
COMP 520 - Compilers

Lecture 15 (Tue Apr 12, 2022)

miniJava code generation and runtime organization

• Reading
• skim PLPJ Chapter 8 on interpretation
• study example from class today
• study mJAM miniJava Abstract Machine

• PA4 project materials online
• PA4 assignment
• mJAM virtual machine (instead of TAM)
• PA4Test.java

COMP 520: Compilers - Prins [15] miniJava Code Generation

3

On to PA4 Code Generation

• Recall Triangle Abstract Machine (TAM)
– TAM interprets code generated by the Triangle compiler
– Triangle and miniJava are quite different
– we will use mJAM, a modified version of TAM, as our target machine

• What are the differences?
– top-level: nested procedures vs. objects

COMP 520: Compilers - Prins [15] miniJava Code Generation

4COMP 520: Compilers - Prins

mJAM memory organization
• Two separate memories

– Code store
• compiler-generated program is loaded

into code segment
• predefined runtime functions are located

in the primitive segment
• mJAM can not write into code store

– Data store
• static constants and variables are loaded

into static segment
• method invocation creates a frame
• expression evaluation occurs at stack top

– expands downwards
• object instances are dynamically

allocated on the heap
– expands upwards
– (no garbage collection)

• ABI defines fixed addresses and usage
conventions

– various locations in memories are
accessed relative to machine registers
(CB, SB, LB, ST, etc.) code store

code
segment

primitive
segment

CB

CP

CT

PB

PT

data store

static
segment

dynamic
data

(heap)

execution
stack

SB

LB

ST

HT

HB

[15] miniJava Code Generation

current
frame

5COMP 520: Compilers - Prins

miniJava: simple classes, no inheritance

• Classes
class A { int x; void p(){x = 3;} }

– runtime entity descriptions in AST
• class A : SA = size of class A (# fields) = 1
• field x: dx = displacement of field x = 0
• method p: dp = displacement of code for p = ?

• Objects
– objects are created on the heap: A a = new A();
– let da be displacement of local var “a” in activation record (= frame)

mJAM
runtime
layout

a

LB

da

activation record on stack

object instance in heap

xdx

SA

reserved

[15] miniJava Code Generation

6

• mJAM code sequences

COMP 520: Compilers - Prins

mJAM: runtime support for simple classes

A a = new A();
(object creation)

LOADL -1
LOADL SA
CALL newobj
STORE da[LB]

a.x;
(qualified reference)

LOAD da[LB]
LOADL dx
CALL fieldref

a.p();
(method invocation)

LOAD da[LB]
CALLI dp[CB]

x = x + 3;
(field upd within p())

LOAD dx[OB]
LOADL 3
CALL ADD
STORE dx[OB]

reserved
-1 | SA

OB
[within p()]

instance address

a

LB

da

activation record on stack

object instance in heap

xdx

SA

instance call

[15] miniJava Code Generation

7

Linkage

• In a method call, the first three words of the new frame are reserved for
the linkage
– OB: the object base, or -1 for static method, of caller (i.e. caller’s OB)
– DL: the start of caller’s frame on the stack (i.e. caller’s LB)
– RA: the code address to resume in caller on return

Thus the first available location in the frame of a method is 3[LB]

• On return (#res) #args
– the frame plus #args are popped off stack
– #res values (0 or 1) are pushed on the stack
– execution resumes in caller

[15] miniJava Code GenerationCOMP 520: Compilers - Prins

8

Simple miniJava program

COMP 520: Compilers - Prins

class Counter {

public void increase(int k) {
count = count + k;

}

public static void main(String [] args){
Counter counter = new Counter();
counter.increase(3);
System.out.println(counter.count);

}

public int count;

}

[15] miniJava Code Generation

9

Code generation for “Counter” example (1)

• Where do we start?
– identify unique mainclass

• there’s only one class and it contains a
public static void main(String [] args){ … }

• Emit code to call main and halt on return
– code starts at location 0 in code store
1. create empty args array on heap
2. call main (address L11 must be patched)
3. on return halt with code 0

COMP 520: Compilers - Prins

0 LOADL 0
1 CALL newarr
2 CALL (L11)
3 HALT (0)

[15] miniJava Code Generation

instruction
addresses

mJAM
instructions

10

Code generation for “Counter” example (2)

• Visit each class in turn, generating code for all methods
– visit class Counter

1. Visit method increase
public void increase(int k) {

count = count + k;
}

COMP 520: Compilers - Prins

4 L10: LOAD 0[OB]
5 LOAD -1[LB]
6 CALL add
7 STORE 0[OB]
8 RETURN (0) 1

[15] miniJava Code Generation

results
(0 or 1)

method
arguments

11

Code generation for “Counter” example (3)

• Visit method main (String [] args) {
Counter counter = new Counter();
counter.increase(3);
System.out.println(counter.count);
}

COMP 520: Compilers - Prins

9 L11: LOADL -1
10 LOADL 1
11 CALL newobj
12 LOADL 3
13 LOAD 3[LB]
14 CALLI (L10)
15 LOAD 3[LB]
16 LOADL 0
17 CALL fieldref
18 CALL putintnl
19 RETURN (0) 1

[15] miniJava Code Generation

must be patched to
address of increase
method in code store

address of counter
instance

get value of count
from our counter instance

12COMP 520: Compilers - Prins

Classes with single inheritance (Java)

• Class hierarchy
class A {int x; void p(){ … } }

class B extends A {int y; void p(){ … } void q(){ … } }

• inheritance hierarchy
– “class B extends class A”, or “B is a subtype of A”

