Issues in Heap Management

 Wasted space
— If alloc returns blocks larger than requested, excess space is wasted

* Fragmentation

— After a series of alloc/free commands, free space pool becomes
fragmented, preventing allocation of large blocks

« Speed
— alloc and free should be inexpensive

COMP 520 Compilers - Prins Run-time Organization

	COMP 520 - Compilers�Lecture 13 (Tue Mar 29, 2022)�Run-time organization
	Where are we?
	Run-time organization
	Target machine model
	ABI: MIPS memory organization
	TAM memory organization
	Representation of values in memory
	Execution model: Stack machine
	Code generation and execution on stack machines
	Triangle code generation
	Execution model: Register machine
	Expression evaluation on register machines
	Procedures and functions
	Anatomy of a function (Triangle)
	Lifetime of a function / procedure
	Activation trees
	Execution stack and activation records
	Components of a frame
	Who’s Doing What and When?
	Recall TAM memory organization
	Procedures and functions
	Runtime access to local variables
	Local/global scope: access to variables
	Object access (preview)
	Local/gobal scope: frame maintenance
	Nested procedures and non-local variables (Triangle)
	Nested procedures and non-local variables (Triangle)
	Nested procedures: access to non-local variables
	Nested Procedures: frame maintenance
	Parameter passing mechanisms
	Call-by-value
	Call-by-reference
	Values that live on the heap
	Run-time API
	Issues in Heap Management

