
• Reading
– PLPJ Chapter 7 Code Generation

• Secn 7.1 – 7.4 (pp 250 - 301)

• Project
– PA4 assignment is online

COMP 520 - Compilers

Lecture 14 (Thu April 7, 2022)

Code Generation

[14] Code GenerationCOMP 520: Compilers

2[14] Code GenerationCOMP 520: Compilers

Topics
• Code generation overview

– objectives and approach
– entity descriptions
– TAM stack machine and interface for object code generation
– miniTriangle code generation examples

• Triangle code generation
– information flow in AST traversal
– entity descriptions
– TAM details
– Triangle examples

• miniJava code generation
– simplifications and complications
– mJAM

3[14] Code GenerationCOMP 520: Compilers

Code generation overview
• Code generation task

– synthesize “object code” from decorated AST for a stack machine
• every Identifier and Reference are linked to a declaration

– add information about runtime location
• every Expression has a type

– determines instructions to be used

• Object code representation
– binary

• instructions for physical machine, e.g. MIPS
• instructions for abstract machine, e.g. TAM

– textual
• assembler code

• Object code conventions
– memory layout
– procedure linkage
– loading, execution, and debugging

4[14] Code GenerationCOMP 520: Compilers

What needs to be done
• Determine size and location of variables

– how much space does a variable occupy?
– where is it allocated?
– when is it allocated?

• Generate object code for each construct in the AST
– control structures

• if, while, block statements, etc.
– expressions

• predefined operators
– procedure and function call

• caller prolog, epilog
• callee prolog, epilog

– variable reference
• Reference can be read or assigned

– space allocation
• scope entry/exit

5[14] Code GenerationCOMP 520: Compilers

Approach (Triangle)
• Traverse AST using visitor

– information flow
• inherited: activation record (frame) size in fixed units (words)
• synthesized: a declaration returns the size of the declared variable

– visit declarations before references
• create an “entity description”

– size and location of the entity in object code units
– access mode and value

» known value or unknown value at compile time?
» accessed in current frame or in global frame or in heap?
» contents are data (what type) or data address or code address?

• update sizes of runtime structures as declarations are encountered
– Update frame size to accommodate locals
– Update object size as fields are encountered

– visit commands, expressions
• use entity descriptions to generate appropriate code for references
• generate appropriate instructions for expression evaluation and command

execution

6[14] Code GenerationCOMP 520: Compilers

Implementation of Entity Descriptions

• An entity description
– public abstract class RuntimeEntity { public int size; ... }

• Specialized to specific types of values and access modes
– public class KnownValue extends RuntimeEntity {

public int value; /* the known value */
...}

– public class UnknownValue extends RuntimeEntity {

public Address address; /* the address of the value on the stack */
...}

• Allow (some) AST classes to be decorated with an entity description
– public abstract class AST { public RuntimeEntity entity; ... }

• might be restricted to Declaration subclass

7[14] Code GenerationCOMP 520: Compilers

Entity descriptions (Triangle)
let

const b ~ 10;

var i: Integer;

in

i := i * b

LOAD 4[SB]
LOADL 10
mult
STORE 4[SB]

8[14] Code GenerationCOMP 520: Compilers

Entity description (Triangle)
let

var x: Integer

in

let

const y ~ 365 + x

in

putint(y)

LOAD 5[SB]
LOADL 365
CALL add
STORE 6[SB]

LOAD 6[SB]
CALL putint

9COMP 520: Compilers

Recall TAM memory organization
• Two separate memories

– Code store
• compiler-generated program is loaded

into code segment
• predefined runtime functions are located

in the primitive segment
• TAM can not write into code store

– Data store
• static constants and variables are loaded

into global segment
• procedure invocation and expression

evaluation uses execution stack
– expands downwards

• dynamically allocated values are
allocated on the heap

– expands upwards
– memory for deleted values can be reused

• ABI defines fixed addresses and usage
conventions

– various locations in memories are
accessed relative to machine registers
(CB, SB, HT, etc.) code store

code
segment

primitive
segment

CB

CP

CT

PB

PT

data store

global
segment

dynamic
data

(heap)

execution
stack

SB

LB

ST

HT

HB

[14] Code Generation

10[14] Code GenerationCOMP 520: Compilers

Triangle Abstract Machine (TAM)

