
COMP 520  - Compilers

Lecture 15     (Tue Apr 12, 2022)

miniJava code generation and runtime organization

• Reading
• skim PLPJ Chapter 8 on interpretation
• study example from class today
• study mJAM miniJava Abstract Machine

• PA4 project materials online
• PA4 assignment
• mJAM virtual machine (instead of TAM)
• PA4Test.java
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On to PA4 Code Generation

• Recall Triangle Abstract Machine (TAM)
– TAM interprets code generated by the Triangle compiler
– Triangle and miniJava are quite different
– we will use mJAM, a modified version of TAM, as our target machine

• What are the differences?
– top-level:  nested procedures vs. objects 
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mJAM memory organization
• Two separate memories

– Code store
• compiler-generated program is loaded 

into code segment
• predefined runtime functions are located 

in the primitive segment
• mJAM can not write into code store

– Data store
• static constants and variables are loaded 

into static segment
• method invocation creates a frame
• expression evaluation occurs at stack top

– expands downwards
• object instances are dynamically 

allocated on the heap
– expands upwards
– (no garbage collection)

• ABI defines fixed addresses and usage 
conventions

– various locations in memories are 
accessed relative to machine registers 
(CB, SB, LB, ST, etc.) code store
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miniJava: simple classes, no inheritance

• Classes
class A { int x; void p(){x = 3;} }

– runtime entity descriptions in AST
• class A : SA = size of class A (# fields) = 1
• field x:  dx   = displacement of field x = 0
• method p:  dp = displacement of code for p  = ?

• Objects
– objects are created on the heap:  A a = new A();
– let da be displacement of local var “a” in activation record (= frame)

mJAM
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• mJAM code sequences
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mJAM: runtime support for simple classes

A a = new A();
(object creation)

LOADL -1
LOADL SA
CALL    newobj
STORE da[LB]

a.x;
(qualified reference)

LOAD da[LB]
LOADL dx
CALL fieldref

a.p();
(method invocation)

LOAD da[LB]
CALLI dp[CB]

x = x + 3;
(field upd within p() )

LOAD dx[OB]
LOADL 3
CALL ADD
STORE  dx[OB]

reserved
-1   |   SA

OB
[ within p() ]

instance address

a

LB

da

activation record on stack 

object instance in heap

xdx

SA

instance call
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Linkage

• In a method call, the first three words of the new frame are reserved for 
the linkage
– OB:  the object base, or -1 for static method, of caller (i.e. caller’s OB)
– DL:  the start of caller’s frame on the stack (i.e. caller’s LB)
– RA:  the code address to resume in caller on return 

Thus the first available location in the frame of a method is 3[LB]

• On return (#res) #args
– the frame plus #args are popped off stack
– #res values (0 or 1) are pushed on the stack
– execution resumes in caller
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Simple miniJava program
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class Counter {

public void increase(int k) {
count = count + k;

}

public static void main(String [] args){
Counter counter = new Counter();
counter.increase(3);
System.out.println(counter.count);

}

public int count;

}
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Code generation for “Counter” example (1)

• Where do we start?
– identify unique mainclass

• there’s only one class and it contains a
public static void main(String [] args){ … }

• Emit code to call main and halt on return
– code starts at location 0 in code store
1. create empty args array on heap
2. call main (address L11 must be patched) 
3. on return halt with code 0
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0  LOADL  0
1  CALL   newarr
2  CALL   (L11)
3  HALT   (0)   
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Code generation for “Counter” example (2)

• Visit each class in turn, generating code for all methods
– visit class Counter

1. Visit method increase
public void increase(int k) {

count = count + k;
}
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4 L10:  LOAD  0[OB]
5       LOAD  -1[LB]
6       CALL  add     
7       STORE 0[OB]
8       RETURN (0) 1
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Code generation for “Counter” example (3)

• Visit method main (String [] args) {
Counter counter = new Counter();
counter.increase(3);
System.out.println(counter.count);
}
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9  L11: LOADL  -1
10       LOADL   1
11       CALL    newobj
12       LOADL   3
13       LOAD    3[LB]
14       CALLI    (L10)
15       LOAD    3[LB]
16       LOADL   0
17       CALL    fieldref
18      CALL    putintnl
19       RETURN (0)   1

[15] miniJava Code Generation
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Classes with single inheritance (Java)