• fields
– fields of B extend the fields of A
– runtime layout of fields in A is a prefix of the runtime layout of fields in B

• methods
– methods of B extend the methods of A
– methods of B can redefine (override) methods of A

A

B

[15] miniJava Code Generation

13COMP 520: Compilers - Prins

Static and dynamic type with single inheritance

• Object type
– static type (declared type)

• used by compiler for type checking
– determines accessible fields and available methods on objects
– type rules for assignments

» assignment: (type of RHS) must be a subtype (≤) of (type of LHS)
» method call: type of arg i must be a subtype of type of parameter i

– dynamic type (run-time type)
• generally only known at runtime

– part of the representation of an object
» initialized at time of creation from object constructor

– dynamic type is always a subtype of the static type (guaranteed by type system)
– dynamic type determines which method is invoked (runtime lookup)

– examples
A a = new A();
B b = new B();
A c = b;
B d = a;

a.p();
b.q();
c.p();

A

B

class A {int x; void p(){ … } }

class B extends A {
int y;
void p(){ … }
void q(){ … }

}

[15] miniJava Code Generation

14COMP 520: Compilers - Prins

mJAM representation of single inheritance
class A {int x; void p(){ … } }

class B extends A
{int y; void p(){ … } void q(){ … } }

• runtime entity descriptions in AST
• class A : SA = size of class A
• class A: dA = displacement of class descriptor for A
• class B: SB = size of class B (including size of class A)
• class B: dB = displacement of class descriptor for B
• field x dx = displacement of field x in A and B
• field y dy = displacement of field y in B
• method p: hp = index of method p in A and B
• method q: hq = index of method q in B
• method p in A: dp[A] = displacement of code for p() in A
• method p in B: dp[B] = displacement of code for p() in B
• method q in B: dq[B] = displacement of code for q() in B

[15] miniJava Code Generation

15COMP 520: Compilers - Prins

Classes with single inheritance

• mJAM runtime layout

hp

SB

p:

p:

q:

dA

dB

dp[B]

dq[B]

dp[A]

hq

hp

a:

b:

LB
x

SB

y

SA

dx

dy
dx

dA | SA

dB | SB

x

class descriptors
in global segment
of data memory

[15] miniJava Code Generation

16COMP 520: Compilers - Prins

Classes with single inheritance
• mJAM code sequences (only changed sequences are shown)

A a = new A();
(object creation)
LOADL dA
LOADL SA
CALL newobj
STORE da[LB]

a.p();
(dynamic invocation)

LOAD da[LB]
CALLD hp

hp

SB

p:

p:

q:

dA

dB

dp[B]

dq[B]

dp[A]

hq

hp

a:

b:

LB
x y

dx

dydx

dA | SA

dB | SB

x

[15] miniJava Code Generation

17COMP 520: Compilers - Prins

Related issues

• single inheritance
– type operations

• instanceof
• casting

– super() superclass constructor invocation

• multiple inheritance
– we lose the prefix property of runtime layout!

• optimization
– dynamic method dispatch has high cost
– converting dynamic to static calls

• dynamically loaded classes
– Java loads classes on demand, hence cannot use simple

representations such as those used by mJAM

[15] miniJava Code Generation

18

The PA4 checkpoint
• your pa4 directory should have

– miniJava package
• Compiler.java
• SyntacticAnalyzer
• AbstractSyntaxTrees
• ContextualAnalyzer
• CodeGenerator (new subpackage)

– mJAM package (supplied on our web page)
• Interpreter.java
• Disassembler.java
• Instruction.java
• Machine.java
• ObjectFile.java

• mJAM is needed to check the generated code gives the right result
– pa4 testing will not copy your mJAM, it uses mJAM as distributed

• pa4 readiness check will be available: /check/pa4.pl

COMP 520: Compilers - Prins [15] miniJava Code Generation

19COMP 520: Compilers - Prins

Compiling and running miniJava programs (Unix)
• Compiling test.java

– java miniJava/Compiler test.java
• use mJAM.ObjectFile to write test.mJAM (note spelling!), be sure that it is

written in the same directory as test.java
• do not run the generated program as part of compilation!

• Disassembling test.mJAM
– java mJAM/Disassembler test.mJAM

• should write test.asm in same directory as test.mJAM

• Running test.mJAM
– java mJAM/Interpreter test.mJAM

• System.out.println results from test.java will appear on stdout prefixed by
“>>> “

• Debugging test.mJAM
– java mJAM/Interpreter test.mJAM test.asm

• Show machine data store and state, show code, set/remove breakpoints,
single instruction execution

• Type “?” for help

[15] miniJava Code Generation

20

Check results

• To compare miniJava and java semantics of program foo.java

1. Run as miniJava program
java miniJava/Compiler foo.java
java mJAM/Interpreter foo.mJAM

2. Run as java program
javac foo.java
java foo.class

• Note that mJAM println prefixes output with “>>> “

COMP 520: Compilers - Prins [15] miniJava Code Generation

	COMP 520 - Compilers�Lecture 15 (Tue Apr 12, 2022)�miniJava code generation and runtime organization
	On to PA4 Code Generation
	mJAM memory organization
	miniJava: simple classes, no inheritance
	mJAM: runtime support for simple classes
	Linkage
	Simple miniJava program
	Code generation for “Counter” example (1)
	Code generation for “Counter” example (2)
	Code generation for “Counter” example (3)
	Classes with single inheritance (Java)
	Static and dynamic type with single inheritance
	mJAM representation of single inheritance
	Classes with single inheritance
	Classes with single inheritance
	Related issues
	The PA4 checkpoint
	Compiling and running miniJava programs (Unix)
	Check results