• TAM
– stack machine
– 16 registers with fixed definitions

• CB – code base, CT – code top, CP – Code pointer
• PB – primitives base, PT- prim top

• SB – stack base, ST – stack top
• HB – heap base, HT – heap top
• LB – locals base,

– L1 .. L6 – locals base of up to 6 lexically enclosing procedure scopes (cache
for static chain)

• Instruction format (32 bits)
– operation op (4 bits)
– register r (4 bits)
– size n (8 bits)
– value d (signed 16 bits)

11[14] Code GenerationCOMP 520: Compilers

TAM – Triangle Abstract Machine

• Instructions

12[14] Code GenerationCOMP 520: Compilers

TAM – Triangle Abstract Machine

• Primitives

13[14] Code GenerationCOMP 520: Compilers

TAM object code interface

• An instruction
public class Instruction {

... definitions of op-codes and registers
public Instruction(byte op, byte n, byte r, short d) { ... }

}

• Interface provided to code generator
private Instruction[] code = new Instruction [1024];

private int nextInstrAddr = 0;

public void emit(byte op, byte n, byte r, short d) {

code[nextInstrAddr++] = new Instruction(op, n, r, d);

}

– Requires instructions to be emitted in linear order!

14[14] Code GenerationCOMP 520: Compilers

Code generator using visitor (miniTriangle)

• Traverse AST, emit instructions
– visit top-level program node

public Object visitProgram(Program prog, Object arg) {

prog.C.visit(this, arg);

emit(Instruction.HALTop, 0, 0, 0);

return null;

}

– visit integer expression (which contains an IntegerLiteral)
public Object visitIntegerExpression

(IntegerExpression expr, Object arg) {

short v = valuation(expr.IL.spelling);

emit(Instruction.LOADLop, 0, 0, v);

return null;

}

15[14] Code GenerationCOMP 520: Compilers

Code generator using visitor methods (miniTriangle)

– visit unary expression
public Object visitUnaryExpression

(UnaryExpression expr, Object arg) {

expr.E.visit(this, arg);

short p = address of primitive routine corresponding to expr.operator
emit(Instruction.CALLop, Instruction.SBr,

Instruction.PBr, p);

return null;

}

16[14] Code GenerationCOMP 520: Compilers

Code generator using visitor methods (miniTriangle)

• visit while command
public Object visitWhileCommand(WhileCommand com, Object arg) {

short j = nextInstrAddr;

emit(Instruction.JUMPop, 0, INSTRUCTION.CBr, 0) // patchme

short g = nextInstrAddr;

com.C.visit(this, arg);

short h = nextInstrAddr;

patch(j, h);

com.E.visit(this, arg);

emit(Instruction.JUMPop, 1, Instruction.CBr, g);

return null;

}

JUMP (CB)j:

com.C.visit

g:

JUMP g(CB)

com.E.visit
h:

h

17[14] Code GenerationCOMP 520: Compilers

Code generator using visitor methods (miniTriangle)
• Use visitor argument and result to track space usage

– visit variable declaration
public Object visitVarDeclaration

(VarDeclaration decl, Object arg) {

short gs = shortValueOf(arg);

short s = shortValueOf(decl.T.visit(this, null))

emit(Instruction.PUSHop, 0, 0, s)

decl.entity = new KnownAddress(proc nesting level, gs);
return new Short(s);

}

– visit multiple declarations
public Object visitSequentialDeclaration

(SequentialDeclaration decl, Object arg) {

short gs = shortValueOf(arg);

short s1 = shortValueOf(decl.D1.visit(this, arg));

short s2 = shortValueOf(

decl.D2.visit(this, new Short(gs+s1)));

return new Short(s1 + s2);

}

18[14] Code GenerationCOMP 520: Compilers

TAM code generation in the Triangle compiler
• How does it differ from our miniTriangle examples so far?

– Triangle has
• nested procedures and functions

– non-local variable reference
– static link management in procedure and function call

• parameter passing by reference and by value
– increases complexity of value access and update

• arguments that are procedures or functions
– pass as a closure: (code address, static link)

• composite types
– records, arrays
– field and element selectors in reference and assignment
– non-unit value size

» needed in assignment, equality, parameter passing
– Triangle simplification: all values of a given type have the same size

19[14] Code GenerationCOMP 520: Compilers

Information passed through AST traversal

• The visit method permits an argument to be passed in and a value to be
returned
– What is passed in and returned?