• Class hierarchy
class A {int x; void p(){ … } }

class B extends A {int y; void p(){ … } void q(){ … } }

• inheritance hierarchy 
– “class B extends class A”, or “B is a subtype of A”

• fields 
– fields of B extend the fields of A
– runtime layout of fields in A is a prefix of the runtime layout of fields in B

• methods
– methods of B extend the methods of A
– methods of B can redefine (override) methods of A

A

B
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Static and dynamic type with single inheritance

• Object type
– static type (declared type)

• used  by compiler for type checking
– determines accessible fields and available methods on objects
– type rules for assignments 

» assignment:  (type of RHS) must be a subtype (≤) of (type of LHS)
» method call:  type of arg i must be a subtype of type of parameter i

– dynamic type (run-time type)
• generally only known at runtime

– part of the representation of an object
» initialized at time of creation from object constructor

– dynamic type is always a subtype of the static type (guaranteed by type system)
– dynamic type determines which method is invoked (runtime lookup)

– examples
A a = new A();
B b = new B();
A c = b;
B d = a;

a.p();
b.q();
c.p();

A

B

class A {int x; void p(){ … } }

class B extends A {
int y; 
void p(){ … } 
void q(){ … } 

}
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mJAM representation of single inheritance
class A {int x; void p(){ … } }

class B extends A
{int y; void p(){ … } void q(){ … } }

• runtime entity descriptions in AST
• class A : SA = size of class A
• class A: dA = displacement of class descriptor for A
• class B: SB = size of class B (including size of class A)
• class B: dB = displacement of class descriptor for B
• field x  dx   = displacement of field x in A and B
• field y dy = displacement of field y in B
• method p: hp = index of method p in A and B
• method q: hq = index of method q in B
• method p in A: dp[A] = displacement of code for p() in A
• method p in B: dp[B] = displacement of code for p() in B
• method q in B: dq[B] = displacement of code for q() in B

[15] miniJava Code Generation
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Classes with single inheritance

• mJAM runtime layout
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Classes with single inheritance
• mJAM code sequences (only changed sequences are shown)

A a = new A();
(object creation)
LOADL dA
LOADL SA
CALL    newobj
STORE da[LB]

a.p();
(dynamic invocation)

LOAD da[LB]
CALLD   hp

hp

SB

p:

p:

q:
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x
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Related issues

• single inheritance 
– type operations

• instanceof
• casting

– super() superclass constructor invocation

• multiple inheritance
– we lose the prefix property of runtime layout!

• optimization
– dynamic method dispatch has high cost
– converting dynamic to static calls

• dynamically loaded classes
– Java loads classes on demand, hence cannot use simple 

representations such as those used by mJAM

[15] miniJava Code Generation
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The PA4 checkpoint
• your pa4 directory should have

– miniJava package 
• Compiler.java
• SyntacticAnalyzer
• AbstractSyntaxTrees
• ContextualAnalyzer
• CodeGenerator (new subpackage)

– mJAM package (supplied on our web page)
• Interpreter.java
• Disassembler.java
• Instruction.java
• Machine.java
• ObjectFile.java

• mJAM is needed to check the generated code gives the right result
– pa4 testing will not copy your mJAM, it uses mJAM as distributed

• pa4 readiness check will be available:  /check/pa4.pl
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Compiling and running miniJava programs (Unix)
• Compiling test.java

– java miniJava/Compiler test.java
• use mJAM.ObjectFile to write test.mJAM (note spelling!), be sure that it is 

written in the same directory as test.java
• do not run the generated program as part of compilation!

• Disassembling test.mJAM
– java mJAM/Disassembler test.mJAM

• should write test.asm in same directory as test.mJAM

• Running test.mJAM
– java mJAM/Interpreter test.mJAM

• System.out.println results from test.java will appear on stdout prefixed by 
“>>> “

• Debugging test.mJAM
– java mJAM/Interpreter test.mJAM test.asm

• Show machine data store and state, show code, set/remove breakpoints, 
single instruction execution

• Type “?” for help

[15] miniJava Code Generation
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Check results

• To compare miniJava and java semantics of program foo.java

1. Run as miniJava program
java miniJava/Compiler foo.java  
java mJAM/Interpreter foo.mJAM

2. Run as java program
javac foo.java 
java  foo.class

• Note that mJAM println prefixes output with “>>> “
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