• Declarations
– argument: frame description
– yields: amount of storage allocated by declaration

• Commands
– argument: frame description
– yields: null

• Expressions
– argument: frame description
– yields: size of result

• V-names (references)
– argument: frame description
– yields: runtime entity description of reference

20[14] Code GenerationCOMP 520: Compilers

Entity descriptions in the Triangle compiler
• Every entity has

– size n (determined by type)

• Known value adds
– constant with literal value (e.g. intLit, CharLit, …) with n = 1.

• entity not allocated in any frame, fetched via LOADL

• Unknown value adds
– constant with value computed at run time

• entity allocated in some frame, fetched via LOAD (n) of known address

• Known address adds
– (decl level s, displacement d)

• entity fetched via LOAD (n) d(frame-base) frame-base ∈ LB, L1, L2, … , SB
• entity stored via STORE (n) d(frame-base)

• Unknown address adds
– an indirect address, the contents of the known address (s, d)

• entity fetched via LOAD d(frame-base); LOADI (n);
• entity stored via LOAD d(frame-base); STOREI (n);

21[14] Code GenerationCOMP 520: Compilers

Entity descriptions in the Triangle compiler
• Known routine adds

– a code address

• Unknown routine adds
– code address and static link (decl level s, displacement d) in a known location

• arises when functions are passed as values

• Primitive routine adds
– TAM-specific known code address for primitive operation

• Type representation adds
– size

• fixed for all values of the type

• Field adds
– offset and size

• in V-names

22[14] Code GenerationCOMP 520: Compilers

Procedure call

• Program cg1.tri
let

var n: Integer;

proc p() ~

n := n * 2

in

begin

n := 9;

p();

end

• TAM code cg1.tam
0: PUSH 1

1: JUMP 7[CB]

2: LOAD (1) 0[SB]

3: LOADL 2

4: CALL mult

5: STORE (1) 0[SB]

6: RETURN(0) 0

7: LOADL 9

8: STORE (1) 0[SB]

9: CALL (SB) 2[CB]

10: POP (0) 1

11: HALT

24[14] Code GenerationCOMP 520: Compilers

Parameter passing

• Program cg4.tri
let

proc p(var x: Integer,

i: Integer) ~

x := x + i;

var y : Integer

in

begin

y := 2;

p(var y, 5);

putint(y);

end

• TAM code cg4.tam
0: JUMP 8[CB]

1: LOAD (1) -2[LB]

2: LOADI (1)

3: LOAD (1) -1[LB]

4: CALL add

5: LOAD (1) -2[LB]

6: STOREI(1)

7: RETURN(0) 2

8: PUSH 1

9: LOADL 2

10: STORE (1) 0[SB]

11: LOADA 0[SB]

12: LOADL 5

13: CALL (SB) 1[CB]

14: LOAD (1) 0[SB]

15: CALL putint

16: POP (0) 1

17: HALT

25[14] Code GenerationCOMP 520: Compilers

miniJava vs Triangle

• Classes
class A {int x; void p(){x = 3;} }

– runtime entity descriptions in AST
• class A : SA = size of class A (# fields)
• field x: dx = displacement of field x in heap-allocated instance
• method p: dp = displacement of code for p in code store

• Objects
– instances are created on the heap

A a = new A();

runtime
layout a

LB

da

activation record on stack

object instance in heap

xdx

SA

reserved

26[14] Code GenerationCOMP 520: Compilers

Some considerations for implementing miniJava

• Simplifying properties
– All miniJava values on the stack have the same size

• one word
– All miniJava values are passed by value

• the value of an object is its address in the heap
– All stack references are relative to LB, or possibly to SB (when?)

• no need for Triangle nested procedure links, L1 …. L6

• Complications
– implicit parameter this in every non-static method invocation
– complex handling of References

• encodeFetch
• encodeStore
• encodeMethodInvocation

– (dynamic method invocation)

27[14] Code GenerationCOMP 520: Compilers

MiniJava and TAM
• miniJava compiler could target TAM

– but some things will be tedious
• references to instance members within a method
• call sequence
• int values x with |x| > 32,767
• (dynamic method invocation)

• better target: mJAM, a Java Abstract Machine
– implemented as a small modification to TAM

• remove L1 … L6 registers and static link maintenance
• extend int values to full word
• add a register OB for object base

– holds value of this
– preserved/restored in method invocation

• Method call
– CALL for static methods
– CALLI for instance methods
– (CALLD for dynamic method invocation)

28COMP 520: Compilers

mJAM memory organization
• Two separate memories

– Code store
• compiler-generated program is loaded

into code segment
• predefined runtime functions are located

in the primitive segment
• mJAM cannot write into code store

– Data store
• static constants and variables are loaded

into static segment
• method invocation creates a frame
• expression evaluation occurs at stack top

– expands downwards
• object instances are dynamically

allocated on the heap
– expands upwards
– (no garbage collection)

• ABI defines fixed addresses and usage
conventions

– various locations in memories are
accessed relative to machine registers
(CB, SB, LB, ST, etc.) code store

code
segment

primitive
segment

CB

CP

CT

PB

PT

data store

static
segment

dynamic
data

(heap)

execution
stack

SB

LB

ST

HT

HB

[14] Code Generation

current
frame

29

miniJava code generation: available information
• AST phrase class (LHS NT of AST grammar)

– Package, Statement, Reference, Expression, Declaration, Terminal

• AST attributes
– Every Identifier and Reference link to a Declaration

• Reference
– IdRef, ThisRef, QualRef

• Declaration
– ClassDecl, MethodDecl, FieldDecl, ParameterDecl, VarDecl

– Every Declaration has a type
• TypeKind ∈

– Int, Boolean, Array, void, Class
• ArrayType (𝜏𝜏)
• ClassType (name)

– Every Declaration has a runtime entity description
• Describes where/how to find value in memory

[14] Code GenerationCOMP 520: Compilers

30

miniJava code generation
• AST node type (phrase) and AST attributes determine code generation

for each node
– examples of code functions for miniJava (cf. PLPJ Table 7.1)

[14] Code GenerationCOMP 520: Compilers

Phrase class Code function Effect of generated code
Package P run P Call main method and HALT upon return

Statement S execute S Execute statement, updating variables, no change
in frame size on termination except VarDeclStmt
which extends frame by 1

Expression E evaluate E Evaluate expression E, leaving its result at stack
top

Reference R fetch R R denotes a LocalDecl or FieldDecl, load value at
Decl at stacktop

Reference R assign R R denotes a LocalDecl or FieldDecl, pop value from
stack top and store it in R

Reference R call R R denotes a MethodDecl, CALLI or CALL with
needed args

…. ….. …..

31

CodeGenerator implementation

• The CodeGenerator is yet another visitor of the AST
1. Traverse all Declarations creating a runtime entity descriptor (RED)

for each declaration
• offset relative to LB for local variables and parameter variables
• offset relative to SB for static fields
• offset relative to OB for instance variables
• offset relative to CB for methods

2. Generate instructions in code store for each method in each class
• method linkage – establishing a new frame, and returning
• generate code for all statements

– generate control flow
– generate expression evaluation
– generate reference evaluation
– generate assignment or variable declaration statement
– generate method or primitive invocation

[14] Code GenerationCOMP 520: Compilers

	COMP 520 - Compilers�Lecture 14 (Thu April 7, 2022)�Code Generation
	Topics
	Code generation overview
	What needs to be done
	Approach (Triangle)
	Implementation of Entity Descriptions
	Entity descriptions (Triangle)
	Entity description (Triangle)
	Recall TAM memory organization
	Triangle Abstract Machine (TAM)
	TAM – Triangle Abstract Machine
	TAM – Triangle Abstract Machine
	TAM object code interface
	Code generator using visitor (miniTriangle)
	Code generator using visitor methods (miniTriangle)
	Code generator using visitor methods (miniTriangle)
	Code generator using visitor methods (miniTriangle)
	TAM code generation in the Triangle compiler
	Information passed through AST traversal
	Entity descriptions in the Triangle compiler
	Entity descriptions in the Triangle compiler
	Procedure call
	Parameter passing
	miniJava vs Triangle
	Some considerations for implementing miniJava
	MiniJava and TAM
	mJAM memory organization
	miniJava code generation: available information
	miniJava code generation
	CodeGenerator implementation

